Performance of the GlueX Detector Systems

Size: px
Start display at page:

Download "Performance of the GlueX Detector Systems"

Transcription

1 Performance of the GlueX Detector Systems GlueX-doc-2775 Gluex Collaboration August 215 Abstract This document summarizes the status of calibration and performance of the GlueX detector as of summer Introduction The GlueX experiment took commissioning data in the fall of 214 and the spring of 215. Based on that data and extensive cosmic running, preliminary calibrations of the detector systems have been performed, and many of the systems have reached design specifications. This report presents a snapshot of the current status of the calibration and performance of the GlueX detector and the photon beam line. 2 Beam Line and Tagger Elements The Tagger Hodoscope The Tagger Microscope The Triplet Polarimeter The Pair Spectrometer 3 The GlueX Detector 1

2 Start Counter The quantities that measure the performance of the start counter are the timing resolution, σ t, the efficiency of detecting a charged track, ɛ, and the maximum rate at which the detector can run. Performance values are listed in Table 1. Figure 1 shows the timing resolution in element 29, where 3 ps has been achieved. Carrying out this fit for each of the 3 start counter elements yields the plot shown in Figure 2. σ t 35 ps 3 ps ɛ 95 % Maximum rate Table 1: The performance of the start counter. Entries /.1 ns Channel 29: t target ST - t RF tgt_rf_tdiff_chan_29 Entries Mean.215 RMS.3941 χ 2 / ndf 2128 / 11 Amp e+4 ± 1.46e+2 µ (ns).189 ±.1 σ (ns).2966 ± δt (ns) Figure 1: The time resolution of the start counter element 29 showing 3 ps resolution. Time Resolution (ns) Start Counter Time Resolution Performance Sector Number Figure 2: The time resolution of the start counter as a function of the start counter element number. The brown dashed line shows the design resolution, the blue points show the per element resolution. 2

3 Central Drift Chamber The quantities to measure performance of the CDC are the resolution on the distance from the wire, σ rφ, and the per wire efficiency, ɛ wire. Both of these are functions of the distance from the wire, and to some extent, the polar angle of the tracks. The resolution, σ rφ becomes worse close to the wire because the isochrones (regions of constant electron arrival times) get smaller. This in turn makes it less probable to have a primary cluster produced on the shortest time isochrone. The efficiency, ɛ wire, decreases close to the straw walls as due to the shorter track length in the active volume of the cell. The best measure of z resolution is the vertex resolution pairs of tracks detected in the CDC. Both z vert and xy vert are reported. σ rφ 15 µm 2 µm ɛ wire 95 % z vert 3 mm From two tracks. xy vert From two tracks. Maximum rate Table 2: The performance of the central drift chamber. σ(δd) [cm] Drift distance resolution for Ring Drift time [ns] Efficiency CDC Per Straw Efficiency Vs. DOCA Closest distance between track and wire [cm] Figure 3: The position resolution, σ rφ of the CDC as a function of drift time. Empty target z position counts/mm 4 χ 2 / ndf / p 35 ± 9.5 p ±.1 3 p2.373 ± p ± 1. p ±.1 p ± p ± z (cm) Figure 4: The z resolution at the target can be extracted from the empty target runs. The width of the thin target walls represent a measurement of z vert of 3 mm. 3

4 Forward Drift Chamber The performance parameters for the FDC were estimated using straight (no magnetic field) secondary tracks from the photon beam. In the FDC chambers we use the drift time to reconstruct the hit position in direction perpendicular to the wire (x), and the information from the strips of the two cathodes for the hit position along the wire (y). The wire resolution as function of the distance to the wire is shown in Fig.5(left). The gas mixture used in the chamber, 4/6 Ar/CO 2, is characterized with a big slope of the the time-to-distance function at small distances, resulting in deterioration of the resolution in that region. Such gas mixture was chosen to minimize the magnetic field corrections. The resolution at big distances to the wire is affected by the non-uniformity of the electric field there. The cathode strips register the avalanche produced very close to the wire, not the actual hit. Therefore, the cathode resolution (see Fig.5(right)) in x direction can be inferred simply from the reconstruction of the wire positions (blue points). On the other hand, the cathode resolution in y can be estimated by comparing the reconstructed avalanche position and the expected hit from the external tracking (red points). Note that due to the strip orientations w.r.t the wires, the x-resolution is expected to be about four times worse than the y-resolution. For the x-resolution, plotted as function of the charge, we see typical improvement of the resolution at higher charges. This is not the case for the y-resolution meaning there is a room for further improvement. Every chamber is capable of reconstructing a 3D hit position using both, wire and cathode information. The efficiency for such reconstruction is demonstrated in Fig.6. It is 95% except for that places with bad cathode channels (< 1%). σ x 2 µm 17 µm wire resolution for distances mm from wire σ y 2 µm 2 µm cathode resolution from track residuals in y direction ɛ 3Dhit 95 % Table 3: The performance of the Forward Drift Chamber. Parameters estimated with straight tracks without magnetic field. FDC Wire Resolution FDC Cathode Resolution microns Cathode Resolution, microns resolution of wire position reconstruction track residuals along wires distance to wire, mm charge, arbitrary units Figure 5: The FDC position resolutions: (left) from wires in x direction, σ wire, as function of distance to the wire and (right) from cathodes, σ cathode, in x (blue) and y (red) direction as function of the hit charge. Cathode x-resolution should be scaled down by factor of 3.86 to compare with y-resolution. 4

5 efficiency FDC 3D RECONSTRUCTION EFFICIENCY chamber 1 chamber 2 chamber 3 chamber 4 chamber 5 chamber X coordinate, mm Figure 6: The combined (wire and cathode) 3D hit reconstruction efficiency for the six chambers of third FDC package vs wire position. The dips in the efficiencies correspond to bad cathode channels, most numerous in this package. 5

6 Barrel Calorimeter The performance of the barrel calorimeter is characterized by its ability to measure the energy and position of electromagnetic showers, which improve with increasing energy deposition (E). The energy and position resolutions determine the experimental width of the π and η decays to two photons, which become benchmarks for our ability to reconstruct electromagnetic showers. An unfolding procedure is required to extract the energy resolution as a function of energy, which has not yet been completed. The position along the length of the barrel calorimeter (z) is determined by measuring the time difference between arrival times of the upstream and downstream hits. The position resolution can be determined for charged particles by comparing the calorimeter measurement to the value determined from tracking. π width, σ π 9 MeV MeV η width, σ η 28 MeV z-position resolution, σ z 1.1cm/ E Table 4: The performance of the barrel calorimeter. The width of the π depends on the minimum-energy cut placed on the daughter photons and leads to the range shown. counts/3 MeV BCAL π γγ reconstruction Spring Field on Runs E γ > 35 MeV M π = MeV σ π = 1.3 MeV σ/m = 7.7 % counts/3 MeV 3 BCAL π γγ reconstruction Spring Field on Runs E γ > 55 MeV M π = MeV σ π = 9.4 MeV σ/m = 7. % counts/3 MeV invariant mass (GeV) BCAL π γγ reconstruction Spring Field on Runs E γ > 75 MeV M π = MeV σ π = 9. MeV σ/m = 6.7 % counts/3 MeV invariant mass (GeV) BCAL π γγ reconstruction Spring Field on Runs E γ > 95 MeV M π = MeV 3 σ π = 8.7 MeV σ/m = 6.4 % invariant mass (GeV) invariant mass (GeV) Figure 7: The mass distribution of two photons reconstructed in the barrel calorimeter. The four plots show different minimum photon energy of the decay photons of the π. These range from 1.3 MeV for 35 MeV photon energy to 8.7 MeV when the π is reconstructed with photons with energies greater than 95 MeV. 6

7 Forward Calorimeter Figure 8 shows a plot of the π width versus the lowest energy of the two decay photons. In addition to the current measured resolution, the design resolution is also shown. The energy dependence of the design resolution is dominated by photostatistics, the amount of light from the shower making it into the PMT. For the actual data we seem to see no strong energy dependence on the resolution, which suggests we arent at the intrinsic resolution limit in the actual detector. π width, σ π 7 MeV 12 MeV for 1 GeV photons Table 5: The performance of the barrel calorimeter. FCAL Energy Resolution as of June 215 Mass Resolution [MeV] π Present Calibration Design Resolution E and E γ 1 [GeV] γ 2 Figure 8: The width of the reconstructed mass of th e π using photons in the FCAL as a function of the minimum energy of the two decay photons. The points with errors are the current resolution while the solid red line is the design resolution. 7

8 Time-of-flight Wall The time-of-flight wall is expected to have a per-paddle time resolution, σ t, of 1 ps. σ t 1 ps 96 ps πp separation at 2 GeV 9.55 σ πp separation at 3 GeV 4.65 σ πk separation at 1 GeV 9.35 σ πk separation at 1.5 GeV 3.65 σ Table 6: The performance parameters of the time-of-flight system. Mean Time Difference 1 MTdiff Entries Mean.175 β 1 + TOF q Entries RMS.1833 χ 2 / ndf 1431 / Prob Constant 9941 ± 58.1 Mean.4953 ±.637 Sigma.1362 ± time difference [ns] p (GeV/c) 1 Figure 9: (left) The time difference between the summed time in the two layers of time-of-flight paddles. The 136 ps sigma measurement corresponds to 96 ps time resolution per layer. (right) The β versus p plot for positive particles. Clear bands are seen for e +, π +, K + and p (top to bottom). 8

9 4 Data Acquisition and Trigger Data Acquisition System Level-1 Trigger 5 Summary 9

Using only HyCal. Graph. Graph

Using only HyCal. Graph. Graph Live charge weighted ep yield from all the 2GeV empty target runs Scattering angle from.7 to.9 deg, background dominated by upstream collimator (8%) Notice that here uncertainty from the live charge measurement

More information

A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment

A New Segment Building Algorithm for the Cathode Strip Chambers in the CMS Experiment EPJ Web of Conferences 108, 02023 (2016) DOI: 10.1051/ epjconf/ 201610802023 C Owned by the authors, published by EDP Sciences, 2016 A New Segment Building Algorithm for the Cathode Strip Chambers in the

More information

Update of the BESIII Event Display System

Update of the BESIII Event Display System Update of the BESIII Event Display System Shuhui Huang, Zhengyun You Sun Yat-sen University, Guangzhou, 510275, China E-mail: huangshh28@mail2.sysu.edu.cn, youzhy5@mail.sysu.edu.cn Abstract. The BESIII

More information

PoS(High-pT physics09)036

PoS(High-pT physics09)036 Triggering on Jets and D 0 in HLT at ALICE 1 University of Bergen Allegaten 55, 5007 Bergen, Norway E-mail: st05886@alf.uib.no The High Level Trigger (HLT) of the ALICE experiment is designed to perform

More information

Update of the BESIII Event Display System

Update of the BESIII Event Display System Journal of Physics: Conference Series PAPER OPEN ACCESS Update of the BESIII Event Display System To cite this article: Shuhui Huang and Zhengyun You 2018 J. Phys.: Conf. Ser. 1085 042027 View the article

More information

Topics for the TKR Software Review Tracy Usher, Leon Rochester

Topics for the TKR Software Review Tracy Usher, Leon Rochester Topics for the TKR Software Review Tracy Usher, Leon Rochester Progress in reconstruction Reconstruction short-term plans Simulation Calibration issues Balloon-specific support Personnel and Schedule TKR

More information

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14

Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration. TIPP Chicago, June 9-14 ALICE SDD ITS performance with pp and Pb-Pb beams Stefania Beolè (Università di Torino e INFN) for the ALICE Collaboration - Chicago, June 9-14 Inner Tracking System (I) Six layers of silicon detectors

More information

Studies of the KS and KL lifetimes and

Studies of the KS and KL lifetimes and Studies of the KS and KL lifetimes and BR(K ) with KLOE ± ± + Simona S. Bocchetta* on behalf of the KLOE Collaboration KAON09 Tsukuba June 9th 2009 * INFN and University of Roma Tre Outline DA NE and KLOE

More information

Simulation study for the EUDET pixel beam telescope

Simulation study for the EUDET pixel beam telescope EUDET Simulation study for the EUDET pixel beam telescope using ILC software T. Klimkovich January, 7 Abstract A pixel beam telescope which is currently under development within the EUDET collaboration

More information

Electron and Photon Reconstruction and Identification with the ATLAS Detector

Electron and Photon Reconstruction and Identification with the ATLAS Detector Electron and Photon Reconstruction and Identification with the ATLAS Detector IPRD10 S12 Calorimetry 7th-10th June 2010 Siena, Italy Marine Kuna (CPPM/IN2P3 Univ. de la Méditerranée) on behalf of the ATLAS

More information

π ± Charge Exchange Cross Section on Liquid Argon

π ± Charge Exchange Cross Section on Liquid Argon π ± Charge Exchange Cross Section on Liquid Argon Kevin Nelson REU Program, College of William and Mary Mike Kordosky College of William and Mary, Physics Dept. August 5, 2016 Abstract The observation

More information

Performance of the ATLAS Inner Detector at the LHC

Performance of the ATLAS Inner Detector at the LHC Performance of the ALAS Inner Detector at the LHC hijs Cornelissen for the ALAS Collaboration Bergische Universität Wuppertal, Gaußstraße 2, 4297 Wuppertal, Germany E-mail: thijs.cornelissen@cern.ch Abstract.

More information

PoS(EPS-HEP2017)492. Performance and recent developments of the real-time track reconstruction and alignment of the LHCb detector.

PoS(EPS-HEP2017)492. Performance and recent developments of the real-time track reconstruction and alignment of the LHCb detector. Performance and recent developments of the real-time track reconstruction and alignment of the LHCb detector. CERN E-mail: agnieszka.dziurda@cern.ch he LHCb detector is a single-arm forward spectrometer

More information

Forward Time-of-Flight Geometry for CLAS12

Forward Time-of-Flight Geometry for CLAS12 Forward Time-of-Flight Geometry for CLAS12 D.S. Carman, Jefferson Laboratory ftof geom.tex April 13, 2016 Abstract This document details the nominal geometry for the CLAS12 Forward Time-of- Flight System

More information

PoS(Baldin ISHEPP XXII)134

PoS(Baldin ISHEPP XXII)134 Implementation of the cellular automaton method for track reconstruction in the inner tracking system of MPD at NICA, G.A. Ososkov and A.I. Zinchenko Joint Institute of Nuclear Research, 141980 Dubna,

More information

CLAS12 DAQ & Trigger Status and Timeline. Sergey Boyarinov Oct 3, 2017

CLAS12 DAQ & Trigger Status and Timeline. Sergey Boyarinov Oct 3, 2017 CLAS12 DAQ & Trigger Status and Timeline Sergey Boyarinov Oct 3, 2017 Notation ECAL old EC (electromagnetic calorimeter) PCAL preshower calorimeter DC drift chamber HTCC high threshold cherenkov counter

More information

OPERA: A First ντ Appearance Candidate

OPERA: A First ντ Appearance Candidate OPERA: A First ντ Appearance Candidate Björn Wonsak On behalf of the OPERA collaboration. 1 Overview The OPERA Experiment. ντ Candidate Background & Sensitivity Outlook & Conclusions 2/42 Overview The

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

for the DESY/ ECFA study detector

for the DESY/ ECFA study detector The TPC Tracker for the DESY/ ECFA study detector Ties Behnke DESY 1-May-1999 the TPC tracker requirements from physics a TPC at TESLA: can this work? results from simulation technical issues conclusion

More information

Full Offline Reconstruction in Real Time with the LHCb Detector

Full Offline Reconstruction in Real Time with the LHCb Detector Full Offline Reconstruction in Real Time with the LHCb Detector Agnieszka Dziurda 1,a on behalf of the LHCb Collaboration 1 CERN, Geneva, Switzerland Abstract. This document describes the novel, unique

More information

First results from the LHCb Vertex Locator

First results from the LHCb Vertex Locator First results from the LHCb Vertex Locator Act 1: LHCb Intro. Act 2: Velo Design Dec. 2009 Act 3: Initial Performance Chris Parkes for LHCb VELO group Vienna Conference 2010 2 Introducing LHCb LHCb is

More information

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction

Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Charged Particle Tracking at Cornell: Gas Detectors and Event Reconstruction Dan Peterson, Cornell University The Cornell group has constructed, operated and maintained the charged particle tracking detectors

More information

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration

05/09/07 CHEP2007 Stefano Spataro. Simulation and Event Reconstruction inside the PandaRoot Framework. Stefano Spataro. for the collaboration for the collaboration Overview Introduction on Panda Structure of the framework Event generation Detector implementation Reconstruction The Panda experiment AntiProton Annihilations at Darmstadt Multi

More information

Work in Tbilisi. David Mchedlishvili (SMART EDM_lab of TSU) GGSWBS , Tbilisi. Shota Rustaveli National Science Foundation

Work in Tbilisi. David Mchedlishvili (SMART EDM_lab of TSU) GGSWBS , Tbilisi. Shota Rustaveli National Science Foundation Mitglied der Helmholtz-Gemeinschaft David Mchedlishvili (SMART EDM_lab of TSU) Work in Tbilisi GGSWBS 18 23.08.2018, Tbilisi JEDI: Charged-Particle EDM Search Main principle: Inject polarized particles

More information

Time of CDF (II)

Time of CDF (II) TOF detector lecture, 19. august 4 1 Time of Flight @ CDF (II) reconstruction/simulation group J. Beringer, A. Deisher, Ch. Doerr, M. Jones, E. Lipeles,, M. Shapiro, R. Snider, D. Usynin calibration group

More information

Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets

Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets Measurement of fragmentation cross-section of 400 MeV/u 12 C beam on thin targets Candidate: Abdul Haneefa Kummali Supervisor : Dr. Vincenzo Monaco PhD School - Department of Physics XXVII cycle 14-February-2014

More information

Event reconstruction in STAR

Event reconstruction in STAR Chapter 4 Event reconstruction in STAR 4.1 Data aquisition and trigger The STAR data aquisition system (DAQ) [54] receives the input from multiple detectors at different readout rates. The typical recorded

More information

Updated impact parameter resolutions of the ATLAS Inner Detector

Updated impact parameter resolutions of the ATLAS Inner Detector Updated impact parameter resolutions of the ATLAS Inner Detector ATLAS Internal Note Inner Detector 27.09.2000 ATL-INDET-2000-020 06/10/2000 Szymon Gadomski, CERN 1 Abstract The layout of the ATLAS pixel

More information

PoS(ACAT)049. Alignment of the ATLAS Inner Detector. Roland Haertel Max-Planck-Institut für Physik, Munich, Germany

PoS(ACAT)049. Alignment of the ATLAS Inner Detector. Roland Haertel Max-Planck-Institut für Physik, Munich, Germany Max-Planck-Institut für Physik, Munich, Germany E-mail: haertel@mppmu.mpg.de The ATLAS experiment at the LHC is currently under construction at CERN and will start operation in summer 2008. The Inner Detector

More information

Progress on G4 FDIRC Simulation. Doug Roberts University of Maryland

Progress on G4 FDIRC Simulation. Doug Roberts University of Maryland Progress on G4 FDIRC Simulation Doug Roberts University of Maryland Since SLAC Workshop Spent some time trying to streamline and speed-up the reconstruction technique Needed quicker turnaround on resolution

More information

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions

The LHCb upgrade. Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions The LHCb upgrade Burkhard Schmidt for the LHCb Collaboration Outline: Present LHCb detector and trigger LHCb upgrade main drivers Overview of the sub-detector modifications Conclusions OT IT coverage 1.9

More information

Simulation Study for EUDET Pixel Beam Telescope using ILC Software

Simulation Study for EUDET Pixel Beam Telescope using ILC Software Simulation Study for EUDET Pixel Beam Telescope using ILC Software Linear Collider Workshop, Hamburg, May/June 2007 Tatsiana Klimkovich DESY Tatsiana Klimkovich, Linear Collider Workshop, May/June 2007

More information

arxiv:hep-ph/ v1 11 Mar 2002

arxiv:hep-ph/ v1 11 Mar 2002 High Level Tracker Triggers for CMS Danek Kotliński a Andrey Starodumov b,1 a Paul Scherrer Institut, CH-5232 Villigen, Switzerland arxiv:hep-ph/0203101v1 11 Mar 2002 b INFN Sezione di Pisa, Via Livornese

More information

Charged Particle Reconstruction in HIC Detectors

Charged Particle Reconstruction in HIC Detectors Charged Particle Reconstruction in HIC Detectors Ralf-Arno Tripolt, Qiyan Li [http://de.wikipedia.org/wiki/marienburg_(mosel)] H-QM Lecture Week on Introduction to Heavy Ion Physics Kloster Marienburg/Mosel,

More information

Muon Reconstruction and Identification in CMS

Muon Reconstruction and Identification in CMS Muon Reconstruction and Identification in CMS Marcin Konecki Institute of Experimental Physics, University of Warsaw, Poland E-mail: marcin.konecki@gmail.com An event reconstruction at LHC is a challenging

More information

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer

Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Upgraded Swimmer for Computationally Efficient Particle Tracking for Jefferson Lab s CLAS12 Spectrometer Lydia Lorenti Advisor: David Heddle April 29, 2018 Abstract The CLAS12 spectrometer at Jefferson

More information

Calorimeter Object Status. A&S week, Feb M. Chefdeville, LAPP, Annecy

Calorimeter Object Status. A&S week, Feb M. Chefdeville, LAPP, Annecy Calorimeter Object Status St A&S week, Feb. 1 2017 M. Chefdeville, LAPP, Annecy Outline Status of Pi0 calibration Calibration survey with electrons (E/p) Calorimeter performance with single photons from

More information

Forward Time-of-Flight Detector Efficiency for CLAS12

Forward Time-of-Flight Detector Efficiency for CLAS12 Forward Time-of-Flight Detector Efficiency for CLAS12 D.S. Carman, Jefferson Laboratory ftof eff.tex May 29, 2014 Abstract This document details an absolute hit efficiency study of the FTOF panel-1a and

More information

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall

Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall Time and position resolution of high granularity, high counting rate MRPC for the inner zone of the CBM-TOF wall M. Petris, D. Bartos, G. Caragheorgheopol, M. Petrovici, L. Radulescu, V. Simion IFIN-HH

More information

CLAS12 DAQ, Trigger and Online Computing Requirements. Sergey Boyarinov Sep 25, 2017

CLAS12 DAQ, Trigger and Online Computing Requirements. Sergey Boyarinov Sep 25, 2017 CLAS12 DAQ, Trigger and Online Computing Requirements Sergey Boyarinov Sep 25, 2017 Notation ECAL old EC (electromagnetic calorimeter) PCAL preshower calorimeter DC drift chamber HTCC high threshold cherenkov

More information

Disentangling P ANDA s time-based data stream

Disentangling P ANDA s time-based data stream Disentangling P ANDA s time-based data stream M. Tiemens on behalf of the PANDA Collaboration KVI - Center For Advanced Radiation Technology, University of Groningen, Zernikelaan 25, 9747 AA Groningen,

More information

Update on Energy Resolution of

Update on Energy Resolution of Update on Energy Resolution of the EMC Using µµγ Sample David Hopkins Royal Holloway, University of London EMC Reconstruction Workshop, December 5 th, 2004 Outline Study of photon energy resolution Compare

More information

SiPMs for Čerenkov imaging

SiPMs for Čerenkov imaging SiPMs for Čerenkov imaging Peter Križan University of Ljubljana and J. Stefan Institute Trends in Photon Detectors in Particle Physics and Calorimetry, Trieste, June 2-4, 2008 Contents Photon detectors

More information

Alignment of the ATLAS Inner Detector

Alignment of the ATLAS Inner Detector Alignment of the ATLAS Inner Detector Heather M. Gray [1,2] on behalf of the ATLAS ID Alignment Group [1] California Institute of Technology [2] Columbia University The ATLAS Experiment tile calorimeter

More information

ALICE tracking system

ALICE tracking system ALICE tracking system Marian Ivanov, GSI Darmstadt, on behalf of the ALICE Collaboration Third International Workshop for Future Challenges in Tracking and Trigger Concepts 1 Outlook Detector description

More information

The Progress of TOF on BESIII

The Progress of TOF on BESIII The Progress of TOF on BESIII Yuekun Heng 1, Chong Wu 1, Zhijia Sun 1, Li Zhao 1,2, Cheng Li 2, Qi An 2, Shubin Liu 2, Jinjie Wu 2, Yuda Zhao 1,3, Fengmei Wang 1,4, Xiaojian Zhao 1, Feng Shi 1, Zhenghua

More information

arxiv: v1 [physics.ins-det] 13 Dec 2018

arxiv: v1 [physics.ins-det] 13 Dec 2018 Millepede alignment of the Belle 2 sub-detectors after first collisions arxiv:1812.05340v1 [physics.ins-det] 13 Dec 2018 Tadeas Bilka, Jakub Kandra for the Belle II Collaboration, Faculty of Mathematics

More information

ATLAS, CMS and LHCb Trigger systems for flavour physics

ATLAS, CMS and LHCb Trigger systems for flavour physics ATLAS, CMS and LHCb Trigger systems for flavour physics Università degli Studi di Bologna and INFN E-mail: guiducci@bo.infn.it The trigger systems of the LHC detectors play a crucial role in determining

More information

The performance of the ATLAS Inner Detector Trigger Algorithms in pp collisions at the LHC

The performance of the ATLAS Inner Detector Trigger Algorithms in pp collisions at the LHC X11 opical Seminar IPRD, Siena - 7- th June 20 he performance of the ALAS Inner Detector rigger Algorithms in pp collisions at the LHC Mark Sutton University of Sheffield on behalf of the ALAS Collaboration

More information

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998

arxiv:physics/ v1 [physics.ins-det] 18 Dec 1998 Studies of 1 µm-thick silicon strip detector with analog VLSI readout arxiv:physics/981234v1 [physics.ins-det] 18 Dec 1998 T. Hotta a,1, M. Fujiwara a, T. Kinashi b, Y. Kuno c, M. Kuss a,2, T. Matsumura

More information

Tracking and Vertex reconstruction at LHCb for Run II

Tracking and Vertex reconstruction at LHCb for Run II Tracking and Vertex reconstruction at LHCb for Run II Hang Yin Central China Normal University On behalf of LHCb Collaboration The fifth Annual Conference on Large Hadron Collider Physics, Shanghai, China

More information

The LiC Detector Toy program

The LiC Detector Toy program The LiC Detector Toy program M Regler, W Mitaroff, M Valentan, R Frühwirth and R Höfler Austrian Academy of Sciences, Institute of High Energy Physics, A-1050 Vienna, Austria, EU E-mail: regler@hephy.oeaw.ac.at

More information

Performance of the MRPC based Time Of Flight detector of ALICE at LHC

Performance of the MRPC based Time Of Flight detector of ALICE at LHC Performance of the MRPC based Time Of Flight detector of ALICE at LHC (for the ALICE Collaboration) Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi", Rome, Italy Dipartimento di Fisica

More information

PoS(EPS-HEP2017)523. The CMS trigger in Run 2. Mia Tosi CERN

PoS(EPS-HEP2017)523. The CMS trigger in Run 2. Mia Tosi CERN CERN E-mail: mia.tosi@cern.ch During its second period of operation (Run 2) which started in 2015, the LHC will reach a peak instantaneous luminosity of approximately 2 10 34 cm 2 s 1 with an average pile-up

More information

Alignment of the ATLAS Inner Detector tracking system

Alignment of the ATLAS Inner Detector tracking system Alignment of the ATLAS Inner Detector tracking system Instituto de Física Corpuscular (IFIC), Centro Mixto UVEG-CSIC, Apdo.22085, ES-46071 Valencia, E-mail: Regina.Moles@ific.uv.es The ATLAS experiment

More information

HLT Hadronic L0 Confirmation Matching VeLo tracks to L0 HCAL objects

HLT Hadronic L0 Confirmation Matching VeLo tracks to L0 HCAL objects LHCb Note 26-4, TRIG LPHE Note 26-14 July 5, 26 HLT Hadronic L Confirmation Matching VeLo tracks to L HCAL objects N. Zwahlen 1 LPHE, EPFL Abstract This note describes the HltHadAlleyMatchCalo tool that

More information

Preparation for the test-beam and status of the ToF detector construction

Preparation for the test-beam and status of the ToF detector construction Preparation for the test-beam and status of the ToF detector construction C.Betancourt, A.Korzenev*, P.Mermod HPTPC-ToF meeting May 3, 2018 1 ToF and trigger Channels of the ToF DAQ system are self-triggered

More information

The ATLAS Conditions Database Model for the Muon Spectrometer

The ATLAS Conditions Database Model for the Muon Spectrometer The ATLAS Conditions Database Model for the Muon Spectrometer Monica Verducci 1 INFN Sezione di Roma P.le Aldo Moro 5,00185 Rome, Italy E-mail: monica.verducci@cern.ch on behalf of the ATLAS Muon Collaboration

More information

PrimEx Trigger Simultation Study D. Lawrence Mar. 2002

PrimEx Trigger Simultation Study D. Lawrence Mar. 2002 PRIMEX NOTE 6 PrimEx Trigger Simultation Study D. Lawrence Mar. 2002 Introduction This documents describes a Monte Carlo simulation study for the PrimEx o experiment. The study focused on determining trigger

More information

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips

LHC-B. 60 silicon vertex detector elements. (strips not to scale) [cm] [cm] = 1265 strips LHCb 97-020, TRAC November 25 1997 Comparison of analogue and binary read-out in the silicon strips vertex detector of LHCb. P. Koppenburg 1 Institut de Physique Nucleaire, Universite de Lausanne Abstract

More information

Analogue, Digital and Semi-Digital Energy Reconstruction in the CALICE AHCAL

Analogue, Digital and Semi-Digital Energy Reconstruction in the CALICE AHCAL Analogue, Digital and Semi-Digital Energy Reconstruction in the AHCAL Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany E-mail: coralie.neubueser@desy.de Within the collaboration different calorimeter

More information

MIP Reconstruction Techniques and Minimum Spanning Tree Clustering

MIP Reconstruction Techniques and Minimum Spanning Tree Clustering SLAC-PUB-11359 July 25 MIP Reconstruction Techniques and Minimum Spanning Tree Clustering Wolfgang F. Mader The University of Iowa, 23 Van Allen Hall, 52242 Iowa City, IA The development of a tracking

More information

First Operational Experience from the LHCb Silicon Tracker

First Operational Experience from the LHCb Silicon Tracker First Operational Experience from the LHCb Silicon Tracker 7 th International Hiroshima Symposium on Development and Application of Semiconductor Tracking Devices The LHCb Silicon Tracker Installation

More information

LArTPC Reconstruction Challenges

LArTPC Reconstruction Challenges LArTPC Reconstruction Challenges LArTPC = Liquid Argon Time Projection Chamber Sowjanya Gollapinni (UTK) NuEclipse Workshop August 20 22, 2017 University of Tennessee, Knoxville LArTPC program the big

More information

Direct photon measurements in ALICE. Alexis Mas for the ALICE collaboration

Direct photon measurements in ALICE. Alexis Mas for the ALICE collaboration Direct photon measurements in ALICE Alexis Mas for the ALICE collaboration 1 Outline I - Physics motivations for direct photon measurements II Direct photon measurements in ALICE i - Conversion method

More information

EUDET Telescope Geometry and Resolution Studies

EUDET Telescope Geometry and Resolution Studies EUDET EUDET Telescope Geometry and Resolution Studies A.F.Żarnecki, P.Nieżurawski February 2, 2007 Abstract Construction of EUDET pixel telescope will significantly improve the test beam infrastructure

More information

Deeply Virtual Compton Scattering at Jefferson Lab

Deeply Virtual Compton Scattering at Jefferson Lab Deeply Virtual Compton Scattering at Jefferson Lab June 16-17, 2016 Frederic Georges (PhD student) PhD Supervisor: Carlos Muñoz Camacho Institut de Physique Nucléaire d Orsay CNRS-IN2P3 Université Paris-Sud,

More information

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008

The AMS-02 Anticoincidence Counter. Philip von Doetinchem I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 I. Phys. Inst. B, RWTH Aachen for the AMS-02 Collaboration DPG, Freiburg March 2008 Cosmic Rays in the GeV Range world average SUSY DM KK DM good agreement of data and propagation models, but some unexplained

More information

SoLID GEM Detectors in US

SoLID GEM Detectors in US SoLID GEM Detectors in US Kondo Gnanvo University of Virginia SoLID Collaboration Meeting @ JLab, 08/26/2016 Outline Design Optimization U-V strips readout design Large GEMs for PRad in Hall B Requirements

More information

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE.

THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. Proceedings of the PIC 2012, Štrbské Pleso, Slovakia THE ATLAS INNER DETECTOR OPERATION, DATA QUALITY AND TRACKING PERFORMANCE. E.STANECKA, ON BEHALF OF THE ATLAS COLLABORATION Institute of Nuclear Physics

More information

Overview of the American Detector Models

Overview of the American Detector Models Overview of the American Detector Models Univ. of Oregon The American study groups have investigated two specific models Choosing any particular detector design is a compromise between competing constraints

More information

Adding timing to the VELO

Adding timing to the VELO Summer student project report: Adding timing to the VELO supervisor: Mark Williams Biljana Mitreska Cern Summer Student Internship from June 12 to August 4, 2017 Acknowledgements I would like to thank

More information

TORCH: A large-area detector for precision time-of-flight measurements at LHCb

TORCH: A large-area detector for precision time-of-flight measurements at LHCb TORCH: A large-area detector for precision time-of-flight measurements at LHCb Neville Harnew University of Oxford ON BEHALF OF THE LHCb RICH/TORCH COLLABORATION Outline The LHCb upgrade TORCH concept

More information

Study of t Resolution Function

Study of t Resolution Function Belle-note 383 Study of t Resolution Function Takeo Higuchi and Hiroyasu Tajima Department of Physics, University of Tokyo (January 6, 200) Abstract t resolution function is studied in detail. It is used

More information

Track Reconstruction

Track Reconstruction 4 Track Reconstruction 4 Track Reconstruction The NA57 experimental setup has been designed to measure strange particles. In order to translate the information extracted from the detectors to the characteristics

More information

arxiv: v1 [physics.ins-det] 18 Jan 2011

arxiv: v1 [physics.ins-det] 18 Jan 2011 arxiv:111.3491v1 [physics.ins-det] 18 Jan 11 Alice Alignment, Tracking and Physics Performance Results University of Padova and INFN E-mail: rossia@pd.infn.it for the ALICE Collaboration The ALICE detector

More information

Alignment of the CMS silicon tracker

Alignment of the CMS silicon tracker Journal of Physics: Conference Series Alignment of the CMS silicon tracker To cite this article: Gero Flucke and the CMS Collaboration 22 J. Phys.: Conf. Ser. 368 236 View the article online for updates

More information

The CMS alignment challenge

The CMS alignment challenge The CMS alignment challenge M. Weber a for the CMS Collaboration a I. Physikalisches Institut B, RWTH Aachen, Germany Abstract The CMS tracking detectors are of unprecedented complexity: 66 million pixel

More information

PoS(IHEP-LHC-2011)002

PoS(IHEP-LHC-2011)002 and b-tagging performance in ATLAS Università degli Studi di Milano and INFN Milano E-mail: andrea.favareto@mi.infn.it The ATLAS Inner Detector is designed to provide precision tracking information at

More information

Status of the TORCH time-of-flight detector

Status of the TORCH time-of-flight detector Status of the TORCH time-of-flight detector Neville Harnew University of Oxford (On behalf of the TORCH collaboration : the Universities of Bath, Bristol and Oxford, CERN, and Photek) August 7-9, 2017

More information

Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration

Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration Track reconstruction for the Mu3e experiment based on a novel Multiple Scattering fit Alexandr Kozlinskiy (Mainz, KPH) for the Mu3e collaboration CTD/WIT 2017 @ LAL-Orsay Mu3e Experiment Mu3e Experiment:

More information

Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M.

Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M. UvA-DARE (Digital Academic Repository) Gridpix: TPC development on the right track. The development and characterisation of a TPC with a CMOS pixel chip read out Fransen, M. Link to publication Citation

More information

A LVL2 Zero Suppression Algorithm for TRT Data

A LVL2 Zero Suppression Algorithm for TRT Data A LVL2 Zero Suppression Algorithm for TRT Data R. Scholte,R.Slopsema,B.vanEijk, N. Ellis, J. Vermeulen May 5, 22 Abstract In the ATLAS experiment B-physics studies will be conducted at low and intermediate

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS CR -2008/100 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland 02 December 2008 (v2, 03 December 2008)

More information

Track reconstruction of real cosmic muon events with CMS tracker detector

Track reconstruction of real cosmic muon events with CMS tracker detector Track reconstruction of real cosmic muon events with CMS tracker detector Piergiulio Lenzi a, Chiara Genta a, Boris Mangano b a Università degli Studi di Firenze and Istituto Nazionale di Fisica Nucleare

More information

CMS Alignement and Calibration workflows: lesson learned and future plans

CMS Alignement and Calibration workflows: lesson learned and future plans Available online at www.sciencedirect.com Nuclear and Particle Physics Proceedings 273 275 (2016) 923 928 www.elsevier.com/locate/nppp CMS Alignement and Calibration workflows: lesson learned and future

More information

arxiv: v1 [hep-ex] 7 Jul 2011

arxiv: v1 [hep-ex] 7 Jul 2011 LHCb BEAM-GAS IMAGING RESULTS P. Hopchev, LAPP, IN2P3-CNRS, Chemin de Bellevue, BP110, F-74941, Annecy-le-Vieux For the LHCb Collaboration arxiv:1107.1492v1 [hep-ex] 7 Jul 2011 Abstract The high resolution

More information

b-jet slice performances at L2/EF

b-jet slice performances at L2/EF 20 March 2007 Outline b-jet slice status b-tagging performance Status/Outlook b-jet slice The b-tagging selection is an element of flexibility in the ATLAS HLT framework: it might help to increase acceptance

More information

Full Silicon Tracking Studies for CEPC

Full Silicon Tracking Studies for CEPC Full Silicon Tracking Studies for CEPC Weiming Yao (IHEP/LBNL) for Silicon Tracking Study Group CEPC-SppC Study Group Meeting, September 2-26, Beihang University http://cepc.ihep.ac.cn/ cepc/cepc twiki/index.php/pure

More information

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter

A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 1 3 A Novel Strip Energy Splitting Algorithm for the Fine Granular Readout of a Scintillator Strip Electromagnetic Calorimeter 4 Katsushige Kotera a, Daniel Jeans b, Akiya Miyamoto c, and Tohru Takeshita

More information

Alignment of the CMS Silicon Tracker

Alignment of the CMS Silicon Tracker Alignment of the CMS Silicon Tracker Tapio Lampén 1 on behalf of the CMS collaboration 1 Helsinki Institute of Physics, Helsinki, Finland Tapio.Lampen @ cern.ch 16.5.2013 ACAT2013 Beijing, China page 1

More information

Determination of the aperture of the LHCb VELO RF foil

Determination of the aperture of the LHCb VELO RF foil LHCb-PUB-214-12 April 1, 214 Determination of the aperture of the LHCb VELO RF foil M. Ferro-Luzzi 1, T. Latham 2, C. Wallace 2. 1 CERN, Geneva, Switzerland 2 University of Warwick, United Kingdom LHCb-PUB-214-12

More information

Automated reconstruction of LAr events at Warwick. J.J. Back, G.J. Barker, S.B. Boyd, A.J. Bennieston, B. Morgan, YR

Automated reconstruction of LAr events at Warwick. J.J. Back, G.J. Barker, S.B. Boyd, A.J. Bennieston, B. Morgan, YR Automated reconstruction of LAr events at Warwick J.J. Back, G.J. Barker, S.B. Boyd, A.J. Bennieston, B. Morgan, YR Challenges Single electron, 2 GeV in LAr: Easy 'by-eye' in isolation Challenging for

More information

Simulating the RF Shield for the VELO Upgrade

Simulating the RF Shield for the VELO Upgrade LHCb-PUB-- March 7, Simulating the RF Shield for the VELO Upgrade T. Head, T. Ketel, D. Vieira. Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil European Organization for Nuclear Research

More information

PoS(Vertex 2007)030. Alignment strategy for the ATLAS tracker. Tobias Golling. Lawrence Berkeley National Laboratory (LBNL)

PoS(Vertex 2007)030. Alignment strategy for the ATLAS tracker. Tobias Golling. Lawrence Berkeley National Laboratory (LBNL) Alignment strategy for the ATLAS tracker Lawrence Berkeley National Laboratory (LBNL) E-mail: TFGolling@lbl.gov The ATLAS experiment is a multi-purpose particle detector that will study high-energy particle

More information

A proximity focusing RICH with time-of-flight capabilities

A proximity focusing RICH with time-of-flight capabilities A proximity focusing RICH with time-of-flight capabilities Peter Križan University of Ljubljana and J. Stefan Institute For the Belle Aerogel RICH R&D group 10th Topical Seminar on Innovative Particle

More information

Precision Timing in High Pile-Up and Time-Based Vertex Reconstruction

Precision Timing in High Pile-Up and Time-Based Vertex Reconstruction Precision Timing in High Pile-Up and Time-Based Vertex Reconstruction Cedric Flamant (CERN Summer Student) - Supervisor: Adi Bornheim Division of High Energy Physics, California Institute of Technology,

More information

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. CMS Note. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on CMS information server CMS NOTE 998/4 The Compact Muon Solenoid Experiment CMS Note Mailing address: CMS CERN, CH-2 GENEVA 23, Switzerland 29 July 998 Muon DTBX Chamber Trigger Simulation

More information

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC

Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC Fast pattern recognition with the ATLAS L1Track trigger for the HL-LHC On behalf of the ATLAS Collaboration Uppsala Universitet E-mail: mikael.martensson@cern.ch ATL-DAQ-PROC-2016-034 09/01/2017 A fast

More information

Timing properties of MCP-PMT

Timing properties of MCP-PMT Photon Detector Workshop at Kobe, 27-29 June 27 Timing properties of MCP-PMT - Time resolution - Lifetime - Rate dependence K.Inami (Nagoya university, Japan) Introduction Photon device for TOP counter

More information