Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall

Size: px
Start display at page:

Download "Date: Wednesday, 18 January :00AM. Location: Barnard's Inn Hall"

Transcription

1 Wallpaper Patterns and Buckyballs Transcript Date: Wednesday, 18 January :00AM Location: Barnard's Inn Hall

2 WALLPAPER PATTERNS AND BUCKYBALLS Professor Robin Wilson My lectures this term will be in the area of combinatorics the subject of counting, arranging and sorting mathematical objects. Next month I ll tell you about trees and graph theory and about the theory of designs, but today we re doing something more geometrical and there ll be lots of pretty pictures to look at. Although my title is Wallpaper patterns and buckyballs, I won t actually say very much about either of these rather, I ll use them as vehicles for introducing the subjects of tilings (often called tessellations) andpolyhedra. By the time you leave here today, you ll have lots of ideas for tiling your bathroom floor and for making some attractive decorations to hang on the tree next Christmas. Tilings How can we define a tiling of the plane? We probably want the tiles to form a regular pattern one that can be extended as far as we wish. But then we need to make some decisions. Do we want to allow our tiles to have curved sides, or must all the sides be straight as in a square or a hexagon? If so, should the polygons all be regular, and should they all be the same? Must the pattern repeat periodically however far out we go? For the purpose of making progress, we ll require that each tile is a convex polygon, but we won t always require them all to be the same. We ll also make an extra condition that the tiles are in edge-to-edge contact, so that each edge of one tile coincides exactly with the edge of the adjoining tile: we call this an edge-to-edge tiling. From now on we ll usually tile the plane with regular polygons, where all the sides and all the angles are the same an equilateraltriangle, asquare, and a regular pentagon, hexagon, heptagon, octagon anddodecagon (with twelve sides). Since we want to fit them together without gaps, we ll need to know their internal angles for the triangle this is 60, the square 90, the pentagon 108, the hexagon 120, the heptagon just over 129, the octagon 135, and the dodecagon 150. Suppose now that we want to find all the regular tilings those in which all the tiles are regular polygons of the same type, and the arrangement of polygons at all the vertices is the same. It s clear that the internal angle must then divide exactly into 360 the only possibilities are the triangle (60 ), the square (90 ) and the hexagon (120 ). All of these work, giving us: the triangular tiling with six triangles around each vertex (which we notate by the vertex code ); the square tiling with four squares around each vertex ( ); the hexagonal tiling or honeycomb with three hexagons around each vertex (6.6.6). Next we ll relax the condition that all the polygons must be of the same type, but we ll still require that we get the same arrangement of polygons around each vertex. We now need to find all the combinations of internal angles (not all the same) which make up 360. There are eighteen of these, ranging from (four triangles and a hexagon) and (a triangle and two dodecagons) to (a triangle, a heptagon and a 42-gon). However, only eight of these can be extended to the whole plane, giving us the semi-regular tilings with the following vertex codes: ; ; ; 4.8.8; ; ; ; (Here the polygons are listed in clockwise order as we go around each vertex, so that and , which both have three triangles and two squares, give rise to different tilings; note also that the fifth of these tilings can exist in both left-hand and right-hand versions.)

3 We can generalise further and drop the condition that the arrangement of polygons around all the vertices are the same there may be two or more vertex codes. This leads to an infinite variety of patterns, which are known as demi-regular tilings. A few years ago, Roger Penrose (Gresham Professor of Geometry from ) produced some interesting examples of infinite tilings, now called Penrosetilings, that are not periodic they are built from two or more shapes (such as a kite and a dart, or a chicken and a duck ) which can be found all over the plane, but not in any regular way, and arise in the study of certain types of crystal. Related to tilings are wallpaper patterns: these are subsets of the plane whose symmetries are the same as those of some lattice such as the triangular, square or hexagonal tiling, or perhaps an arrangement of rectangles or rhombuses. Another area of interest is the animals: these are finite subsets of a regular tiling. For example, for the square tiling we have the polyominoes: there is one way of arranging one square or two squares, two ways of arranging three squares (in a line or an L-shape), five ways of arranging four squares, and so on. Polyhedra We now move up to three dimensions, and look at polyhedra. As with tilings, we can start with the regular ones these are three-dimensional solids in which the faces are regular polygons, all the same, and the arrangement of polygons at each vertex is the same. The most familiar of these is the cube, with six square faces. We list them below, with the number F of faces, the number E of edges and the number V of vertices. Notice that in each case, we have V E + F = 2 this is Euler s polyhedron formula: Tetrahedron : F = 4, V = 4, E = 6 (four triangular faces); Cube : F = 6, V = 8, E = 12 (six square faces); Octahedron : F = 8, V = 6, E = 12 (eight triangular faces); Icosahedron : F = 20, V = 12, E = 30 (twenty triangular faces). Dodecahedron : F = 12, V = 20, E = 30 (twelve pentagonal faces); These regular polyhedra were described in Plato s Timaeus, representing (respectively) Fire, Earth, Air, Water and the Cosmos. To prove that there are only five regular polyhedra, we suppose that each face is a k-sided polygon, and that there are d edges out of each vertex, and use Euler s polyhedron formula to find the possible values of k and d. We shall assume that k and d are at least 3. Counting the edges around all the faces, we get kf = 2E (the factor 2 arising since each edge has two sides and so is counted twice) so F = 2E/k. Counting all the edges out of all the vertices, we get dv = 2E (the factor 2 arising since edges has two ends and so is counted twice) so V = 2E/d. Putting these values of F and V into Euler s polyhedron formula V E + F= 2 and doing some algebra gives E = 2kd / (2k + 2d dk). We now look at possible values of k: If k = 3, then E = 6d / (6 d), which is greater than 0, so d must be 3, 4 or 5. If d = 3, then E = 6, V = 4 and F = 4: this corresponds to thetetrahedron; If d = 4, then E = 12, V = 6 and F = 8: this corresponds to theoctahedron; If d = 5, then E = 30, V = 12 and F = 20: this corresponds to theicosahedron.

4 If k = 4, then E = 4d / (4 d), which is greater than 0, so d must be 3. If d = 3, then E = 12, V = 8 and F = 6: this corresponds to the cube. If k = 5, then E = 10d / (10 3d), which is greater than 0, so d must be 3. If d = 3, then E = 30, V = 20 and F = 12: this corresponds to thedodecahedron. Finally, if k 6, then some algebra gives 2k + 2d dk = 4(d 3) (k 6) (d 3)(k 6), which is never greater than 0, so this case cannot arise. So the only cases that arise correspond to the five regular polyhedra. We next look at the semi-regular, or Archimedean polyhedra. Here the arrangement of polygons around each vertex is the same, and each face is a regular polygon, but the polygons are not all the same. It turns out that, apart from two infinite families of these (the prisms and the anti-prisms), there are just thirteen Archimedean polyhedra, some with delightful names. As before, we can describe the arrangement of polygons around each vertex using a vertex-code : Truncated tetrahedron (3.6.6); Truncated octahedron (4.6.6); Truncated cube (3.8.8); Truncated icosahedron (5.6.6); Truncated dodecahedron ( ); Cuboctahedron ( ); Icosidodecahedron ( ); Snub cube ( ); Snub dodecahedron ( ); Great rhombicuboctahedron (4.6.8); Small rhombicuboctahedron ( ); Great rhombicosidodecahedron (4.6.10); Small rhombicosidodecahedron ( ). Several of these arise naturally as crystals, and the truncated icosahedron occurs in real life as a football. Interestingly, it turns out that: any polyhedron made from pentagons and hexagons, with three faces meeting at each point (as in a football), must have exactly twelve pentagons. To prove this, if we have a polyhedron made from pentagons and hexagons (three meeting at each point) has p pentagons and h hexagons, then we can count the number of faces, the number of edges around the faces, and the number of vertices around the faces: Faces: F = p + h Edges: 2E = 5p + 6h Vertices : 3V = 5p + 6h. Substituting these into Euler s polyhedron formula V E + F = 2 (and multiplying by 6 to avoid fractions) gives: 12 = 6V 6E + 6F = (10p + 12h) (15p + 18h) + (6p + 6h). All the h-terms cancel, leaving p = 12, as desired. These polyhedra made of pentagons and hexagons occur in chemistry and architecture, too. In chemistry, they are known as fullerenes, orbuckyballs, and are molecules whose structure is that of a truncated icosahedron ( C 60 ) or some other polyhedron made from pentagons and hexagons. Their names are derived from the American architect Buckminster Fuller, who

5 designed the geodesic dome, a structure that pound-for-pound is lighter, stronger and more cost-effective than any other. The best-known example of a geodesic dome was Fuller s design for the American pavilion at the Montreal Expo 67 World Fair. Professor Robin Wilson, Gresham College, 18 January 2006

of Nebraska - Lincoln

of Nebraska - Lincoln University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of

More information

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology

SHAPE AND STRUCTURE. Shape and Structure. An explanation of Mathematical terminology Shape and Structure An explanation of Mathematical terminology 2005 1 POINT A dot Dots join to make lines LINE A line is 1 dimensional (length) A line is a series of points touching each other and extending

More information

Question. Why is the third shape not convex?

Question. Why is the third shape not convex? 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Map-colouring with Polydron

Map-colouring with Polydron Map-colouring with Polydron The 4 Colour Map Theorem says that you never need more than 4 colours to colour a map so that regions with the same colour don t touch. You have to count the region round the

More information

THE PLATONIC SOLIDS BOOK DAN RADIN

THE PLATONIC SOLIDS BOOK DAN RADIN THE PLATONIC SOLIDS BOOK DAN RADIN Copyright 2008 by Daniel R. Radin All rights reserved. Published by CreateSpace Publishing 3-D renderings were created on a thirteen-year-old Macintosh computer using

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Five Platonic Solids: Three Proofs

Five Platonic Solids: Three Proofs Five Platonic Solids: Three Proofs Vincent J. Matsko IMSA, Dodecahedron Day Workshop 18 November 2011 Convex Polygons convex polygons nonconvex polygons Euler s Formula If V denotes the number of vertices

More information

REGULAR TILINGS. Hints: There are only three regular tilings.

REGULAR TILINGS. Hints: There are only three regular tilings. REGULAR TILINGS Description: A regular tiling is a tiling of the plane consisting of multiple copies of a single regular polygon, meeting edge to edge. How many can you construct? Comments: While these

More information

Explore Solids

Explore Solids 1212.1 Explore Solids Surface Area and Volume of Solids 12.2 Surface Area of Prisms and Cylinders 12.3 Surface Area of Pyramids and Cones 12.4 Volume of Prisms and Cylinders 12.5 Volume of Pyramids and

More information

Polyhedra. Kavitha d/o Krishnan

Polyhedra. Kavitha d/o Krishnan Polyhedra Kavitha d/o Krishnan Supervisor: Associate Professor Helmer Aslaksen Department of Mathematics National University of Singapore Semester I 2001/2002 Abstract Introduction The report focuses on

More information

Mathematics As A Liberal Art

Mathematics As A Liberal Art Math 105 Fall 2015 BY: 2015 Ron Buckmire Mathematics As A Liberal Art Class 26: Friday November 13 Fowler 302 MWF 10:40am- 11:35am http://sites.oxy.edu/ron/math/105/15/ Euclid, Geometry and the Platonic

More information

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D.

1. CONVEX POLYGONS. Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. 1. CONVEX POLYGONS Definition. A shape D in the plane is convex if every line drawn between two points in D is entirely inside D. Convex 6 gon Another convex 6 gon Not convex Question. Why is the third

More information

Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley

Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley Computer Graphics using OpenGL, 3 rd Edition F. S. Hill, Jr. and S. Kelley Chapter 6.1-3 Modeling Shapes with Polygonal Meshes S. M. Lea University of North Carolina at Greensboro 2007, Prentice Hall 3D

More information

3.D. The Platonic solids

3.D. The Platonic solids 3.D. The Platonic solids The purpose of this addendum to the course notes is to provide more information about regular solid figures, which played an important role in Greek mathematics and philosophy.

More information

The Construction of Uniform Polyhedron with the aid of GeoGebra

The Construction of Uniform Polyhedron with the aid of GeoGebra The Construction of Uniform Polyhedron with the aid of GeoGebra JiangPing QiuFaWen 71692686@qq.com 3009827@qq.com gifted Department High-school northeast yucai school northeast yucai school 110179 110179

More information

MATHEMATICS. Y4 Understanding shape Visualise, describe and classify 3-D and 2-D shapes. Equipment

MATHEMATICS. Y4 Understanding shape Visualise, describe and classify 3-D and 2-D shapes. Equipment MATHEMATICS Y4 Understanding shape 4501 Visualise, describe and classify 3-D and 2-D shapes Paper, pencil, ruler Equipment Maths Go Go Go 4501 Visualise, describe and classify 3-D and 2-D shapes. Page

More information

Ideas beyond Number. Teacher s guide to Activity worksheets

Ideas beyond Number. Teacher s guide to Activity worksheets Ideas beyond Number Teacher s guide to Activity worksheets Intended outcomes: Students will: extend their knowledge of geometrical objects, both 2D and 3D develop their skills in geometrical reasoning

More information

Click the mouse button or press the Space Bar to display the answers.

Click the mouse button or press the Space Bar to display the answers. Click the mouse button or press the Space Bar to display the answers. 9-4 Objectives You will learn to: Identify regular tessellations. Vocabulary Tessellation Regular Tessellation Uniform Semi-Regular

More information

Tessellations: Wallpapers, Escher & Soccer Balls. Robert Campbell

Tessellations: Wallpapers, Escher & Soccer Balls. Robert Campbell Tessellations: Wallpapers, Escher & Soccer Balls Robert Campbell Tessellation Examples What Is What is a Tessellation? A Tessellation (or tiling) is a pattern made by copies of one or

More information

Angles, Polygons, Circles

Angles, Polygons, Circles Page 1 of 5 Part One Last week we learned about the angle properties of circles and used them to solve a simple puzzle. This week brings a new puzzle that will make us use our algebra a bit more. But first,

More information

1 The Platonic Solids

1 The Platonic Solids 1 The We take the celebration of Dodecahedron Day as an opportunity embark on a discussion of perhaps the best-known and most celebrated of all polyhedra the Platonic solids. Before doing so, however,

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Non-flat tilings with flat tiles

Non-flat tilings with flat tiles Non-flat tilings with flat tiles Rinus Roelofs Sculptor Lansinkweg 28 7553AL Hengelo The Netherlands E-mail: rinus@rinusroelofs.nl www.rinusroelofs.nl Abstract In general a tiling is considered to be a

More information

tetrahedron octahedron icosahedron cube dodecahedron (Fire) (Air) (Water) (Earth) (Universe)

tetrahedron octahedron icosahedron cube dodecahedron (Fire) (Air) (Water) (Earth) (Universe) Platonic Solids A regular polyhedron is one whose faces are identical regular polygons. The solids as drawn in Kepler s Mysterium Cosmographicum: tetrahedron octahedron icosahedron cube dodecahedron (Fire)

More information

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares.

One simple example is that of a cube. Each face is a square (=regular quadrilateral) and each vertex is connected to exactly three squares. Berkeley Math Circle Intermediate I, 1/23, 1/20, 2/6 Presenter: Elysée Wilson-Egolf Topic: Polygons, Polyhedra, Polytope Series Part 1 Polygon Angle Formula Let s start simple. How do we find the sum of

More information

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA

ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA arxiv:math/0505488v1 [math.gt] 4 May 005 Mark B. Villarino Depto. de Matemática, Universidad de Costa Rica, 060 San José, Costa Rica May 11, 005 Abstract We

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

Classifying 3D Shapes

Classifying 3D Shapes Classifying 3D Shapes Middle School Texas Essential Knowledge and Skills (TEKS) Math 5.4B Algebraic reasoning The student applies mathematical process standards to develop concepts of expressions and equations.

More information

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM

INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM INSTRUCTIONS FOR THE USE OF THE SUPER RULE TM NOTE: All images in this booklet are scale drawings only of template shapes and scales. Preparation: Your SUPER RULE TM is a valuable acquisition for classroom

More information

Platonic Polyhedra and How to Construct Them

Platonic Polyhedra and How to Construct Them Platonic Polyhedra and How to Construct Them Tarun Biswas June 17, 2016 The platonic polyhedra (or platonic solids) are convex regular polyhedra that have identical regular polygons as faces They are characterized

More information

Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula.

Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula. Grade Level/Course: Grade 6 Lesson/Unit Plan Name: Platonic Solids Using geometric nets to explore Platonic solids and discovering Euler s formula. Rationale/Lesson Abstract: An activity where the students

More information

Platonic Solids and the Euler Characteristic

Platonic Solids and the Euler Characteristic Platonic Solids and the Euler Characteristic Keith Jones Sanford Society, SUNY Oneonta September 2013 What is a Platonic Solid? A Platonic Solid is a 3-dimensional object with flat faces and straight edges

More information

Main Idea: classify polygons and determine which polygons can form a tessellation.

Main Idea: classify polygons and determine which polygons can form a tessellation. 10 8: Polygons and Tesselations Main Idea: classify polygons and determine which polygons can form a tessellation. Vocabulary: polygon A simple closed figure in a plane formed by three or more line segments

More information

7. The Gauss-Bonnet theorem

7. The Gauss-Bonnet theorem 7. The Gauss-Bonnet theorem 7.1 Hyperbolic polygons In Euclidean geometry, an n-sided polygon is a subset of the Euclidean plane bounded by n straight lines. Thus the edges of a Euclidean polygon are formed

More information

11.4 Three-Dimensional Figures

11.4 Three-Dimensional Figures 11. Three-Dimensional Figures Essential Question What is the relationship between the numbers of vertices V, edges E, and faces F of a polyhedron? A polyhedron is a solid that is bounded by polygons, called

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

RightStart G Learning Materials: Learning Goals/Performance Objectives: Learning Activities:

RightStart G Learning Materials: Learning Goals/Performance Objectives: Learning Activities: RightStart G Class Description: RightStartmath.com says "Learn intermediate mathematics hands-on and visually through geometry. With a tool set consisting of a drawing board, T-square, triangles, compass,

More information

Key Concept Euler s Formula

Key Concept Euler s Formula 11-1 Space Figures and Cross Sections Objectives To recognize polyhedrons and their parts To visualize cross sections of space figures Common Core State Standards G-GMD.B.4 Identify the shapes of two-dimensional

More information

Euler-Cayley Formula for Unusual Polyhedra

Euler-Cayley Formula for Unusual Polyhedra Bridges Finland Conference Proceedings Euler-Cayley Formula for Unusual Polyhedra Dirk Huylebrouck Faculty for Architecture, KU Leuven Hoogstraat 51 9000 Gent, Belgium E-mail: dirk.huylebrouck@kuleuven.be

More information

The radius for a regular polygon is the same as the radius of the circumscribed circle.

The radius for a regular polygon is the same as the radius of the circumscribed circle. Perimeter and Area The perimeter and area of geometric shapes are basic properties that we need to know. The more complex a shape is, the more complex the process can be in finding its perimeter and area.

More information

Rectangular prism. The two bases of a prism. bases

Rectangular prism. The two bases of a prism. bases Page 1 of 8 9.1 Solid Figures Goal Identify and name solid figures. Key Words solid polyhedron base face edge The three-dimensional shapes on this page are examples of solid figures, or solids. When a

More information

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018

Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Mathematics Concepts 2 Exam 1 Version 4 21 September 2018 Name: Permissible Aides: The small ruler distributed by the proctor Prohibited: Class Notes Class Handouts Study Guides and Materials The Book

More information

PLC Papers Created For:

PLC Papers Created For: PLC Papers Created For: Year 10 Topic Practice Papers: Polygons Polygons 1 Grade 4 Look at the shapes below A B C Shape A, B and C are polygons Write down the mathematical name for each of the polygons

More information

Ma/CS 6b Class 9: Euler s Formula

Ma/CS 6b Class 9: Euler s Formula Ma/CS 6b Class 9: Euler s Formula By Adam Sheffer Recall: Plane Graphs A plane graph is a drawing of a graph in the plane such that the edges are noncrossing curves. 1 Recall: Planar Graphs The drawing

More information

Polygons and Convexity

Polygons and Convexity Geometry Week 4 Sec 2.5 to ch. 2 test Polygons and Convexity section 2.5 convex set has the property that any two of its points determine a segment contained in the set concave set a set that is not convex

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Unit I: Euler's Formula (and applications).

Unit I: Euler's Formula (and applications). Unit I: Euler's Formula (and applications). We define a roadmap to be a nonempty finite collection of possibly curvedlil1e segments in a piane, each with exactly two endpoints, such that if any pair of

More information

Zipper Unfoldings of Polyhedral Complexes

Zipper Unfoldings of Polyhedral Complexes Zipper Unfoldings of Polyhedral Complexes Erik D. Demaine Martin L. Demaine Anna Lubiw Arlo Shallit Jonah L. Shallit Abstract We explore which polyhedra and polyhedral complexes can be formed by folding

More information

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals

Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Does it Look Square? Hexagonal Bipyramids, Triangular Antiprismoids, and their Fractals Hideki Tsuiki Graduate School of Human and Environmental Studies Kyoto University Yoshida-Nihonmatsu, Kyoto 606-8501,

More information

Chapter 11 Part 2. Measurement of Figures and Solids

Chapter 11 Part 2. Measurement of Figures and Solids Chapter 11 Part 2 Measurement of Figures and Solids 11.5 Explore Solids Objective: Identify Solids Essential Question: When is a solid a polyhedron? Using properties of polyhedra A is a solid that is bounded

More information

Simplicity is not Simple: Tessellations and Modular Architecture

Simplicity is not Simple: Tessellations and Modular Architecture Simplicity is not Simple: Tessellations and Modular Architecture The 2000 MathFest in Los Angeles was an extravaganza of mathematical talks, short courses and exhibits. By the third day, we needed a break

More information

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018

Week 9: Planar and non-planar graphs. 7 and 9 November, 2018 (1/27) MA284 : Discrete Mathematics Week 9: Planar and non-planar graphs http://www.maths.nuigalway.ie/ niall/ma284/ 7 and 9 November, 2018 1 Planar graphs and Euler s formula 2 Non-planar graphs K 5 K

More information

Leonardo s Elevated Polyhedra - Models

Leonardo s Elevated Polyhedra - Models Leonardo s Elevated Polyhedra - Models Rinus Roelofs Lansinkweg 28 7553AL Hengelo The Netherlands E-mail: rinus@rinusroelofs.nl www.rinusroelofs.nl Information Rinus Roelofs was born in 1954. After studying

More information

Lesson Polygons

Lesson Polygons Lesson 4.1 - Polygons Obj.: classify polygons by their sides. classify quadrilaterals by their attributes. find the sum of the angle measures in a polygon. Decagon - A polygon with ten sides. Dodecagon

More information

Euler's formula and Platonic solids

Euler's formula and Platonic solids University of Washington Euler's formula and Platonic solids Name: David Clark, Kelsey Kyllo, Kurt Maugerle, Yue Yuan Zhang Course Number: Math 445 Professor: Julia Pevtsova Date: 2013/06/03 Table of Contents:

More information

Planar Graphs, Solids, and Surfaces. Planar Graphs 1/28

Planar Graphs, Solids, and Surfaces. Planar Graphs 1/28 Planar Graphs, Solids, and Surfaces Planar Graphs 1/28 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a

More information

REGULAR POLYTOPES REALIZED OVER Q

REGULAR POLYTOPES REALIZED OVER Q REGULAR POLYTOPES REALIZED OVER Q TREVOR HYDE A regular polytope is a d-dimensional generalization of a regular polygon and a Platonic solid. Roughly, they are convex geometric objects with maximal rotational

More information

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra.

Euclid forgot to require that the vertices should be the same, so his definition includes the deltahedra. 2 1. What is a Platonic solid? What is a deltahedron? Give at least one example of a deltahedron that is t a Platonic solid. What is the error Euclid made when he defined a Platonic solid? Solution: A

More information

Dual Models: One Shape to Make Them All

Dual Models: One Shape to Make Them All Bridges Finland Conference Proceedings Dual Models: One Shape to Make Them All Mircea Draghicescu ITSPHUN LLC mircea@itsphun.com Abstract We show how a potentially infinite number of 3D decorative objects

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

8 Quadrilaterals. Before

8 Quadrilaterals. Before 8 Quadrilaterals 8. Find Angle Measures in Polygons 8. Use Properties of Parallelograms 8.3 Show that a Quadrilateral is a Parallelogram 8.4 Properties of Rhombuses, Rectangles, and Squares 8.5 Use Properties

More information

The Game of Criss-Cross

The Game of Criss-Cross Chapter 5 The Game of Criss-Cross Euler Characteristic ( ) Overview. The regions on a map and the faces of a cube both illustrate a very natural sort of situation: they are each examples of regions that

More information

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08

Platonic Solids. Jennie Sköld. January 21, Karlstad University. Symmetries: Groups Algebras and Tensor Calculus FYAD08 Platonic Solids Jennie Sköld January 21, 2015 Symmetries: Groups Algebras and Tensor Calculus FYAD08 Karlstad University 1 Contents 1 What are Platonic Solids? 3 2 Symmetries in 3-Space 5 2.1 Isometries

More information

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen

Grade VIII. Mathematics Geometry Notes. #GrowWithGreen Grade VIII Mathematics Geometry Notes #GrowWithGreen Polygons can be classified according to their number of sides (or vertices). The sum of all the interior angles of an n -sided polygon is given by,

More information

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =?

What is a tessellation???? Give an example... Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? Daily Do from last class Homework Answers 10 7 These are similar: What does y =? x =? 36 74 0 78 0 154 o 44 48 54 o y x 154 o 78 0 12 74 0 9 1. 8 ft 2. 21m 3. 21 ft 4. 30cm 5. 6mm 6. 16 in 7. yes 9 = 7

More information

7) Are HD and HA the same line?

7) Are HD and HA the same line? Review for Exam 2 Math 123 SHORT ANSWER. You must show all work to receive full credit. Refer to the figure to classify the statement as true or false. 7) Are HD and HA the same line? Yes 8) What is the

More information

A Physical Proof for Five and Only Five Regular Solids

A Physical Proof for Five and Only Five Regular Solids A Physical Proof for Five and Only Five Regular Solids Robert McDermott Center for High Performance Computing University of Utah Salt Lake City, Utah, 84112, USA E-mail: mcdermott@chpc.utah.edu Abstract

More information

TESSELLATION. For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C.

TESSELLATION. For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C. TESSELLATION For me it remains an open question whether [this work] pertains to the realm of mathematics or to that of art. M.C. Escher Activity 1: Guessing the lesson Doc. 1 Word Cloud 1) What do you

More information

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents

February 07, Dimensional Geometry Notebook.notebook. Glossary & Standards. Prisms and Cylinders. Return to Table of Contents Prisms and Cylinders Glossary & Standards Return to Table of Contents 1 Polyhedrons 3-Dimensional Solids A 3-D figure whose faces are all polygons Sort the figures into the appropriate side. 2. Sides are

More information

Mathematics Assessment Anchor Glossary Grades 3 & 4

Mathematics Assessment Anchor Glossary Grades 3 & 4 Mathematics Assessment Anchor Glossary Grades 3 & 4 The definitions for this glossary were taken from one or more of the following sources: Webster s Dictionary, various mathematics dictionaries, the PA

More information

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles

Boardworks Ltd KS3 Mathematics. S1 Lines and Angles 1 KS3 Mathematics S1 Lines and Angles 2 Contents S1 Lines and angles S1.1 Labelling lines and angles S1.2 Parallel and perpendicular lines S1.3 Calculating angles S1.4 Angles in polygons 3 Lines In Mathematics,

More information

Planar Graphs and Surfaces. Graphs 2 1/58

Planar Graphs and Surfaces. Graphs 2 1/58 Planar Graphs and Surfaces Graphs 2 1/58 Last time we discussed the Four Color Theorem, which says that any map can be colored with at most 4 colors and not have two regions that share a border having

More information

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9

Number/Computation. addend Any number being added. digit Any one of the ten symbols: 0, 1, 2, 3, 4, 5, 6, 7, 8, or 9 14 Number/Computation addend Any number being added algorithm A step-by-step method for computing array A picture that shows a number of items arranged in rows and columns to form a rectangle associative

More information

Ideas beyond Number. Activity worksheets

Ideas beyond Number. Activity worksheets Ideas beyond Number Activity worksheets Activity sheet 1 Regular polygons and tesselation Which regular polygons tessellate? Square tiling is all around us, but are there any others? Questions 1. What

More information

TOURNAMENT OF THE TOWNS, Glossary

TOURNAMENT OF THE TOWNS, Glossary TOURNAMENT OF THE TOWNS, 2003 2004 Glossary Absolute value The size of a number with its + or sign removed. The absolute value of 3.2 is 3.2, the absolute value of +4.6 is 4.6. We write this: 3.2 = 3.2

More information

Operations on Maps. Mircea V. Diudea. Faculty of Chemistry and Chemical Engineering Babes-Bolyai

Operations on Maps. Mircea V. Diudea. Faculty of Chemistry and Chemical Engineering Babes-Bolyai Operations on Maps Mircea V. Diudea Faculty of Chemistry and Chemical Engineering Babes-Bolyai Bolyai University 400028 Cluj,, ROMANIA diudea@chem.ubbcluj.ro 1 Contents Cage Building by Map Operations

More information

Draw and Classify 3-Dimensional Figures

Draw and Classify 3-Dimensional Figures Introduction to Three-Dimensional Figures Draw and Classify 3-Dimensional Figures Identify various three-dimensional figures. Course 2 Introduction to Three-Dimensional Figures Insert Lesson Title Here

More information

The Volume of a Platonic Solid

The Volume of a Platonic Solid University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-007 The Volume of a Platonic Solid Cindy Steinkruger

More information

Glossary. array. 2-dimensional (2-D) augend = 8. 3-dimensional (3-D) balance. block diagram. 5, 10, 15 minutes past. calendar. capacity.

Glossary. array. 2-dimensional (2-D) augend = 8. 3-dimensional (3-D) balance. block diagram. 5, 10, 15 minutes past. calendar. capacity. Glossary -dimensional (-D) circle triangle square rectangle pentagon hexagon heptagon octagon -dimensional (-D) cube cuboid cone cylinder array An arrangement of numbers, shapes or objects in rows of equal

More information

AREAS AND VOLUMES. Learning Outcomes and Assessment Standards

AREAS AND VOLUMES. Learning Outcomes and Assessment Standards 4 Lesson AREAS AND VOLUMES Learning Outcomes and Assessment Standards Learning Outcome : Shape, space and measurement Assessment Standard Surface area and volume of right pyramids and cones. Volumes of

More information

absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16

absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16 Grade Six MATH GLOSSARY absolute value- the absolute value of a number is the distance between that number and 0 on a number line. Absolute value is shown 7 = 7-16 = 16 abundant number: A number whose

More information

Practice A Introduction to Three-Dimensional Figures

Practice A Introduction to Three-Dimensional Figures Name Date Class Identify the base of each prism or pyramid. Then choose the name of the prism or pyramid from the box. rectangular prism square pyramid triangular prism pentagonal prism square prism triangular

More information

Closed Loops with Antiprisms

Closed Loops with Antiprisms Proceedings of Bridges 2014: Mathematics, Music, Art, Architecture, Culture Closed Loops with Antiprisms Melle Stoel Dacostastraat 18 1053 zc Amsterdam E-mail: mellestoel@gmail.com mellestoel.wordpress.com

More information

AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON

AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON International Journal of Physics and Mathematical Sciences ISSN: 77-111 (Online) 013 Vol. 3 (1) January-March, pp.73-81/kalaimaran AN INNOVATIVE ANALYSIS TO DEVELOP NEW THEOREMS ON IRREGULAR POLYGON *Kalaimaran

More information

FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense)

FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) TITLE PAGE FAMILY NAME: (Print in ink) GIVEN NAME(S): (Print in ink) STUDENT NUMBER: SIGNATURE: (in ink) (I understand that cheating is a serious offense) INSTRUCTIONS TO STUDENTS: This is a 2 hour exam.

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

CARDSTOCK MODELING Math Manipulative Kit. Student Activity Book

CARDSTOCK MODELING Math Manipulative Kit. Student Activity Book CARDSTOCK MODELING Math Manipulative Kit Student Activity Book TABLE OF CONTENTS Activity Sheet for L.E. #1 - Getting Started...3-4 Activity Sheet for L.E. #2 - Squares and Cubes (Hexahedrons)...5-8 Activity

More information

The Ultimate Maths Vocabulary List

The Ultimate Maths Vocabulary List The Ultimate Maths Vocabulary List The 96 Words Every Pupil Needs to Know by the End of Year 6 KS1 & KS2 How to Use This Resource An essential building block in pupil s understanding of maths is their

More information

Local Mesh Operators: Extrusions Revisited

Local Mesh Operators: Extrusions Revisited Local Mesh Operators: Extrusions Revisited Eric Landreneau Computer Science Department Abstract Vinod Srinivasan Visualization Sciences Program Texas A&M University Ergun Akleman Visualization Sciences

More information

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY

TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY TILING PROBLEMS: FROM DOMINOES, CHECKERBOARDS, AND MAZES TO DISCRETE GEOMETRY BERKELEY MATH CIRCLE 1. Looking for a number Consider an 8 8 checkerboard (like the one used to play chess) and consider 32

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Regular Polygons. by construction and paper folding. Paul Yiu Department of Mathematics Florida Atlantic University.

Regular Polygons. by construction and paper folding. Paul Yiu Department of Mathematics Florida Atlantic University. Regular Polygons by construction and paper folding Paul Yiu Department of Mathematics Florida tlantic University January 22, 2009 1 Regular polygons (a) Triangle (b) Square (c) Pentagon (d) Hexagon (e)

More information

Polygons. 5 sides 5 angles. pentagon. no no R89. Name

Polygons. 5 sides 5 angles. pentagon. no no R89. Name Lesson 11.1 Polygons A polygon is a closed plane figure formed by three or more line segments that meet at points called vertices. You can classify a polygon by the number of sides and the number of angles

More information

Junior Math Circles March 3, D Geometry I

Junior Math Circles March 3, D Geometry I 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Junior Math Circles March 3, 2010 3D Geometry I Opening Problem Max received a gumball machine for his

More information

Geometro: Developing Concepts for Math, Science and O&M with Students who are Visually Impaired October 5, 2012

Geometro: Developing Concepts for Math, Science and O&M with Students who are Visually Impaired October 5, 2012 Texas School for the Blind and Visually Impaired Outreach Programs www.tsbvi.edu 512-454-8631 1100 W. 45 th St. Austin, Texas 78756 Geometro: Developing Concepts for Math, Science and O&M with Students

More information

Imaginary Cubes Objects with Three Square Projection Images

Imaginary Cubes Objects with Three Square Projection Images Imaginary Cubes Objects with Three Square Projection Images Hideki Tsuiki Graduate School of Human and Environmental Studies, Kyoto University Kyoto, 606-8501, Japan E-mail: tsuiki@i.h.kyoto-u.ac.jp May

More information

Lesson 2. Investigation. Name: a. Identify the shape of the sign and describe the symmetries

Lesson 2. Investigation. Name: a. Identify the shape of the sign and describe the symmetries Check Your Understanding Being able to recognize traffic signs by their shape and color is important when Unit driving 6and is often tested on exams for a driver s license. Examine the school crossing

More information

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc.

Section 9.4. Volume and Surface Area. Copyright 2013, 2010, 2007, Pearson, Education, Inc. Section 9.4 Volume and Surface Area What You Will Learn Volume Surface Area 9.4-2 Volume Volume is the measure of the capacity of a three-dimensional figure. It is the amount of material you can put inside

More information

Curriculum Correlation Geometry Cluster 1: 2-D Shapes

Curriculum Correlation Geometry Cluster 1: 2-D Shapes Master 1a ON 17.1 explore, sort, and compare the attributes (e.g., reflective symmetry) and the properties (e.g., number of faces) of traditional and non-traditional two-dimensional shapes and three-dimensional

More information

Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb

Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb Bridges 2017 Conference Proceedings Obtaining the H and T Honeycomb from a Cross-Section of the 16-cell Honeycomb Hideki Tsuiki Graduate School of Human and Environmental Studies, Kyoto University Yoshida-Nihonmatsu,

More information