Virtual Robot Kinematic Learning System: A New Teaching Approach

Size: px
Start display at page:

Download "Virtual Robot Kinematic Learning System: A New Teaching Approach"

Transcription

1 Virtual Robot Kinematic Learning System: A New Teaching Approach 1 Haslina Arshad, 2 Khor Ching Yir, 3 Lam Meng Chun 1,2,3 School of Information Technology, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia has@ftsm,ukm.my Abstract Computer assisted learning systems for robotics can assist students to understand topics on robot modeling, direct and inverse kinematics, join motions, trajectories, and also workspace limitations. This paper presents a virtual robotic kinematic learning system as a new teaching approach of robotics class which will assist and promote better students understanding of robotics. From the virtual system s interface, basic structure and movement of Cartesian, Cylindrical, Spherical and Articulated robot can be visualized. The transformation matrix exercises allow students to write down the formula of translation and rotation matrix and then see the movements of the virtual robot based on the input. In this virtual system, a Lynxmotion Arm Robot was used to teach kinematics for the manipulator movement using Denavit Hartenberg representation. The system is developed using Unity 3D for the animation and for the calculation of robot kinematic, C-Sharp and Java script programming language were used. The system will be evaluated with the students to determine its effectiveness in providing a new teaching approach. 1. Introduction Keywords: Virtual Teaching Systems, Robot Kinematics Robotics has become a very important field for engineering and manufacturing due to flexibility in executing a variety of tasks or executes a given task in a variety of ways. Universities have included robotics in their curriculum and research. Current textbooks and robot manuals include only pictures of the robot, description of robots motion and the tasks that the robot can do along with the programming samples. For an effective learning in robotics, it requires the basic equipment which is the robot. It is expensive for the university to make it available to every student to perform robot experiments. Robots are very fragile and require careful handling. During learning process, improper handling and operation by inexperienced students may damage the robots. Since robots are expensive, designing virtual robotic system with useful visualization tool and instructions of operation can overcome these problems. The virtual robot laboratory concept is that it provides visualization and simulation of a robot in a virtual environment. It also provides facility to work off-line programming of actual working robot. Now it is possible to visualize a complex, expensive, or dangerous system safely. The traditional teachings are directly aimed at the average student, often ignoring the faster and slow learners. Virtual reality technology would fulfill the learning process to fit with individual learner. This paper presents a virtual learning system for robotic course. It will provide a new teaching medium to teach students on forward kinematic of an arm robot. The system development and techniques used in this system will be discussed. 2. Related work Research has shown that virtual reality techniques have been used in computer assisted learning systems such as in robotics [10], language course [11], surgery [12,13] and many others. Nowadays there are many new software tools available to help in the development of virtual reality models. Virtual reality model can now be integrated with common graphical programming languages such as Visual Basic, Visual C++, OpenGL[9], Labview, Java or other [1]. Simulation using VRML (Virtual Reality Modeling Language) by using robot with six rotational joint is described in [2]. Java and VRML s External Authoring Interface (EAI) were integrated for the visualization of the simulation. Manseur [3] used Spazz3D as VRML writer to model a virtual model of PUMA robot. This allows Journal of Convergence Information Technology(JCIT) Volume 7, Number 14, Aug 2012 doi : /jcit.vol7.issue

2 student to rotate, translate, zoom-in, or zoom-out the robot model. The students can move virtual robot s joint separately or in combined motion in 3D space. Animation was developed to assist student to understand about robot modeling, direct and inverse kinematics, join motions, trajectories, and also workspace limitations [3]. Wirabhuana et.al[4] developed a robot simulation system using Virtual Reality Modeling Languages (VRML) and Simulink toolbox of MATLAB software of Mitsubishi RV 2AJ Industrial SCARA Robot. The virtual robot can be moved by using two ways of input data either by using scrollbar or by keying in the angular values. Belousov et.al [5] produced a dynamic, 3D virtual environment for on-line robot control in real-time. Education and training of robot includes offline usage of virtual environments for task planning [6]. Lecture materials which are organized in the form of multimedia contents, and also a 3D robot simulator can be used to perform virtual robot experiment. In this way student can understand the command and parameters of the robot easily without any risk of damaging the robot. Virtual instructors used in mixed reality environment can provide effective instruction to increase conceptual learning and increase robotic construction accuracy and assembly task repeatability [7,8]. 3. Virtual Kinematic System In this work, a stand-alone virtual system is developed where the users can run this system on their own computer without worrying about the Internet connection. Lynxmotion arm robot with 6DOF (Degree of Freedom), 5 rotational joints and 1 moving griper, is used as a model. Figure 1 shows the Lynxmotion arm robot used in a robotic lab for third year student of Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan Malaysia. In the class, students learn forward kinematic, Denavit-Hartenberg Convention and are taught on how to program the robot using Visual Basic to see the movements of the robot s link. Figure 1. Lynxmotion robot A set of transformation matrix exercise is created to make sure students are able to write down the formula of translation and rotation matrix before they can apply it. User interface shown in Figure 2 allows the user to key in the corresponding formula, the system will check the formula entered by the user and prompted a message for incorrect answer. 55

3 Figure 2. Formula of Transformation Matrix Figure 3 presents an example question of forward kinematic and the users are required to apply the formula that they have learned before for solving the question. The question is randomly generalized by clicking the reset question button that allows the user to try the formula on different questions. Figure 3. Example of Question This virtual system also allows the students to visualize different types of robot which are Cartesian, Cylindrical, Spherical and Articulated robot to help the students understand its basic structure, movement of each robot and their workspace. 4 types of the virtual robot are as shown in Figure 4. 56

4 Figure 4. Four types of virtual robot The virtual robot is created using 3DStudioMax which is then converted into OpenGL code and a.dll file for easy manipulation by using VB.NET language. To demonstrate the movement of each robot s link, an interface is created using VB.NET which allows the user to input data to the servo by using scrollbar to select the angle for each joint such as in Figure 5. From these input values, the robot s link will move from the initial value to the end. From there, the user will know the minimum and maximum servo value for every servo. The visual can be controlled by the user, where the user can choose each servo movement. A commonly used convention for selecting frames of reference in robotics applications is the Denavit Hartenberg convention. There are four important parameters in DH convention which are generally given the name joint angle (θ i ), joint distance (d i ), link length (a i ) and link twist angle (α i ). In order to help student understand about it, a set of question was created as in Figure 6 where the students will input the four parameters. Figure 5: Screen to input servo values 57

5 Figure 6. Denavit-Hartenberg user interface The representation of the joints and links of the Lynxmotion Robot are as shown in Figure 7. Figure 7: Joints representation of Lynxmotion Arm Robot The kinematics equation for the manipulator movement is based on the DH representation as shown in Table 1. 58

6 Table 1. Kinematics parameter based on DH representation Link θ i α i d i (cm) a i (cm) 1 θ 1 90 d θ a 2 3 θ a 3 4 θ a 4 5 θ a i =distance between two joint axes. the mutual perpendicular is designated the x-axis d i =distance between two perpendicular measured. α i =the relative twist circular angle θ i =joint angle about the z axis measured. The matrix representations of the kinematic equation used are as the following: Matrix transformation 0 A 1 (Rotation): 0 A 1 = Matrixs transformation 1 A 2 (Transformation): 1 A 2 = Matrixs transformation 2 A 3 (Transformation): 2 A 3= Matrixs transformation 3 A 4 (Transformation): 3 A 4 = Matrixs transformation 4 A 5 (Transformation): 59

7 4 A 5 = Forward kinematics of the arm robot is the product of all the matrices: 0 T 5 = 0 A 1 * 1 A 2 * 2 A 3 * 3 A 4 * 4 A 5 0 T 5 = where Ci = cos θi Si = sin θi Cij = cos (θi+θj) Sij = sin (θi+θj) Sin (α+β) = sin α cos β +cos α sin β Sin (α- β) = sin α cos β cos α sin β Cos(α + β) = cos α cos β sin α sin β Cos(α - β) = cos α cos β +sin α sin β The virtual robot can be controlled by the user, where the user can choose each servo movement from first joint to the 5 th joint. Fig. 8 to Fig.13 demonstrate the output of the application after the user select the joint angle for each joint. Figure 8. Initial position of Lynxmotion Arm Robot 60

8 Figure 9. Output after user selects the first joint angle Figure 10. Output after user selects the second joint angle 61

9 Figure 11. Output after user selects the third joint angle Figure 12. Output after user selects the fourth joint angle 62

10 Figure 13. Output after user selects the fifth joint angle The other function of this virtual robotic system is to allow the users to test their off-line programming code. By using this application the user can test their coding and see the movement of the robot based on their coding without the need to link to the actual robot. This part is still in the preliminary stage and under development. 4. Conclusion and Future Work Advances in computer graphic hardware and software tools make it possible to develop a 3D graphic model, visualization, simulation and also an interactive animation. Virtual Robotic system was designed to provide students with not only a 3D viewing but also an operation procedure of the virtual robot. It makes learning robotics interesting. There is no doubt that a simple interface with a good visualization really help student to understand and can also save students time in learning the concepts of robotic. A good and fast system developed with suitable programming language can facilitate better student s understanding of the concept of forward kinematics of robot. A module will be added to the system for offline programming to allow the users to test their offline programming code. By using this application the user can test their coding and see the movement of the robot based on their coding without the need to link to the actual robot. This work will continue with the evaluation of the system with the students from the robotics class to determine its effectiveness as a new teaching approach. 5. References [1] R. Manseur, Vitual Reality in Science and Engineering Education, in Proceedings of the 35 th ASEE/IEEE Frontier in Education Conference, pp8-13, [2] M. Rohrmeir, Web Based Robot Simulation Using VRML, In Proceedings of the 2000 Winter Simulation Conference, pp , [3] R. Manseur, Modeling and Visualization of Robotic Arms, In Proceedings of IASTED International Conference on Graphics and Visualization in Engineering, pp. 1-6, [4] A.Wirabhuana, H. Harun and Jasril, Industrial Robot Simulation Software Development Using Virtual Reality Modeling Approach (VRML) and Matlab - Simulink Toolbox, In Proceedings of the Simposium National IV RAPI, pp ,

11 [5] I.R. Belousov, R. Chellali, J.Gordon and Clapworthy, Virtual Reality Tools for Internet Robotics. In Proceedings of the IEEE International Conference on Robotics & Automation, pp , [6] Riko Safaric, Matjaz Debevc, Rob M. Parkin, Suzana Uran. Telerobotics Experiments via Internet, IEEE Transactions on Industrial Electronics, vol 48, pp , [7] J.T. Doswell and P.H.Mosley, An Innovative Approach to Teaching Robotics, In Proceedings of the Sixth International Conference on Advanced Learning Technologies (ICALT 06), pp , [8] A.Wirabhuana, H. Harun and M.R. Imtihan, Simulation and Re-engineering of Truck Assembly Line, In Proceeding of Second Asia International Conference on Modelling & Simulation, pp , [9] Xin, L.a b, Lianhe, Y.a, The study on three-dimensional fabric visualization simulation using OpenGL. Journal of Convergence Information Technology, 7 (6), pp , [10] Xiaoli Yang; Yaqi Zhao; Wei Wu; Hui Wang, Virtual reality based robotics learning system,. IEEE International Conference on Automation and Logistics, pp , [11] Chung, L.-Y, Incorporating 3D-virtual reality into language learning, International Journal of Digital Content Technology and its Applications, 6 (6), pp , [12] Pan Y, He H, Li J, Zuo D, Data-glove based interactive training system for virtual delivery operation. Second Workshop on In: Digital Media and its Application in Museum and Heritages, pp , [13] Ramli IS, Arshad H, Yahaya NHM, Sulong AB. Development of visualization application (vjbk) for newly designed jig and fixture for computer-assisted knee re-placement surgery. In: International Business Information Management Conference (14th IBIMA), p ,

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index A New Algorithm for Measuring and Optimizing the Manipulability Index Mohammed Mohammed, Ayssam Elkady and Tarek Sobh School of Engineering, University of Bridgeport, USA. Mohammem@bridgeport.edu Abstract:

More information

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ADVANCEMENT AND STIMULATION OF FIVE DEGREE OF FREEDOM ROBOT LEVER ARM

INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) ADVANCEMENT AND STIMULATION OF FIVE DEGREE OF FREEDOM ROBOT LEVER ARM INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) International Journal of Mechanical Engineering and Technology (IJMET), ISSN 0976 6340(Print), ISSN 0976 6340 (Print) ISSN 0976 6359

More information

Industrial Robots : Manipulators, Kinematics, Dynamics

Industrial Robots : Manipulators, Kinematics, Dynamics Industrial Robots : Manipulators, Kinematics, Dynamics z z y x z y x z y y x x In Industrial terms Robot Manipulators The study of robot manipulators involves dealing with the positions and orientations

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 3: Forward and Inverse Kinematics MCE/EEC 647/747: Robot Dynamics and Control Lecture 3: Forward and Inverse Kinematics Denavit-Hartenberg Convention Reading: SHV Chapter 3 Mechanical Engineering Hanz Richter, PhD MCE503 p.1/12 Aims of

More information

A New Algorithm for Measuring and Optimizing the Manipulability Index

A New Algorithm for Measuring and Optimizing the Manipulability Index DOI 10.1007/s10846-009-9388-9 A New Algorithm for Measuring and Optimizing the Manipulability Index Ayssam Yehia Elkady Mohammed Mohammed Tarek Sobh Received: 16 September 2009 / Accepted: 27 October 2009

More information

EEE 187: Robotics Summary 2

EEE 187: Robotics Summary 2 1 EEE 187: Robotics Summary 2 09/05/2017 Robotic system components A robotic system has three major components: Actuators: the muscles of the robot Sensors: provide information about the environment and

More information

MEAM 520. Denavit-Hartenberg (DH)

MEAM 520. Denavit-Hartenberg (DH) MEAM 520 Denavit-Hartenberg (DH) Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 5: September

More information

ECE569 Fall 2015 Solution to Problem Set 2

ECE569 Fall 2015 Solution to Problem Set 2 ECE569 Fall 2015 Solution to Problem Set 2 These problems are from the textbook by Spong et al. 1, which is the textbook for the ECE580 this Fall 2015 semester. As such, many of the problem statements

More information

Recursive Robot Dynamics in RoboAnalyzer

Recursive Robot Dynamics in RoboAnalyzer Recursive Robot Dynamics in RoboAnalyzer C. G. Rajeevlochana, A. Jain, S. V. Shah, S. K. Saha Abstract Robotics has emerged as a major field of research and application over the years, and has also found

More information

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm

Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Inverse Kinematics Analysis for Manipulator Robot With Wrist Offset Based On the Closed-Form Algorithm Mohammed Z. Al-Faiz,MIEEE Computer Engineering Dept. Nahrain University Baghdad, Iraq Mohammed S.Saleh

More information

1. Introduction 1 2. Mathematical Representation of Robots

1. Introduction 1 2. Mathematical Representation of Robots 1. Introduction 1 1.1 Introduction 1 1.2 Brief History 1 1.3 Types of Robots 7 1.4 Technology of Robots 9 1.5 Basic Principles in Robotics 12 1.6 Notation 15 1.7 Symbolic Computation and Numerical Analysis

More information

Prof. Mark Yim University of Pennsylvania

Prof. Mark Yim University of Pennsylvania Robotics: Fundamentals Prof. Mark Yim University of Pennsylvania Week 5: Degrees of Freedom 1 The Goal Understanding the position and orientation of robot links. Computing end-effector positions from joint

More information

TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling

TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling Advanced Journal of Technical and Vocational Education 1 (1): 107-111, 2017 eissn: 2550-2174 RMP Publications, 2017 TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling

TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling TVET: Application of SolidWorks and Simulink in 2 DOF Simple Quadruped Robot Modeling Hasrul Che Shamsudin Electrical Engineering Department, Politeknik Sultan Haji Ahmad Shah, Semambu, 25350 Kuantan,

More information

MEAM 520. More Denavit-Hartenberg (DH)

MEAM 520. More Denavit-Hartenberg (DH) MEAM 520 More Denavit-Hartenberg (DH) Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 6: September

More information

Simulation and Modeling of 6-DOF Robot Manipulator Using Matlab Software

Simulation and Modeling of 6-DOF Robot Manipulator Using Matlab Software Simulation and Modeling of 6-DOF Robot Manipulator Using Matlab Software 1 Thavamani.P, 2 Ramesh.K, 3 Sundari.B 1 M.E Scholar, Applied Electronics, JCET, Dharmapuri, Tamilnadu, India 2 Associate Professor,

More information

EE Kinematics & Inverse Kinematics

EE Kinematics & Inverse Kinematics Electric Electronic Engineering Bogazici University October 15, 2017 Problem Statement Kinematics: Given c C, find a map f : C W s.t. w = f(c) where w W : Given w W, find a map f 1 : W C s.t. c = f 1

More information

Robotics kinematics and Dynamics

Robotics kinematics and Dynamics Robotics kinematics and Dynamics C. Sivakumar Assistant Professor Department of Mechanical Engineering BSA Crescent Institute of Science and Technology 1 Robot kinematics KINEMATICS the analytical study

More information

INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR

INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR Mohammad Afif Ayob 1, Wan Nurshazwani Wan Zakaria 1, Jamaludin Jalani 2 and Mohd Razali Md Tomari 1 1 Advanced Mechatronics Research Group

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS

KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS KINEMATIC ANALYSIS OF 3 D.O.F OF SERIAL ROBOT FOR INDUSTRIAL APPLICATIONS Annamareddy Srikanth 1 M.Sravanth 2 V.Sreechand 3 K.Kishore Kumar 4 Iv/Iv B.Tech Students, Mechanical Department 123, Asst. Prof.

More information

[2] J. "Kinematics," in The International Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, John C. Wiley and Sons, New York, 1988.

[2] J. Kinematics, in The International Encyclopedia of Robotics, R. Dorf and S. Nof, Editors, John C. Wiley and Sons, New York, 1988. 92 Chapter 3 Manipulator kinematics The major expense in calculating kinematics is often the calculation of the transcendental functions (sine and cosine). When these functions are available as part of

More information

Fundamentals of Robotics Study of a Robot - Chapter 2 and 3

Fundamentals of Robotics Study of a Robot - Chapter 2 and 3 Fundamentals of Robotics Study of a Robot - Chapter 2 and 3 Sergi Valverde u1068016@correu.udg.edu Daniel Martínez u1068321@correu.udg.edu June 9, 2011 1 Introduction This report introduces the second

More information

INSTITUTE OF AERONAUTICAL ENGINEERING

INSTITUTE OF AERONAUTICAL ENGINEERING Name Code Class Branch Page 1 INSTITUTE OF AERONAUTICAL ENGINEERING : ROBOTICS (Autonomous) Dundigal, Hyderabad - 500 0 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK : A7055 : IV B. Tech I Semester : MECHANICAL

More information

Matlab Simulator of a 6 DOF Stanford Manipulator and its Validation Using Analytical Method and Roboanalyzer

Matlab Simulator of a 6 DOF Stanford Manipulator and its Validation Using Analytical Method and Roboanalyzer Matlab Simulator of a 6 DOF Stanford Manipulator and its Validation Using Analytical Method and Roboanalyzer Maitreyi More 1, Rahul Abande 2, Ankita Dadas 3, Santosh Joshi 4 1, 2, 3 Department of Mechanical

More information

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position.

Kinematics. Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. Kinematics Kinematics analyzes the geometry of a manipulator, robot or machine motion. The essential concept is a position. 1/31 Statics deals with the forces and moments which are aplied on the mechanism

More information

TRAINING A ROBOTIC MANIPULATOR

TRAINING A ROBOTIC MANIPULATOR ME 4773/5493 Fundamental of Robotics Fall 2016 San Antonio, TX, USA TRAINING A ROBOTIC MANIPULATOR Jonathan Sackett Dept. of Mechanical Engineering San Antonio, TX, USA 78249 jonathan.sackett@utsa.edu

More information

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute

Jane Li. Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute Jane Li Assistant Professor Mechanical Engineering Department, Robotic Engineering Program Worcester Polytechnic Institute We know how to describe the transformation of a single rigid object w.r.t. a single

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences Page 1 UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam in INF3480 Introduction to Robotics Day of exam: May 31 st 2010 Exam hours: 3 hours This examination paper consists of 5 page(s).

More information

Design of a Three-Axis Rotary Platform

Design of a Three-Axis Rotary Platform Design of a Three-Axis Rotary Platform William Mendez, Yuniesky Rodriguez, Lee Brady, Sabri Tosunoglu Mechanics and Materials Engineering, Florida International University 10555 W Flagler Street, Miami,

More information

PPGEE Robot Dynamics I

PPGEE Robot Dynamics I PPGEE Electrical Engineering Graduate Program UFMG April 2014 1 Introduction to Robotics 2 3 4 5 What is a Robot? According to RIA Robot Institute of America A Robot is a reprogrammable multifunctional

More information

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M.

MDP646: ROBOTICS ENGINEERING. Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt. Prof. Said M. MDP646: ROBOTICS ENGINEERING Mechanical Design & Production Department Faculty of Engineering Cairo University Egypt Prof. Said M. Megahed APPENDIX A: PROBLEM SETS AND PROJECTS Problem Set # Due 3 rd week

More information

Kinematics and dynamics analysis of micro-robot for surgical applications

Kinematics and dynamics analysis of micro-robot for surgical applications ISSN 1 746-7233, England, UK World Journal of Modelling and Simulation Vol. 5 (2009) No. 1, pp. 22-29 Kinematics and dynamics analysis of micro-robot for surgical applications Khaled Tawfik 1, Atef A.

More information

INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR

INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR www.arpnjournals.com INVERSE KINEMATICS ANALYSIS OF A 5-AXIS RV-2AJ ROBOT MANIPULATOR Mohammad Afif Ayob 1a, Wan Nurshazwani Wan Zakaria 1b, Jamaludin Jalani 2c, Mohd Razali Md Tomari 1d 1 ADvanced Mechatronics

More information

Forward kinematics and Denavit Hartenburg convention

Forward kinematics and Denavit Hartenburg convention Forward kinematics and Denavit Hartenburg convention Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 5 Dr. Tatlicioglu (EEE@IYTE) EE463

More information

OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS

OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS OPTIMIZATION OF INVERSE KINEMATICS OF ROBOTIC ARM USING ANFIS 1. AMBUJA SINGH, 2. DR. MANOJ SONI 1(M.TECH STUDENT, R&A, DEPARTMENT OF MAE, IGDTUW, DELHI, INDIA) 2(ASSOCIATE PROFESSOR, DEPARTMENT OF MAE,

More information

Robotics. SAAST Robotics Robot Arms

Robotics. SAAST Robotics Robot Arms SAAST Robotics 008 Robot Arms Vijay Kumar Professor of Mechanical Engineering and Applied Mechanics and Professor of Computer and Information Science University of Pennsylvania Topics Types of robot arms

More information

Index Terms Denavit-Hartenberg Parameters, Kinematics, Pick and place robotic arm, Taper roller bearings. III. METHODOLOGY

Index Terms Denavit-Hartenberg Parameters, Kinematics, Pick and place robotic arm, Taper roller bearings. III. METHODOLOGY ISSN: 39-5967 ISO 9:8 Certified Volume 5, Issue 3, May 6 DESIGN OF A PROTOTYPE OF A PICK AND PLACE ROBOTIC ARM Amod Aboti, Sanket Acharya, Abhinav Anand, Rushikesh Chintale, Vipul Ruiwale Abstract In the

More information

KINEMATIC MODELLING AND ANALYSIS OF 5 DOF ROBOTIC ARM

KINEMATIC MODELLING AND ANALYSIS OF 5 DOF ROBOTIC ARM International Journal of Robotics Research and Development (IJRRD) ISSN(P): 2250-1592; ISSN(E): 2278 9421 Vol. 4, Issue 2, Apr 2014, 17-24 TJPRC Pvt. Ltd. KINEMATIC MODELLING AND ANALYSIS OF 5 DOF ROBOTIC

More information

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm

Finding Reachable Workspace of a Robotic Manipulator by Edge Detection Algorithm International Journal of Advanced Mechatronics and Robotics (IJAMR) Vol. 3, No. 2, July-December 2011; pp. 43-51; International Science Press, ISSN: 0975-6108 Finding Reachable Workspace of a Robotic Manipulator

More information

ME5286 Robotics Spring 2015 Quiz 1

ME5286 Robotics Spring 2015 Quiz 1 Page 1 of 7 ME5286 Robotics Spring 2015 Quiz 1 Total Points: 30 You are responsible for following these instructions. Please take a minute and read them completely. 1. Put your name on this page, any other

More information

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators

Chapter 2 Intelligent Behaviour Modelling and Control for Mobile Manipulators Chapter Intelligent Behaviour Modelling and Control for Mobile Manipulators Ayssam Elkady, Mohammed Mohammed, Eslam Gebriel, and Tarek Sobh Abstract In the last several years, mobile manipulators have

More information

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa

Cecilia Laschi The BioRobotics Institute Scuola Superiore Sant Anna, Pisa University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

Simulation of Articulated Robotic Manipulator & It s Application in Modern Industries

Simulation of Articulated Robotic Manipulator & It s Application in Modern Industries IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 3 Ver. II (May- Jun. 2014), PP 01-07 Simulation of Articulated Robotic Manipulator & It

More information

Using Algebraic Geometry to Study the Motions of a Robotic Arm

Using Algebraic Geometry to Study the Motions of a Robotic Arm Using Algebraic Geometry to Study the Motions of a Robotic Arm Addison T. Grant January 28, 206 Abstract In this study we summarize selected sections of David Cox, John Little, and Donal O Shea s Ideals,

More information

Advances in Engineering Research, volume 123 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017)

Advances in Engineering Research, volume 123 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) Advances in Engineering Research, volume nd International Conference on Materials Science, Machinery and Energy Engineering MSMEE Kinematics Simulation of DOF Manipulator Guangbing Bao,a, Shizhao Liu,b,

More information

Design, Development and Kinematic Analysis of a Low Cost 3 Axis Robot Manipulator

Design, Development and Kinematic Analysis of a Low Cost 3 Axis Robot Manipulator Design, Development and Kinematic Analysis of a Low Cost 3 Axis Robot Manipulator Sudhakar Ramasamy 1, Sivasubramanian R 2, Krishnakumar M 1, Prakashpandian.M.D 1 1 Department of Mechanical Engineering,

More information

Inverse Kinematics Programming Assignment

Inverse Kinematics Programming Assignment Inverse Kinematics Programming Assignment CS 448D: Character Animation Due: Wednesday, April 29 th 11:59PM 1 Logistics In this programming assignment, you will implement a simple inverse kinematics solver

More information

Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics

Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics Dynamic Simulation of a KUKA KR5 Industrial Robot using MATLAB SimMechanics Arun Dayal Udai, C.G Rajeevlochana, Subir Kumar Saha Abstract The paper discusses a method for the dynamic simulation of a KUKA

More information

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017

Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Articulated Robots! Robert Stengel! Robotics and Intelligent Systems! MAE 345, Princeton University, 2017 Robot configurations Joints and links Joint-link-joint transformations! Denavit-Hartenberg representation

More information

Robotics (Kinematics) Winter 1393 Bonab University

Robotics (Kinematics) Winter 1393 Bonab University Robotics () Winter 1393 Bonab University : most basic study of how mechanical systems behave Introduction Need to understand the mechanical behavior for: Design Control Both: Manipulators, Mobile Robots

More information

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators

10/25/2018. Robotics and automation. Dr. Ibrahim Al-Naimi. Chapter two. Introduction To Robot Manipulators Robotics and automation Dr. Ibrahim Al-Naimi Chapter two Introduction To Robot Manipulators 1 Robotic Industrial Manipulators A robot manipulator is an electronically controlled mechanism, consisting of

More information

Prof. Mark Yim University of Pennsylvania

Prof. Mark Yim University of Pennsylvania Robotics: Fundamentals Prof. Mark Yim University of Pennsylvania Week 5: Degrees of Freedom Robo1x-1.5 1 The Goal Understanding the position and orientation of robot links. Computing end-effector positions

More information

Modeling and Analysis of a 6 DOF Robotic Arm Manipulator

Modeling and Analysis of a 6 DOF Robotic Arm Manipulator Canadian Journal on Electrical and Electronics Engineering Vol. 3, No. 6, July 212 Modeling and Analysis of a 6 DOF Robotic Arm Manipulator Jamshed Iqbal, Raza ul Islam, and Hamza Khan Abstract The behavior

More information

NEW APPROACH FOR FORWARD KINEMATIC MODELING OF INDUSTRIAL ROBOTS

NEW APPROACH FOR FORWARD KINEMATIC MODELING OF INDUSTRIAL ROBOTS NEW APPROACH FOR FORWARD KINEMATIC MODELING OF INDUSTRIAL ROBOTS Engineering Cozmin CRISTOIU 1 Adrian NICOLESCU 2 ABSTRACT: DESIGNING AND CONTROLLING INDUSTRIAL ROBOTS INVOLVES DETERMINING THE POSITION

More information

Geometric Modeling of Parallel Robot and Simulation of 3-RRR Manipulator in Virtual Environment

Geometric Modeling of Parallel Robot and Simulation of 3-RRR Manipulator in Virtual Environment Geometric Modeling of Parallel Robot and Simulation of 3-RRR Manipulator in Virtual Environment Kamel BOUZGOU, Reda HANIFI EL HACHEMI AMAR, Zoubir AHMED-FOITIH Laboratory of Power Systems, Solar Energy

More information

Kinematic Analysis of MTAB Robots and its integration with RoboAnalyzer Software

Kinematic Analysis of MTAB Robots and its integration with RoboAnalyzer Software Kinematic Analysis of MTAB Robots and its integration with RoboAnalyzer Software Ratan Sadanand O. M. Department of Mechanical Engineering Indian Institute of Technology Delhi New Delhi, India ratan.sadan@gmail.com

More information

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES

CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES CALCULATING TRANSFORMATIONS OF KINEMATIC CHAINS USING HOMOGENEOUS COORDINATES YINGYING REN Abstract. In this paper, the applications of homogeneous coordinates are discussed to obtain an efficient model

More information

Robotics I. March 27, 2018

Robotics I. March 27, 2018 Robotics I March 27, 28 Exercise Consider the 5-dof spatial robot in Fig., having the third and fifth joints of the prismatic type while the others are revolute. z O x Figure : A 5-dof robot, with a RRPRP

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2016/17 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park

3. Manipulator Kinematics. Division of Electronic Engineering Prof. Jaebyung Park 3. Manipulator Kinematics Division of Electronic Engineering Prof. Jaebyung Park Introduction Kinematics Kinematics is the science of motion which treats motion without regard to the forces that cause

More information

Design & Kinematic Analysis of an Articulated Robotic Manipulator

Design & Kinematic Analysis of an Articulated Robotic Manipulator Design & Kinematic Analysis of an Articulated Robotic Manipulator Elias Eliot 1, B.B.V.L. Deepak 1*, D.R. Parhi 2, and J. Srinivas 2 1 Department of Industrial Design, National Institute of Technology-Rourkela

More information

EENG 428 Introduction to Robotics Laboratory EXPERIMENT 5. Robotic Transformations

EENG 428 Introduction to Robotics Laboratory EXPERIMENT 5. Robotic Transformations EENG 428 Introduction to Robotics Laboratory EXPERIMENT 5 Robotic Transformations Objectives This experiment aims on introducing the homogenous transformation matrix that represents rotation and translation

More information

6. Kinematics of Serial Chain Manipulators

6. Kinematics of Serial Chain Manipulators 6. Kinematics of Serial Chain Manipulators 6.1 Assignment of reference frames In a multi-degree-of-freedom mechanical system consisting of rigid bodies, it is useful to attach reference frames to each

More information

Objectives. Part 1: forward kinematics. Physical Dimension

Objectives. Part 1: forward kinematics. Physical Dimension ME 446 Laboratory #1 Kinematic Transformations Report is due at the beginning of your lab time the week of February 20 th. One report per group. Lab sessions will be held the weeks of January 23 rd, January

More information

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector

Inverse Kinematics. Given a desired position (p) & orientation (R) of the end-effector Inverse Kinematics Given a desired position (p) & orientation (R) of the end-effector q ( q, q, q ) 1 2 n Find the joint variables which can bring the robot the desired configuration z y x 1 The Inverse

More information

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates

Solution of inverse kinematic problem for serial robot using dual quaterninons and plucker coordinates University of Wollongong Research Online Faculty of Engineering and Information Sciences - Papers: Part A Faculty of Engineering and Information Sciences 2009 Solution of inverse kinematic problem for

More information

Planar Robot Kinematics

Planar Robot Kinematics V. Kumar lanar Robot Kinematics The mathematical modeling of spatial linkages is quite involved. t is useful to start with planar robots because the kinematics of planar mechanisms is generally much simpler

More information

AC : LEARNING ROBOTICS THROUGH DEVELOPING A VIR- TUAL ROBOT SIMULATOR IN MATLAB

AC : LEARNING ROBOTICS THROUGH DEVELOPING A VIR- TUAL ROBOT SIMULATOR IN MATLAB AC 2011-609: LEARNING ROBOTICS THROUGH DEVELOPING A VIR- TUAL ROBOT SIMULATOR IN MATLAB Yang Cao, University of British Columbia (Aug. 2007 - Present) Instructor, School of Engineering, University of British

More information

Singularities of a Manipulator with Offset Wrist

Singularities of a Manipulator with Offset Wrist Singularities of a Manipulator with Offset Wrist Robert L. Williams II Department of Mechanical Engineering Ohio University Athens, Ohio Journal of Mechanical Design Vol. 11, No., pp. 315-319 June, 1999

More information

Forward Kinematic Analysis, Simulation & Workspace Tracing of Anthropomorphic Robot Manipulator By Using MSC. ADAMS

Forward Kinematic Analysis, Simulation & Workspace Tracing of Anthropomorphic Robot Manipulator By Using MSC. ADAMS Forward Kinematic Analysis, Simulation & Workspace Tracing of Anthropomorphic Robot Manipulator By Using MSC. ADAMS Amit L Talli 1, B. B. Kotturshettar 2 Asst. Professor, Department of Automation & Robotics

More information

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR

SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR SIMULATION ENVIRONMENT PROPOSAL, ANALYSIS AND CONTROL OF A STEWART PLATFORM MANIPULATOR Fabian Andres Lara Molina, Joao Mauricio Rosario, Oscar Fernando Aviles Sanchez UNICAMP (DPM-FEM), Campinas-SP, Brazil,

More information

A Geometric Approach to Inverse Kinematics of a 3 DOF Robotic Arm

A Geometric Approach to Inverse Kinematics of a 3 DOF Robotic Arm A Geometric Approach to Inverse Kinematics of a 3 DOF Robotic Arm Ayush Gupta 1, Prasham Bhargava 2, Ankur Deshmukh 3, Sankalp Agrawal 4, Sameer Chourika 5 1, 2, 3, 4, 5 Department of Electronics & Telecommunication,

More information

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF)

Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) Force control of redundant industrial robots with an approach for singularity avoidance using extended task space formulation (ETSF) MSc Audun Rønning Sanderud*, MSc Fredrik Reme**, Prof. Trygve Thomessen***

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 9, March 2017

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 6, Issue 9, March 2017 Control of 4DoF Manipulator using Neural Network and Image Processing 1 Tariq T. Darabseh *, 2 Nadeim Ussaleh 1 Mechanical Engineering Department, United Arab Emirates University 2 Mechanical Engineering

More information

Written exams of Robotics 1

Written exams of Robotics 1 Written exams of Robotics 1 http://www.diag.uniroma1.it/~deluca/rob1_en.php All materials are in English, unless indicated (oldies are in Year Date (mm.dd) Number of exercises Topics 2018 06.11 2 Planar

More information

Path planning and kinematics simulation of surfacing cladding for hot forging die

Path planning and kinematics simulation of surfacing cladding for hot forging die MATEC Web of Conferences 21, 08005 (2015) DOI: 10.1051/matecconf/20152108005 C Owned by the authors, published by EDP Sciences, 2015 Path planning and kinematics simulation of surfacing cladding for hot

More information

Freely Available for Academic Use!!! March 2012

Freely Available for Academic Use!!! March 2012 RoboAnalyzer User Manual Freely Available for Academic Use!!! March 2012 Developed by Prof S. K. Saha & Team Mechatronics Lab, Mechanical Engineering Department, IIT Delhi Courtesy: CD Cell, QIP, IIT Delhi

More information

Robot mechanics and kinematics

Robot mechanics and kinematics University of Pisa Master of Science in Computer Science Course of Robotics (ROB) A.Y. 2017/18 cecilia.laschi@santannapisa.it http://didawiki.cli.di.unipi.it/doku.php/magistraleinformatica/rob/start Robot

More information

PRACTICAL SESSION 2: INVERSE KINEMATICS. Arturo Gil Aparicio.

PRACTICAL SESSION 2: INVERSE KINEMATICS. Arturo Gil Aparicio. PRACTICAL SESSION 2: INVERSE KINEMATICS Arturo Gil Aparicio arturo.gil@umh.es OBJECTIVES After the practical session, the student should be able to: - Solving the inverse kinematic problema of a serial

More information

ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS

ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS 33 ON THE RE-CONFIGURABILITY DESIGN OF PARALLEL MACHINE TOOLS Dan Zhang Faculty of Engineering and Applied Science, University of Ontario Institute of Technology Oshawa, Ontario, L1H 7K, Canada Dan.Zhang@uoit.ca

More information

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering

Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering PR 5 Robot Dynamics & Control /8/7 PR 5: Robot Dynamics & Control Robot Inverse Kinematics Asanga Ratnaweera Department of Mechanical Engieering The Inverse Kinematics The determination of all possible

More information

Structure Based Classification and Kinematic Analysis of Six-Joint Industrial Robotic Manipulators

Structure Based Classification and Kinematic Analysis of Six-Joint Industrial Robotic Manipulators Structure Based Classification and Kinematic Analysis of Six-Joint Industrial Robotic Manipulators 5 Tuna Balkan, M. Kemal Özgören and M. A. Sahir Arıkan Open Access Database www.i-techonline.com 1. Introduction

More information

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS

DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS DIMENSIONAL SYNTHESIS OF SPATIAL RR ROBOTS ALBA PEREZ Robotics and Automation Laboratory University of California, Irvine Irvine, CA 9697 email: maperez@uci.edu AND J. MICHAEL MCCARTHY Department of Mechanical

More information

WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel

WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel ISSN 30-9135 1 International Journal of Advance Research, IJOAR.org Volume 4, Issue 1, January 016, Online: ISSN 30-9135 WORKSPACE AGILITY FOR ROBOTIC ARM Karna Patel Karna Patel is currently pursuing

More information

ME5286 Robotics Spring 2014 Quiz 1 Solution. Total Points: 30

ME5286 Robotics Spring 2014 Quiz 1 Solution. Total Points: 30 Page 1 of 7 ME5286 Robotics Spring 2014 Quiz 1 Solution Total Points: 30 (Note images from original quiz are not included to save paper/ space. Please see the original quiz for additional information and

More information

MTRX4700 Experimental Robotics

MTRX4700 Experimental Robotics MTRX 4700 : Experimental Robotics Lecture 2 Stefan B. Williams Slide 1 Course Outline Week Date Content Labs Due Dates 1 5 Mar Introduction, history & philosophy of robotics 2 12 Mar Robot kinematics &

More information

Kinematic Model of Robot Manipulators

Kinematic Model of Robot Manipulators Kinematic Model of Robot Manipulators Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it C. Melchiorri

More information

Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria

Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria Reconfigurable Manipulator Simulation for Robotics and Multimodal Machine Learning Application: Aaria Arttu Hautakoski, Mohammad M. Aref, and Jouni Mattila Laboratory of Automation and Hydraulic Engineering

More information

A Review Paper on Analysis and Simulation of Kinematics of 3R Robot with the Help of RoboAnalyzer

A Review Paper on Analysis and Simulation of Kinematics of 3R Robot with the Help of RoboAnalyzer A Review Paper on Analysis and Simulation of Kinematics of 3R Robot with the Help of RoboAnalyzer Ambuja Singh Student Saakshi Singh Student, Ratna Priya Kanchan Student, Abstract -Robot kinematics the

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 1: Introduction MCE/EEC 647/747: Robot Dynamics and Control Lecture 1: Introduction Reading: SHV Chapter 1 Robotics and Automation Handbook, Chapter 1 Assigned readings from several articles. Cleveland State University

More information

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator

Inverse Kinematics of 6 DOF Serial Manipulator. Robotics. Inverse Kinematics of 6 DOF Serial Manipulator Inverse Kinematics of 6 DOF Serial Manipulator Robotics Inverse Kinematics of 6 DOF Serial Manipulator Vladimír Smutný Center for Machine Perception Czech Institute for Informatics, Robotics, and Cybernetics

More information

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018)

ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) ME/CS 133(a): Final Exam (Fall Quarter 2017/2018) Instructions 1. Limit your total time to 5 hours. You can take a break in the middle of the exam if you need to ask a question, or go to dinner, etc. That

More information

Using Active Learning in Motor Control and Matlab Simulation

Using Active Learning in Motor Control and Matlab Simulation Using Active Learning in Motor Control and Matlab Simulation Ercan Nurcan Yilmaz Department of Electrical & Electronic Engineering, Faculty of Technology, Gazi University, Teknikokullar, Ankara, Turkey

More information

Development of H-M interface for generating motion of the 6 dof Fanuc 200iC robot in a virtual reality

Development of H-M interface for generating motion of the 6 dof Fanuc 200iC robot in a virtual reality Development of H-M interface for generating motion of the 6 dof Fanuc 2iC robot in a virtual reality BOUZGOU Kamel Laboratory of Power Systems, Solar Energy and Automation USTO.MB.Oran-Algeria bouzgou_kamel@hotmail.fr

More information

CONCEPTUAL CONTROL DESIGN FOR HARVESTER ROBOT

CONCEPTUAL CONTROL DESIGN FOR HARVESTER ROBOT CONCEPTUAL CONTROL DESIGN FOR HARVESTER ROBOT Wan Ishak Wan Ismail, a, b, Mohd. Hudzari Razali, a a Department of Biological and Agriculture Engineering, Faculty of Engineering b Intelligent System and

More information

MOTION TRAJECTORY PLANNING AND SIMULATION OF 6- DOF MANIPULATOR ARM ROBOT

MOTION TRAJECTORY PLANNING AND SIMULATION OF 6- DOF MANIPULATOR ARM ROBOT MOTION TRAJECTORY PLANNING AND SIMULATION OF 6- DOF MANIPULATOR ARM ROBOT Hongjun ZHU ABSTRACT:In order to better study the trajectory of robot motion, a motion trajectory planning and simulation based

More information

Lecture Note 6: Forward Kinematics

Lecture Note 6: Forward Kinematics ECE5463: Introduction to Robotics Lecture Note 6: Forward Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 6 (ECE5463

More information

Homogeneous coordinates, lines, screws and twists

Homogeneous coordinates, lines, screws and twists Homogeneous coordinates, lines, screws and twists In lecture 1 of module 2, a brief mention was made of homogeneous coordinates, lines in R 3, screws and twists to describe the general motion of a rigid

More information