Math 101 Exam 1 Review

Size: px
Start display at page:

Download "Math 101 Exam 1 Review"

Transcription

1 Math 101 Exam 1 Review Reminder: Exam 1 will be on Friday, October 14, 011 at 8am. It will cover sections 1.1, 1. and Room Assignments: Room Sections Nesbitt 111 9, 14, 3, 4, 8 Nesbitt 15 0, 9 CAT 61 4, 5, 30 Stratton 113 1, 16, 19 Main Auditorium 6, 7, 8, 10, 11, 13, 15, 18, 1,, 5, 6, 7 Section 1.1 Recap Slope and equations of Lines: Slope Formula for slope: y y1 m x x 1 1. Slope of a horizontal line is 0. Slope of a vertical line is undefined 3. Parallel Lines: have the same slope 4. Perpendicular lines: slopes are negative reciprocals Equations of Lines: 1. Use slope-intercept form (y = mx + b) if you are given The slope and the y-intercept. Use point-slope form ( y y m x x 1 1 ) if you are given - The slope (m) and any point on the line, - You are given two points on the line only (find the slope first, using y y1, then pick a point and use point-slope form) 3. Equation of Horizontal line through the point (a, b): y = b 4. Equation of Vertical line through the point (a, b): x = a Section 1. Recap Definition of a Linear Function: y =f(x) = mx +b for real numbers m and b. m x x Supply and Demand: How many items a company ( producers )is willing to supply, p=s(q) and how much buyers ( consumers ) are willing to buy p = D(q) are both dependent upon the price at which the item is being sold. Even though it seems that quantity demanded and supplied depends on price, when it comes to supply and demand you have to remember that price is the independent variable and quantity is the dependent variable. 1

2 Equilibrium point: The point at which supply and demand are equal is called the equilibrium point; you will have neither a surplus nor a shortage. The equilibrium price is the price at that point, and the equilibrium quantity is the quantity at that point. Cost Analysis: Linear cost functions describe how much it costs to produce x items. All linear cost functions have to types of costs, 1. The per-item cost (Variable cost) and. The fixed costs (the cost associated with producing nothing) Linear Cost functions have the form C(x) = Variable costs *x + Fixed Costs Marginal Cost: Defined as the cost to produce one additional unit beyond your current production level, or more simply put the slope of the linear cost function. Break-Even Analysis: The Revenue Function, R(x) = price per item * the number of items = px The Profit Function, P(x) = R(x) - C(x) When the profit > 0, you made money When profit < 0, you lost money Break- Even Point: R(x) = C(x) or P(x) = 0 The x-coordinate is the break-even quantity Section 10.1 Definition of a Function A function is a rule that assigns to each element from one set exactly one element from another set. This rule is usually a mathematical expression that relates an input value to an output value. Domain: The set of all possible input values (another word is meaningful replacements for x) Range: the set of all possible output values (or in other words, possible values y can take on) To find the domain of a function, you want to begin by assuming that the domain is all real numbers.unless: 1. There is a denominator. Division by zero is undefined so any value of x that makes the denominator zero cannot be used in the function.. There is a square root. You cannot take the square root of a negative number, so whatever expression placed under the square root must be 0. Evaluating Functions Evaluating a function really means finding the value of the function (or of y) for a given x value. So if I want to evaluate f x x 6x 1 at x = 4. I need to replace x with 4 and calculate. The Vertical Line Test

3 f(x)=-x^ f(x)=x^-3 The vertical line test is a quick and easy way for you to determine if a graph represents a function. Since each x must be paired with only 1 y, if you cross a function with a vertical line, any vertical line will cross the graph at most once. Section 10. Transformations: Let f be any function and h and k be positive constants. 1. The graph of y = f(x) + k is the graph of y= f(x) shifted up k units. The graph of y = f(x) k is the graph of y = f(x) shifted down k units 3. The graph of y = f(x h) is the graph of y = f(x) shifted to the right h units 4. The graph of y = f(x+h) is the graph of y = f(x) shifted to the left h units 5. The graph of y = f(x) is the graph of y=f(x) flipped over the x axis 6. The graph of y = f( x) is the graph of y = f(x) flipped over the y axis. This allows us to graph familiar functions by just performing translations and reflections in the plane. Definition of a Quadratic Function The first thing you need to know about a quadratic function is that it is a function in which the highest power of x appearing is. In general, a quadratic function is defined as f x ax bx c where a, b and c are real numbers and a 0. The graph of a quadratic function is a parabola. Each parabola either opens up or opens down. y y x x A parabola that opens up will have a minimum point, and a parabola that opens down will have a maximum point. The minimum (or maximum) point on the parabola is called the vertex. Parabolas also have the property of being symmetric across the vertical line that passes thru the vertex. That line is called the axis of symmetry. Sometimes it is useful to change the equation to an equivalent form, called Vertex Form. a( xh) k. Then, using our transformations, we realize that the vertex (which is the origin for y x ) is just shifted h units to the left and k units up to a new vertex of (h,k) Finding the Vertex of a Quadratic Function: Example: Find the vertex of f xx 8x 8. Option 1: We have to find a way to write this in the form: y a xh k To do this we are going to use the process completing the square. 1. Move the 8 away from the rest of the equation. Factor a out of the first two terms. f xx 4x 8. You are going to attempt to make the expression in parentheses a perfect square. So we are going to put a perfect squared expression underneath. Now look at the terms in parentheses. Take the coefficient of the second term and divide it by. You are going to put the square root of x^ and the number you just came up with in ( ) f x x 4x 8 x

4 3. Now you have to go back to the first line and adjust it based on what you just did. f x x 4x 8 x Adjust how you ask? You have to put in what needs to be there. Take the in the second line and square it and put it back into the first line, so you put in what is now missing from the parentheses. Then you have to balance out that line. f x x 4x4 88 x 16 You just added *4 = 8 in, so you have to subtract it back out. Which is where f x x 16comes from. This means the vertex is (, 16) Option : There is a shortcut formula for finding the vertex. To find the vertex of the parabola f x ax bx c x y b a b f a Intercepts: To find x intercepts, you have to set y =0; to find the y intercept you set x = 0. Section 10.3 I. Polynomial Functions n n 1 A polynomial function of degree n, where n is a non negative integer is defined by f xanx an 1 x... Where a,... n a 0 are real numbers called coefficients with a n 0. The number a n is called the leading coefficient. Properties of Polynomial functions: 1. A polynomial function of degree n can have at most n 1 turning points. Conversely if the graph of a polynomial function has n turning points must have degree at least n + 1. In the graph of a polynomial function of even degree, both ends either go up or go down. For a polynomial function of odd degree one end goes up and one end goes down. 3. If the graph of x becomes large, the leading coefficient is positive. If the graph goes down as x becomes large, the leading coefficient is negative. 4. A polynomial of degree n can have at most n zeros (x intercepts) II. Rational Functions A rational function is defined by f x p x where p(x) and q(x) are polynomial functions and q(x) not = 0 q x Rational functions will have graphs with one or more breaks because you cannot use any value of x which makes the denominator = 0. Asymptotes: If a function gets larger and larger in magnitude without bound as x approaches the number k then the line x = k is a vertical asymptote. If the values of y approaches a number k as x gets larger and larger the line y = k is a

5 horizontal asymptote. NOTE: ASYMPTOTES ARE LINES, IN PARTICULAR VERTICAL ASYMPTOTES ARE VERTICAL LINES (X = #) AND HORIZONTAL ASYMPTOTES ARE HORIZONTAL LINES (Y = #) To find vertical asymptotes 1. Cancel any common factors from the numerator and denominator. You will have a hole at these points.. Set the simplified denominator =0 3. Factor to get the root(s), for example, x = k 4. The vertical line x = k is a vertical asymptote To find horizontal asymptotes You will have to compare the numerator and the denominator 1. If the degree of the numerator is lower than the degree of the denominator, the line y = 0 is the horizontal asymptote. If the degree of the denominator is the same as the degree of the numerator, the horizontal asymptote will be the leading coefficient of the numerator divided by the leading coefficient of the denominator 3. If the degree of the numerator is larger than the degree of the denominator there is no horizontal asymptote. Graphing Rational Functions: 1. Find the domain of the function. Check if you can factor and cancel, producing a hole in the graph 3. Find any vertical asymptotes, drawing them in your graph as dashed lines 4. Find any horizontal asymptote, drawing as a dashed line 5. Find any x intercepts (set y =0) 6. Find any y intercepts (set x = 0) 7. Make a number line chart to determine where the function lies above and below the x axis around the vertical asymptotes. 8. Graph, hugging all of the asymptotes.

6 Math 101 Exam Review Problems Section 1.1: #1. Find the slope of the line through (4,5) and (-1,) #11. Find the slope of the line y = 8 #15. Find the equation of the line through the point (1,3) with m =- #1. Find the equation of the line through (/3, ½) and (1/4, -) #3. Find the equation of the line through (-8,4) and (-8,6) #9. Find the equation of the line through (-4, 6) parallel to 3x+y=13 #31. Find the equation of the line perpendicular to x + y = 4 Graph the following equations: #45. y = 4x + 5 #49. 3x y = -9 #59. 3x - 5y = 0 #71. The number of unmarried, opposite se couples in the U.S. who are living together has been rising at a roughly linear rate in recent years. The number of cohabitating adults was 1.59 million in 1980 and 5.08 million in 004. a. Write an equation representing the number of cohabitation adults (in millions), y, in terms of the number of years after 1980, x. b. Use your result in part a to predict the number of cohabitating adults in the year 010 Section 1. For the following exercises, let f(x) = 7 5x and g(x) = x 3 Find #1. f() #5. g(1.5) #19. Write a linear cost function for each situation (#19 and #5). Identify all variables used: A Lake Tahoe resort charges a snowboard rental fee of $10 plus $.5 per hour #5. Assume that each situation can be expressed as a linear cost function. Find the cost function: Marginal Cost: $75; 50 items cost 4300 to produce. #7. Suppose the demand and price for a certain model of youth wristwatch are related by p Dq q where p is the price (in dollars) and q is the demand (in hundreds). Find the price at each level of demand. a. 0 watches b. 400 watches c. 800 watches

7 Find the demand for the watch at each price d. $8 e. $10 f. $1 g. Graph p q Suppose the price and supply of the watch are related by p Sq 0. 75q dollars) and q is the supply (in hundreds) of watches. Find the supply at each price h. $0 i. $10 j. $0 k. Graph p = 0.75q on the same set of axes for part g. l. Find the equilibrium quantity and the equilibrium price. where p is the price(in 31. Joanne Ha sells silk-screened T-shirts at community festivals and craft fairs. Her marginal cost to produce on T-shirt is $3.50. Her total cost to produce 60 T-shirts is $300 and she sells them for $9 each. a. Find the linear cost function for Joanne s T-shirt production. b. How many T-shirts must she produce and sell in order to break even. c. How many T-shirts must she produce and sell to make a profit of $500? #37. To produce x-units of a religious medal costs C(x) = 1x+39. The revenue, R(x) = 5x. Both C(x) and R(x) are in dollars. a. Find the break even quantity b. Find the profit from 50 units c. Find the number of units that must be produced for a profit of $130. Section For each of the following, determine the domain. a) p ( x) x 3 b) 11 x 3 c) g ( x) x 81. Give the domain and range of the following function: 4x 3 3. Let Compute x 5 a) f (4) b) 1 f c) f m

8 d) All values of x for which f(x)=1 4. Determine whether the following graph represents a function: a) b) 5. Let f x 6x 5x 8. Compute f x h h Section Describe how the following graph can be obtained by transforming a) f x ( x 5) 3 b) f x ( x 3) c) f x x 3 x. Then sketch the graph. 7. Graph the following parabolas. Give the vertex, x and y intercepts, and axis of symmetry. a) f x x 4x 3 b) f x x 0x 18 c) 8 1 f x x x Let C ( x) 4x 3 be the cost of producing x widgets, and let Rx x 8x be the revenue. a) Graph C(x) and R(x) on the same axes. b) Find the minimum break even quantity c) Find the maximum revenue d) Find the maximum profit 9. If an object is thrown upward with an initial velocity of 18 ft/sec, then its height after t seconds is given by h( t) 18t 3t. a) Find the maximum height obtained by the object. b) Find the number of seconds it takes to hit the ground. Section For each of the following, select an appropriate graph: a) f x x 3 x x 11 b) f x x 4 x 3 10x 15

9 11. The following is the graph of a polynomial. Determine: a) Whether the degree is odd or even. b) Whether the leading term is positive or negative. c) Fill in the blank: Since there are turning points, the degree must be at least. 1. For each of the following rational functions, find: i. The domain. ii. Any holes iii. The equations of any vertical and horizontal asymptotes iv. Any x and y intercepts v. Provide a sketch. a) b) c) x 4 x 3 4 x 4 x 5 x x 4 4 In addition to reviewing your lecture notes, your quizzes, and the assigned problems on the course syllabus, it is RECOMMENDED that you do the following problems in preparation for the exam: Chapter 1 Review Exercises p.50: 3, 7, 14, 15, 19, 0,, 3, 5, 6, 8, 37, 38, 4, 49 Chapter 10 Review Exercises p.64: 8(a-f), 11, 1, 13, 14, 16, 89(a-c), 91 Section 10.1 p.568: 7, 39, 45, 55, 57 Section 10. p. 58: 9, 47 Section 10.3 p. 595: 33, 39, 47(a-c)

Chapter 1 Polynomials and Modeling

Chapter 1 Polynomials and Modeling Chapter 1 Polynomials and Modeling 1.1 Linear Functions Recall that a line is a function of the form y = mx+ b, where m is the slope of the line (how steep the line is) and b gives the y-intercept (where

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

Sect 3.1 Quadratic Functions and Models

Sect 3.1 Quadratic Functions and Models Objective 1: Sect.1 Quadratic Functions and Models Polynomial Function In modeling, the most common function used is a polynomial function. A polynomial function has the property that the powers of the

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

Do you need a worksheet or a copy of the teacher notes? Go to

Do you need a worksheet or a copy of the teacher notes? Go to Name Period Day Date Assignment (Due the next class meeting) Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED

NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Algebra II (Wilsen) Midterm Review NO CALCULATOR ON ANYTHING EXCEPT WHERE NOTED Remember: Though the problems in this packet are a good representation of many of the topics that will be on the exam, this

More information

1.1 Functions. Cartesian Coordinate System

1.1 Functions. Cartesian Coordinate System 1.1 Functions This section deals with the topic of functions, one of the most important topics in all of mathematics. Let s discuss the idea of the Cartesian coordinate system first. Cartesian Coordinate

More information

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x.

Math 370 Exam 1 Review Name. Use the vertical line test to determine whether or not the graph is a graph in which y is a function of x. Math 370 Exam 1 Review Name Determine whether the relation is a function. 1) {(-6, 6), (-6, -6), (1, 3), (3, -8), (8, -6)} Not a function The x-value -6 corresponds to two different y-values, so this relation

More information

Math Analysis Chapter 1 Notes: Functions and Graphs

Math Analysis Chapter 1 Notes: Functions and Graphs Math Analysis Chapter 1 Notes: Functions and Graphs Day 6: Section 1-1 Graphs Points and Ordered Pairs The Rectangular Coordinate System (aka: The Cartesian coordinate system) Practice: Label each on the

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c.

y 1 ) 2 Mathematically, we write {(x, y)/! y = 1 } is the graph of a parabola with 4c x2 focus F(0, C) and directrix with equation y = c. Ch. 10 Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since

More information

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x Math 33B Intermediate Algebra Fall 01 Name Study Guide for Exam 4 The exam will be on Friday, November 9 th. You are allowed to use one 3" by 5" index card on the exam as well as a scientific calculator.

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

Section 2.2 Graphs of Linear Functions

Section 2.2 Graphs of Linear Functions Section. Graphs of Linear Functions Section. Graphs of Linear Functions When we are working with a new function, it is useful to know as much as we can about the function: its graph, where the function

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

2-4 Graphing Rational Functions

2-4 Graphing Rational Functions 2-4 Graphing Rational Functions Factor What are the zeros? What are the end behaviors? How to identify the intercepts, asymptotes, and end behavior of a rational function. How to sketch the graph of a

More information

MATH 1113 Exam 1 Review. Fall 2017

MATH 1113 Exam 1 Review. Fall 2017 MATH 1113 Exam 1 Review Fall 2017 Topics Covered Section 1.1: Rectangular Coordinate System Section 1.2: Circles Section 1.3: Functions and Relations Section 1.4: Linear Equations in Two Variables and

More information

) 2 + (y 2. x 1. y c x2 = y

) 2 + (y 2. x 1. y c x2 = y Graphing Parabola Parabolas A parabola is a set of points P whose distance from a fixed point, called the focus, is equal to the perpendicular distance from P to a line, called the directrix. Since this

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

Math Analysis Chapter 1 Notes: Functions and Graphs

Math Analysis Chapter 1 Notes: Functions and Graphs Math Analysis Chapter 1 Notes: Functions and Graphs Day 6: Section 1-1 Graphs; Section 1- Basics of Functions and Their Graphs Points and Ordered Pairs The Rectangular Coordinate System (aka: The Cartesian

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions 6 Chapter 1 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations in order to explain or

More information

Working with Quadratic Functions in Standard and Vertex Forms

Working with Quadratic Functions in Standard and Vertex Forms Working with Quadratic Functions in Standard and Vertex Forms Example 1: Identify Characteristics of a Quadratic Function in Standard Form f( x) ax bx c, a 0 For the quadratic function f( x) x x 3, identify

More information

CHAPTER 2. Polynomials and Rational functions

CHAPTER 2. Polynomials and Rational functions CHAPTER 2 Polynomials and Rational functions Section 2.1 (e-book 3.1) Quadratic Functions Definition 1: A quadratic function is a function which can be written in the form (General Form) Example 1: Determine

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

1 of 49 11/30/2017, 2:17 PM

1 of 49 11/30/2017, 2:17 PM 1 of 49 11/30/017, :17 PM Student: Date: Instructor: Alfredo Alvarez Course: Math 134 Assignment: math134homework115 1. The given table gives y as a function of x, with y = f(x). Use the table given to

More information

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson

College Algebra. Fifth Edition. James Stewart Lothar Redlin Saleem Watson College Algebra Fifth Edition James Stewart Lothar Redlin Saleem Watson 4 Polynomial and Rational Functions 4.6 Rational Functions Rational Functions A rational function is a function of the form Px (

More information

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR EXERCISE SET 10. STUDENT MATD 090 DUE DATE: INSTRUCTOR You have studied the method known as "completing the square" to solve quadratic equations. Another use for this method is in transforming the equation

More information

1.1 - Functions, Domain, and Range

1.1 - Functions, Domain, and Range 1.1 - Functions, Domain, and Range Lesson Outline Section 1: Difference between relations and functions Section 2: Use the vertical line test to check if it is a relation or a function Section 3: Domain

More information

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Approximate the coordinates of each turning point by graphing f(x) in the standard viewing

More information

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet MAFS Algebra 1 Quadratic Functions Day 17 - Student Packet Day 17: Quadratic Functions MAFS.912.F-IF.3.7a, MAFS.912.F-IF.3.8a I CAN graph a quadratic function using key features identify and interpret

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units

Graphs of Parabolas. typical graph typical graph moved up 4 units. y = x 2 3. typical graph moved down 3 units Graphs of Parabolas = x 2 = x 2 + 1 = x 2 + 4 = x 2 3 tpical graph tpical graph moved up 1 unit tpical graph moved up 4 units tpical graph moved down 3 units = x 2 = (x 1) 2 = (x 4) 2 = (x + 3) 2 tpical

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Math 112 Spring 2016 Midterm 2 Review Problems Page 1

Math 112 Spring 2016 Midterm 2 Review Problems Page 1 Math Spring Midterm Review Problems Page. Solve the inequality. The solution is: x x,,,,,, (E) None of these. Which one of these equations represents y as a function of x? x y xy x y x y (E) y x 7 Math

More information

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2

Graphing Techniques. Domain (, ) Range (, ) Squaring Function f(x) = x 2 Domain (, ) Range [, ) f( x) = x 2 Graphing Techniques In this chapter, we will take our knowledge of graphs of basic functions and expand our ability to graph polynomial and rational functions using common sense, zeros, y-intercepts, stretching

More information

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class

Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Today is the last day to register for CU Succeed account AND claim your account. Tuesday is the last day to register for my class Back board says your name if you are on my roster. I need parent financial

More information

Lesson 1: Analyzing Quadratic Functions

Lesson 1: Analyzing Quadratic Functions UNIT QUADRATIC FUNCTIONS AND MODELING Lesson 1: Analyzing Quadratic Functions Common Core State Standards F IF.7 F IF.8 Essential Questions Graph functions expressed symbolically and show key features

More information

( )! 1! 3 = x + 1. ( ) =! x + 2

( )! 1! 3 = x + 1. ( ) =! x + 2 7.5 Graphing Parabolas 1. First complete the square: y = x 2 + 2x! 3 = x 2 + 2x + 1 ( )! 1! 3 = x + 1 ( ) 2! 4 The x-intercepts are 3,1 and the vertex is ( 1, 4). Graphing the parabola: 3. First complete

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

3.1 Quadratic Functions and Models

3.1 Quadratic Functions and Models 3.1 Quadratic Functions and Models Objectives: 1. Identify the vertex & axis of symmetry of a quadratic function. 2. Graph a quadratic function using its vertex, axis and intercepts. 3. Use the maximum

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1

You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 Name GRAPHICAL REPRESENTATION OF DATA: You should be able to plot points on the coordinate axis. You should know that the the midpoint of the line segment joining (x, y 1 1 ) and (x, y ) is x1 x y1 y,.

More information

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications Name Period Date QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications QUAD 4.1 Vertex Form of a Quadratic Function 1 Explore how changing the values of h and

More information

Mid Term Pre Calc Review

Mid Term Pre Calc Review Mid Term 2015-13 Pre Calc Review I. Quadratic Functions a. Solve by quadratic formula, completing the square, or factoring b. Find the vertex c. Find the axis of symmetry d. Graph the quadratic function

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Common Core Algebra 2. Chapter 1: Linear Functions

Common Core Algebra 2. Chapter 1: Linear Functions Common Core Algebra 2 Chapter 1: Linear Functions 1 1.1 Parent Functions and Transformations Essential Question: What are the characteristics of some of the basic parent functions? What You Will Learn

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section 1.5 Transformation of Functions 61 Section 1.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function

Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function SECTIONS 3.5: Rational Functions Objectives Graph and Analyze Rational Functions Find the Domain, Asymptotes, Holes, and Intercepts of a Rational Function I. Rational Functions A rational function is a

More information

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function.

The total cost function is linear. The fixed cost is $3482 and the total cost to produce 20 Trinkets is $4004. Find the total cost function. 1. Finding the equation of a line. 1. Find two points (x 1, y 1 ), (x 2, y 2 ) and compute the slope m = y 2 y 1 x 2 x 1. 2. The line equation is y = m(x x 1 ) + y 2 (expand to get in the form y = mx +

More information

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

MAC Module 5 Transformation of Graphs. Rev.S08

MAC Module 5 Transformation of Graphs. Rev.S08 MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

Parabolas have a, a middle point. For

Parabolas have a, a middle point. For Key Ideas: 3.1A Investigating Quadratic Functions in Vertex Form: y = a(x ± p) ± q Date: Graph y x using the count method. Quick way to graph: Use a basic count: Start at vertex: in this case (0,0) Graph

More information

Math 083 Final Exam Practice

Math 083 Final Exam Practice Math 083 Final Exam Practice Name: 1. Simplify the expression. Remember, negative exponents give reciprocals.. Combine the expressions. 3. Write the expression in simplified form. (Assume the variables

More information

Parabolas have a, a middle point. For. In this example, the equation of the axis of symmetry is

Parabolas have a, a middle point. For. In this example, the equation of the axis of symmetry is 5.1/5.A Investigating Quadratic Functions in Standard Form: y = a(x ± h) ± k y x Graph y x using a table of values x -3 - -1 0 1 3 Graph Shape: the graph shape is called a and occurs when the equation

More information

Assignment Assignment for Lesson 9.1

Assignment Assignment for Lesson 9.1 Assignment Assignment for Lesson.1 Name Date Shifting Away Vertical and Horizontal Translations 1. Graph each cubic function on the grid. a. y x 3 b. y x 3 3 c. y x 3 3 2. Graph each square root function

More information

10.3 vertex and max values with comparing functions 2016 ink.notebook. March 14, Vertex and Max Value & Page 101.

10.3 vertex and max values with comparing functions 2016 ink.notebook. March 14, Vertex and Max Value & Page 101. 10.3 vertex and max values with comparing functions 2016 ink.notebook Page 101 Page 102 10.3 Vertex and Value and Comparing Functions Algebra: Transformations of Functions Page 103 Page 104 Lesson Objectives

More information

Algebra II Notes Unit Two: Linear Equations and Functions

Algebra II Notes Unit Two: Linear Equations and Functions Syllabus Objectives:.1 The student will differentiate between a relation and a function.. The student will identify the domain and range of a relation or function.. The student will derive a function rule

More information

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if

Section Rational Functions and Inequalities. A rational function is a quotient of two polynomials. That is, is a rational function if Section 6.1 --- Rational Functions and Inequalities A rational function is a quotient of two polynomials. That is, is a rational function if =, where and are polynomials and is not the zero polynomial.

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS

GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS GUIDED NOTES 3.5 TRANSFORMATIONS OF FUNCTIONS LEARNING OBJECTIVES In this section, you will: Graph functions using vertical and horizontal shifts. Graph functions using reflections about the x-axis and

More information

Sketching graphs of polynomials

Sketching graphs of polynomials Sketching graphs of polynomials We want to draw the graphs of polynomial functions y = f(x). The degree of a polynomial in one variable x is the highest power of x that remains after terms have been collected.

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

Summer Math Assignments for Students Entering Algebra II

Summer Math Assignments for Students Entering Algebra II Summer Math Assignments for Students Entering Algebra II Purpose: The purpose of this packet is to review pre-requisite skills necessary for the student to be successful in Algebra II. You are expected

More information

Determine whether the relation represents a function. If it is a function, state the domain and range. 1)

Determine whether the relation represents a function. If it is a function, state the domain and range. 1) MAT 103 TEST 2 REVIEW NAME Determine whether the relation represents a function. If it is a function, state the domain and range. 1) 3 6 6 12 9 18 12 24 Circle the correct response: Function Not a function

More information

WHAT ARE THE PARTS OF A QUADRATIC?

WHAT ARE THE PARTS OF A QUADRATIC? 4.1 Introduction to Quadratics and their Graphs Standard Form of a Quadratic: y ax bx c or f x ax bx c. ex. y x. Every function/graph in the Quadratic family originates from the parent function: While

More information

WK # Given: f(x) = ax2 + bx + c

WK # Given: f(x) = ax2 + bx + c Alg2H Chapter 5 Review 1. Given: f(x) = ax2 + bx + c Date or y = ax2 + bx + c Related Formulas: y-intercept: ( 0, ) Equation of Axis of Symmetry: x = Vertex: (x,y) = (, ) Discriminant = x-intercepts: When

More information

Math 2201 Unit 4: Quadratic Functions. 16 Hours

Math 2201 Unit 4: Quadratic Functions. 16 Hours Math 2201 Unit 4: Quadratic Functions 16 Hours 6.1: Exploring Quadratic Relations Quadratic Relation: A relation that can be written in the standard form y = ax 2 + bx + c Ex: y = 4x 2 + 2x + 1 ax 2 is

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

2.1 Solutions to Exercises

2.1 Solutions to Exercises Last edited 9/6/17.1 Solutions to Exercises 1. P(t) = 1700t + 45,000. D(t) = t + 10 5. Timmy will have the amount A(n) given by the linear equation A(n) = 40 n. 7. From the equation, we see that the slope

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

Section 7.2 Characteristics of Quadratic Functions

Section 7.2 Characteristics of Quadratic Functions Section 7. Characteristics of Quadratic Functions A QUADRATIC FUNCTION is a function of the form " # $ N# 1 & ;# & 0 Characteristics Include:! Three distinct terms each with its own coefficient:! An x

More information

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007 Math 135: Intermediate Algebra Homework 10 Solutions December 18, 007 Homework from: Akst & Bragg, Intermediate Algebra through Applications, 006 Edition, Pearson/Addison-Wesley Subject: Linear Systems,

More information

Section 3.3. Analyzing Graphs of Quadratic Functions

Section 3.3. Analyzing Graphs of Quadratic Functions Section 3.3 Analyzing Graphs of Quadratic Functions Introduction Definitions A quadratic function is a function with the form f (x) = ax 2 + bx + c, where a 0. Definitions A quadratic function is a function

More information

Assignment 3. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Assignment 3. Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Assignment 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A truck rental company rents a moving truck one day by charging $35 plus $0.09

More information

In math, the rate of change is called the slope and is often described by the ratio rise

In math, the rate of change is called the slope and is often described by the ratio rise Chapter 3 Equations of Lines Sec. Slope The idea of slope is used quite often in our lives, however outside of school, it goes by different names. People involved in home construction might talk about

More information

Name: Algebra. Unit 8. Quadratic. Functions

Name: Algebra. Unit 8. Quadratic. Functions Name: Algebra Unit 8 Quadratic Functions Quadratic Function Characteristics of the Graph: Maximum Minimum Parent Function Equation: Vertex How many solutions can there be? They mean what? What does a do?

More information

Unit Essential Questions: Does it matter which form of a linear equation that you use?

Unit Essential Questions: Does it matter which form of a linear equation that you use? Unit Essential Questions: Does it matter which form of a linear equation that you use? How do you use transformations to help graph absolute value functions? How can you model data with linear equations?

More information

Module 3: Graphing Quadratic Functions

Module 3: Graphing Quadratic Functions Haberman MTH 95 Section V Quadratic Equations and Functions Module 3 Graphing Quadratic Functions In this module, we'll review the graphing quadratic functions (you should have studied the graphs of quadratic

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice Algebra 2CP Name Algebra 2CP S1 Final Exam Information Your final exam will consist of two parts: Free Response and Multiple Choice Part I: Free Response: Five questions, 10 points each (50 points total),

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Section 2-7. Graphs of Rational Functions

Section 2-7. Graphs of Rational Functions Section 2-7 Graphs of Rational Functions Section 2-7 rational functions and domain transforming the reciprocal function finding horizontal and vertical asymptotes graphing a rational function analyzing

More information