Single slit diffraction

Size: px
Start display at page:

Download "Single slit diffraction"

Transcription

1 Single slit diffraction Book page

2 Review double slit Core Assume paths of the two rays are parallel This is a good assumption if D >>> d PD = R 2 R 1 = dsin θ since sin θ = PD d Constructive interference occurs, when PD = nλ nλ = dsin θ n = 0, 1, 2, 3,. Destructive interference occurs when PD = n λ n λ = dsin θ n = 0, 1, 2, 3,

3 Rays are not parallel but converge We can still use the same mathematical approach sin θ = PD d tan θ = y D If θ is small, sin θ ~ tanθ PD d = y D PD = yd D where y = distance between adjacent nodal lines, d = slit separation, D = cgrahamphysics.com distance between 2016 slit and screen

4 PD = nλ For constructive interference nλ = y nd or y D n = nλd d Fringe separation: y = X n+1 X n = λd d d = λd y

5 Requirements Single slit diffraction occurs when a wave is incident on a slit of about the same size as the wavelength The diffraction pattern consists of a series of bright and dark fringes Note Central maxima has twice the angular width of the secondary maxima, each of which have same width Intensity falls significantly intensity of 1 st secondary maxima ~ 5% of I 0 2 ~ 2% 3 ~ 1% No light reaches the center of a minima, but going towards a maxima, the intensity gradually increases I A 2 The narrower the slit width, the cgrahamphysics.com greater the amount 2016 of diffraction

6 The single slit equation A slit maybe considered as a row of n point sources, close together and vibrating in phase, each source producing secondary circular wavelets At each point on the screen, resulting interference will be the sum of the contributions from each of the n point sources, taking into account the phase of each contribution

7 Direction of incident waves When light passes through a narrow gap the range of point sources is restricted to the width of the gap Interference between wavelets causes cancellation in certain directions Consider wavelets arriving straight at the screen Arrive in phase Bright central maximum Constructive interference d D

8 Consider waves arriving at angle θ 1 with PD λ The waves arrive in phase at the slit, but the wavelets leaving the slit at an angle will no longer be in phase This means the top ray travels PD further than bottom ray of λ, the second ray travels PD of λ 2 and so on The difference in path between the top and middle ray is λ 2 destructive interference occurs In this way all wavelets in the top half of the slit will interfere destructively with wavelets from the lower part of the slit When the wavelets reach the screen, they will interfere destructively

9 The first nodal line θ 1 For n = 1 sin θ 1 = λ 2 d 2 = λ d λ = d sinθ 1 equation for minimum at P 1 where d = slit width and θ = angle of PD

10 The second nodal line Consider a wider angle θ 2 with PD 2λ sin θ 2 = 2λ d 2λ = d sin θ 2 mλ = d sin θ m single slit equation for destructive interference

11 Constructive interference Consider waves arriving at an angle θ with PD 3λ 2 Pair rays from bottom third will cancel with rays from middle third, each pair canceling out because PD between them is λ 2

12 Constructive interference PD = λ Rays passing through top third have no matching pairs left to cancel with These reach the screen as maximum: 3λ 2 λ 2 = λ sin θ 1 = 3λ 2 3λ = d sin θ d 2 1 for 1 st order maximum, excluding central maximum

13 Higher order maximum Increasing the angle θ we can create a PD of 5λ 2, 7λ 2,.. up to m λ, m I When the PD is an odd number multiple of λ, higher 2 order maxima are produced m + 1 λ = dsin θ 2 m constructive interference

14 Remember The single slit and the double slit have opposite maxima and minima Double slit: mλ = d sin θ m This is maximum / constructive interference Single slit: mλ = d sin θ m This is minimum / destructive interference

15 Example A slit of width m is illuminated by red light of wavelength 620nm. At what angle does the third order minimum occur? Solution mλ = d sin θ m sin θ = mλ = = d θ = sin =

16 Basic observations d(slit opening)~λ Geometrical shadow Diffraction pattern a) Straight edge b) Single long slit d~3λ c) Circular aperture d) Single long slit d~5λ

17 Intensity of maxima Determined by slit width d Areas of min intensity at sin θ = λ d, 2λ d, 3λ d.. Areas of max intensity at sin θ = 0, 3λ, 5λ, 7λ 2d 2d 2d..

18 Intensity Intensity of light decreases for each successive bright area since more of the n light sources interfere destructively To find the distance of the center point of the diffraction pattern d D tan θ 1 = y 1 D

19 Finding an equation for interference d PD=λ sin θ 1 = PD d = λ d For small angle sin θ~ tan θ = y 1 D For D >>> y y 1 = λ λ= dy 1 D d D where d = slit width, y = distance from central point, D = distance from slit

20 Dark lines - sin θ = nλ d General equation Bright lines - sin θ = n+1 2 λ d for n = 1, 2, 3.. For θ = 0 there is a bright central maximum that is twice as wide as the others The equation λ= dy 1 can be used to D find λ predict dimensions of pattern predict positions of nodal lines

21 Example Light with wavelength 670nm passes through a single slit with width 12μm. Viewed on screen, 30 cm away, find a) how wide is the central maximum in i)degree and ii)cm b) what is the separation of adjacent minima (excluding the pair on either side of the central maximum) Solution A)i) sin θ = nλ 6 = θ = sin = width = 2 x 3.2 = = d ii) sin θ = y D y = D sin θ= 0.30 x sin 3.2 = m ~ 3.4cm B) λ= dy 1 D Dλ y= = d = 1.7cm

22 Note: effect of variations of d and λ Central maxima is exactly twice the width of the separation of adjacent nodal lines Diffraction pattern becomes more noticeable the narrower the slit becomes Narrower slit lots of maxima of nearly same intensity Maxima very closely together Width of pattern in proportion to λ Wavelength inversely with width of slit If slit width is >>> λ, then central maxima is very small

23 Note θ = nλ d minima where n = 1 is the position of first Minima are not actually separated by equal distances However, for values θ < 10 0 it is a good approximation to consider minima to be equally spaced

24 Summary Narrower slit effect more noticeable lots of maxima same intensity closer together To be noticeable λ~d y as λ maxima increases as d y as 1 as d d If d >>> λ than y is very small as D y

25 Circular slits If the slit is not rectangular but circular, we can find the diffraction pattern by using the formula θ = 1.22λ d where d = diameter of aperture θ = in radians The angle θ locates the first dark fringe relative to the central bright region

26 Single slit diffraction with white light A single slit illuminated by white light each component color has a specific λ max and min for each λ will be located at a different angle For a given slit width colors with long λ (red, orange, etc) will diffract more than color with short λ (blue, violet, etc) Resulting diffraction pattern will show all colors of rainbow with blue and violet nearer to central position Red will appear at greater angles

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location.

Interference. Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Interference Electric fields from two different sources at a single location add together. The same is true for magnetic fields at a single location. Thus, interacting electromagnetic waves also add together.

More information

Lecture 39. Chapter 37 Diffraction

Lecture 39. Chapter 37 Diffraction Lecture 39 Chapter 37 Diffraction Interference Review Combining waves from small number of coherent sources double-slit experiment with slit width much smaller than wavelength of the light Diffraction

More information

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich

LECTURE 12 INTERFERENCE OF LIGHT. Instructor: Kazumi Tolich LECTURE 12 INTERFERENCE OF LIGHT Instructor: Kazumi Tolich Lecture 12 2 17.2 The interference of light Young s double-slit experiment Analyzing double-slit interference 17.3 The diffraction grating Spectroscopy

More information

Young s Double Slit Experiment

Young s Double Slit Experiment Young s Double Slit Experiment Light as a Wave? If light behaves like a wave, an experiment similar to a ripple tank using two light sources should reveal bright areas (constructive interference) and dark

More information

Interference and Diffraction of Light

Interference and Diffraction of Light Name Date Time to Complete h m Partner Course/ Section / Grade Interference and Diffraction of Light Reflection by mirrors and refraction by prisms and lenses can be analyzed using the simple ray model

More information

22.4. (a) (b) (c) (d)

22.4. (a) (b) (c) (d) mλl 22.2. Because ym = increasing λ and L increases the fringe spacing. Increasing d decreases the fringe d spacing. Submerging the experiment in water decreases λ and decreases the fringe spacing. So

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 9-2 SINGLE-SLIT DIFFRACTION Essential Idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately the same

More information

Chapter 8: Physical Optics

Chapter 8: Physical Optics Chapter 8: Physical Optics Whether light is a particle or a wave had puzzled physicists for centuries. In this chapter, we only analyze light as a wave using basic optical concepts such as interference

More information

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch )

Physics 272 Lecture 27 Interference (Ch ) Diffraction (Ch ) Physics 272 Lecture 27 Interference (Ch 35.4-5) Diffraction (Ch 36.1-3) Thin Film Interference 1 2 n 0 =1 (air) t n 1 (thin film) n 2 Get two waves by reflection off of two different interfaces. Ray 2

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level 3 Physics: Demonstrate understanding of Waves Waves Behaviour - Answers In 03, AS 953 replaced AS 9050. The Mess that is NCEA Assessment Schedules. In AS 9050 there was an Evidence column with the

More information

College Physics 150. Chapter 25 Interference and Diffraction

College Physics 150. Chapter 25 Interference and Diffraction College Physics 50 Chapter 5 Interference and Diffraction Constructive and Destructive Interference The Michelson Interferometer Thin Films Young s Double Slit Experiment Gratings Diffraction Resolution

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level 3 Physics: Demonstrate understanding of Waves Waves Behaviour - Answers In 203, AS 9523 replaced AS 90520. The Mess that is NCEA Assessment Schedules. In AS 90520 there was an Evidence column with

More information

Interference & Diffraction

Interference & Diffraction Electromagnetism & Light Interference & Diffraction https://youtu.be/iuv6hy6zsd0?t=2m17s Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141?

More information

CHAPTER 26 INTERFERENCE AND DIFFRACTION

CHAPTER 26 INTERFERENCE AND DIFFRACTION CHAPTER 26 INTERFERENCE AND DIFFRACTION INTERFERENCE CONSTRUCTIVE DESTRUCTIVE YOUNG S EXPERIMENT THIN FILMS NEWTON S RINGS DIFFRACTION SINGLE SLIT MULTIPLE SLITS RESOLVING POWER 1 IN PHASE 180 0 OUT OF

More information

Single Slit Diffraction *

Single Slit Diffraction * OpenStax-CNX module: m42515 1 Single Slit Diffraction * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 Discuss the single slit diraction

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 27 Chapter 33 sec. 7-8 Fall 2017 Semester Professor Koltick Clicker Question Bright light of wavelength 585 nm is incident perpendicularly on a soap film (n =

More information

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit.

Diffraction. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Introduction: Diffraction is bending of waves around an obstacle (barrier) or spreading of waves passing through a narrow slit. Diffraction amount depends on λ/a proportion If a >> λ diffraction is negligible

More information

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1

Lecture 6: Waves Review and Examples PLEASE REVIEW ON YOUR OWN. Lecture 6, p. 1 Lecture 6: Waves Review and Examples PLEASE REVEW ON YOUR OWN Lecture 6, p. 1 Single-Slit Diffraction (from L4) Slit of width a. Where are the minima? Use Huygens principle: treat each point across the

More information

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a)

22.1. Visualize: Please refer to Figure Ex22.1. Solve: (a) 22.. Visualize: Please refer to Figure Ex22.. Solve: (a) (b) The initial light pattern is a double-slit interference pattern. It is centered behind the midpoint of the slits. The slight decrease in intensity

More information

Activity 9.1 The Diffraction Grating

Activity 9.1 The Diffraction Grating PHY385H1F Introductory Optics Practicals Day 9 Diffraction November 29, 2010 Please work in a team of 3 or 4 students. All members should find a way to contribute. Two members have a particular role, and

More information

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38

The liquid s index of refraction is. v liquid = nm = = 460 nm 1.38 HMWK 5 Ch 17: P 6, 11, 30, 31, 34, 42, 50, 56, 58, 60 Ch 18: P 7, 16, 22, 27, 28, 30, 51, 52, 59, 61 Ch. 17 P17.6. Prepare: The laser beam is an electromagnetic wave that travels with the speed of light.

More information

Diffraction Challenge Problem Solutions

Diffraction Challenge Problem Solutions Diffraction Challenge Problem Solutions Problem 1: Measuring the Wavelength of Laser Light Suppose you shine a red laser through a pair of narrow slits (a = 40 μm) separated by a known distance and allow

More information

Final Exam and End Material Test Friday, May 12, 10:00-12:00

Final Exam and End Material Test Friday, May 12, 10:00-12:00 Final Exam and End Material Test Friday, May 12, 10:00-12:00 Test rooms: Instructor Sections Room Dr. Hale F, H 104 Physics Dr. Kurter B, N 125 BCH Dr. Madison K, M B-10 Bertelsmeyer Dr. Parris J St. Pats

More information

Wave Optics. April 9, 2014 Chapter 34 1

Wave Optics. April 9, 2014 Chapter 34 1 Wave Optics April 9, 2014 Chapter 34 1 Announcements! Remainder of this week: Wave Optics! Next week: Last of biweekly exams, then relativity! Last week: Review of entire course, no exam! Final exam Wednesday,

More information

Physics 202 Homework 9

Physics 202 Homework 9 Physics 202 Homework 9 May 29, 2013 1. A sheet that is made of plastic (n = 1.60) covers one slit of a double slit 488 nm (see Figure 1). When the double slit is illuminated by monochromatic light (wavelength

More information

Chapter 4 - Diffraction

Chapter 4 - Diffraction Diffraction is the phenomenon that occurs when a wave interacts with an obstacle. David J. Starling Penn State Hazleton PHYS 214 When a wave interacts with an obstacle, the waves spread out and interfere.

More information

Chapter 25. Wave Optics

Chapter 25. Wave Optics Chapter 25 Wave Optics Interference Light waves interfere with each other much like mechanical waves do All interference associated with light waves arises when the electromagnetic fields that constitute

More information

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings

Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction Diffraction is the bending of waves around small obstacles and the spreading out of waves past small openings Diffraction by Pinhead When λ the opening, max diffraction occurs When λ < opening

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits

Class 34. Diffraction Grating. Adding sources. Adding sources. Adding sources, II. Adding sources, II. Adding slits Class Adding sources Diffraction Grating What happens to the interference pattern when we add more sources? Let's start by switching from two sources d apart to three sources d apart. Do we still get maxima

More information

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction

Physics 2102 Jonathan Dowling. Lecture 29. Ch. 36: Diffraction Physics 2102 Jonathan Dowling Lecture 29 Ch. 36: Diffraction Things You Should Learn from This Lecture 1. When light passes through a small slit, is spreads out and produces a diffraction pattern, showing

More information

Experiment 1: Diffraction from a Single Slit

Experiment 1: Diffraction from a Single Slit 012-05880D Slit Accessory Experiment 1: Diffraction from a Single Slit Purpose Theory EQUIPMENT REQUIRED track and from the Basic Optics System (OS-8515) Diode Laser (OS-8525) Single Slit Disk (OS-8523)

More information

ConcepTest PowerPoints

ConcepTest PowerPoints ConcepTest PowerPoints Chapter 24 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS TSOKOS LESSON 4-7 DIFFRACTION Assessment Statements AHL Topic 11.3. and SL Option A-4 Diffraction: 11.3.1. Sketch the variation with angle of diffraction

More information

Topic 9: Wave phenomena - AHL 9.2 Single-slit diffraction

Topic 9: Wave phenomena - AHL 9.2 Single-slit diffraction Topic 9.2 is an extension of Topic 4.4. Both single and the double-slit diffraction were considered in 4.4. Essential idea: Single-slit diffraction occurs when a wave is incident upon a slit of approximately

More information

College Physics B - PHY2054C

College Physics B - PHY2054C Young College - PHY2054C Wave Optics: 10/29/2014 My Office Hours: Tuesday 10:00 AM - Noon 206 Keen Building Outline Young 1 2 3 Young 4 5 Assume a thin soap film rests on a flat glass surface. Young Young

More information

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE

PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE PHYSICS 1040L LAB LAB 7: DIFFRACTION & INTERFERENCE Object: To investigate the diffraction and interference of light, Apparatus: Lasers, optical bench, single and double slits. screen and mounts. Theory:

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Electromagnetism & Light. Interference & Diffraction

Electromagnetism & Light. Interference & Diffraction Electromagnetism & Light Interference & Diffraction Your opinion is very important to us. What study material would you recommend for future classes of Phys140/141? A. SmartPhysics alone B. SmartPhysics

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

Diffraction at a single slit and double slit Measurement of the diameter of a hair

Diffraction at a single slit and double slit Measurement of the diameter of a hair Diffraction at a single slit and double slit Measurement of the diameter of a hair AREEJ AL JARB Background... 3 Objects of the experiments 4 Principles Single slit... 4 Double slit.. 6 Setup. 7 Procedure

More information

PHY132 Introduction to Physics II Class 5 Outline:

PHY132 Introduction to Physics II Class 5 Outline: PHY132 Introduction to Physics II Class 5 Outline: Ch. 22, sections 22.1-22.4 (Note we are skipping sections 22.5 and 22.6 in this course) Light and Optics Double-Slit Interference The Diffraction Grating

More information

Diffraction: Propagation of wave based on Huygens s principle.

Diffraction: Propagation of wave based on Huygens s principle. Diffraction: In addition to interference, waves also exhibit another property diffraction, which is the bending of waves as they pass by some objects or through an aperture. The phenomenon of diffraction

More information

Diffraction. Factors that affect Diffraction

Diffraction. Factors that affect Diffraction Diffraction What is one common property the four images share? Diffraction: Factors that affect Diffraction TELJR Publications 2017 1 Young s Experiment AIM: Does light have properties of a particle? Or

More information

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 36. Diffraction. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 36 Diffraction Copyright 36-1 Single-Slit Diffraction Learning Objectives 36.01 Describe the diffraction of light waves by a narrow opening and an edge, and also describe the resulting interference

More information

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions

Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) Solutions Physics 1C, Summer 2011 (Session 1) Practice Midterm 2 (50+4 points) s Problem 1 (5x2 = 10 points) Label the following statements as True or False, with a one- or two-sentence explanation for why you chose

More information

Chapter 35 &36 Physical Optics

Chapter 35 &36 Physical Optics Chapter 35 &36 Physical Optics Physical Optics Phase Difference & Coherence Thin Film Interference 2-Slit Interference Single Slit Interference Diffraction Patterns Diffraction Grating Diffraction & Resolution

More information

mywbut.com Diffraction

mywbut.com Diffraction Diffraction If an opaque obstacle (or aperture) is placed between a source of light and screen, a sufficiently distinct shadow of opaque (or an illuminated aperture) is obtained on the screen.this shows

More information

Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction

Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction Fluids, Thermodynamics, Waves, & Optics Optics Lab 9 Interference and Diffraction Lana Sheridan De Anza College Jun 13, 2018 Overview Purpose Theory interference from two coherent light sources diffraction

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition)

PH 222-3A Fall Diffraction Lectures Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) PH 222-3A Fall 2012 Diffraction Lectures 28-29 Chapter 36 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) 1 Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through

More information

25-1 Interference from Two Sources

25-1 Interference from Two Sources 25-1 Interference from Two Sources In this chapter, our focus will be on the wave behavior of light, and on how two or more light waves interfere. However, the same concepts apply to sound waves, and other

More information

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics

Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Unit 5.C Physical Optics Essential Fundamentals of Physical Optics Early Booklet E.C.: + 1 Unit 5.C Hwk. Pts.: / 25 Unit 5.C Lab Pts.: / 20 Late, Incomplete, No Work, No Units Fees? Y / N 1. Light reflects

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Wave Optics The wave nature of light is needed to explain various phenomena Interference Diffraction Polarization The particle nature of light was the basis for ray (geometric) optics

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Interference of Light

Interference of Light Lab 11. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe

WAVE SUPERPOSITION. Challenging MCQ questions by The Physics Cafe. Compiled and selected by The Physics Cafe WVE SUPERPOSITION hallenging MQ questions by The Physics afe ompiled and selected by The Physics afe 1 Two coherent monochromatic waves of equal amplitude are brought together to form an interference pattern

More information

Physics 228 Today: Diffraction, diffraction grating

Physics 228 Today: Diffraction, diffraction grating Physics 228 Today: Diffraction, diffraction grating Website: Sakai 01:750:228 or www.physics.rutgers.edu/ugrad/228 Diffraction is a further expansion of the idea of interference. We expand from two sources

More information

Chapter 36 Diffraction

Chapter 36 Diffraction Chapter 36 Diffraction In Chapter 35, we saw how light beams passing through different slits can interfere with each other and how a beam after passing through a single slit flares diffracts in Young's

More information

Chapter 38 Wave Optics (II)

Chapter 38 Wave Optics (II) Chapter 38 Wave Optics (II) Initiation: Young s ideas on light were daring and imaginative, but he did not provide rigorous mathematical theory and, more importantly, he is arrogant. Progress: Fresnel,

More information

Laboratory 11: Interference of Light Prelab

Laboratory 11: Interference of Light Prelab Phys 132L Fall 2018 Laboratory 11: Interference of Light Prelab 1 Diffraction grating Light with wavelength 560 nm is incident on a diffraction grating with slit spacing 2.0 10 6 m. Determinetheangles

More information

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 33 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 33 Lecture RANDALL D. KNIGHT Chapter 33 Wave Optics IN THIS CHAPTER, you will learn about and apply the wave model of light. Slide

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter The Wave Nature of Light - Interference and Di raction Name: Lab Partner: Section:. Purpose This experiment will demonstrate that light can be considered as a wave. If light is a wave, then interference

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics Diffraction Huygen s principle requires that the waves spread out after they pass through slits This spreading out of light from its initial line of travel is called diffraction

More information

Single Slit Diffraction

Single Slit Diffraction Name: Date: PC1142 Physics II Single Slit Diffraction 5 Laboratory Worksheet Part A: Qualitative Observation of Single Slit Diffraction Pattern L = a 2y 0.20 mm 0.02 mm Data Table 1 Question A-1: Describe

More information

Lecture 41: WED 29 APR

Lecture 41: WED 29 APR Physics 2102 Jonathan Dowling Lecture 41: WED 29 APR Ch. 36: Diffraction PHYS 2102-2 FINAL 5:30-7:30PM FRI 08 MAY COATES 143 1/2 ON NEW MATERIAL 1/2 ON OLD MATERIAL Old Formula Sheet: http://www.phys.lsu.edu/classes/

More information

PHYSICS - CLUTCH CH 32: WAVE OPTICS.

PHYSICS - CLUTCH CH 32: WAVE OPTICS. !! www.clutchprep.com CONCEPT: DIFFRACTION Remember! Light travels in a straight line so long as it isn t disturbed - This allows light to be described as RAYS A common way to disturb light is to have

More information

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light

To see how a sharp edge or an aperture affect light. To analyze single-slit diffraction and calculate the intensity of the light Diffraction Goals for lecture To see how a sharp edge or an aperture affect light To analyze single-slit diffraction and calculate the intensity of the light To investigate the effect on light of many

More information

Lab 8. Interference of Light

Lab 8. Interference of Light Lab 8. Interference of Light Goals To observe the interference patterns for laser light passing through a single narrow slit, through two closely spaced slits, and through multiple closely spaced slits,

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Presented By:- Abhishek Chandra, Abhishek Singh, Akash Gupta, Abhishek Pandey, Amit Tiwari B.Sc.:-IIIrd Year

Presented By:- Abhishek Chandra, Abhishek Singh, Akash Gupta, Abhishek Pandey, Amit Tiwari B.Sc.:-IIIrd Year Diffraction Grating Presented By:- Abhishek Chandra, Abhishek Singh, Akash Gupta, Abhishek Pandey, Amit Tiwari B.Sc.:-IIIrd Year DIFFRACTION The Phenomenon of bending of light round the corners of an obstacle

More information

Diffraction and Interference of Plane Light Waves

Diffraction and Interference of Plane Light Waves PHY 92 Diffraction and Interference of Plane Light Waves Diffraction and Interference of Plane Light Waves Introduction In this experiment you will become familiar with diffraction patterns created when

More information

Interference of Light

Interference of Light Interference of Light Review: Principle of Superposition When two or more waves interact they interfere. Wave interference is governed by the principle of superposition. The superposition principle says

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

Diffraction and Interference

Diffraction and Interference Diffraction and Interference Kyle Weigand, Mark Hillstrom Abstract: We measure the patterns produced by a CW laser near 650 nm passing through one and two slit apertures with a detector mounted on a linear

More information

Chapter 24 The Wave Nature of Light

Chapter 24 The Wave Nature of Light Chapter 24 The Wave Nature of Light 24.1 Waves Versus Particles; Huygens Principle and Diffraction Huygens principle: Every point on a wave front acts as a point source; the wavefront as it develops is

More information

14 Chapter. Interference and Diffraction

14 Chapter. Interference and Diffraction 14 Chapter Interference and Diffraction 14.1 Superposition of Waves... 14-14.1.1 Interference Conditions for Light Sources... 14-4 14. Young s Double-Slit Experiment... 14-4 Example 14.1: Double-Slit Experiment...

More information

The interference of light

The interference of light The interference of light For a long time there was a dispute about what light was. Was it made up of particles, or waves? In 1801, Thomas Young carried out a famous experiment (Young s double slit) that

More information

Problem Solving 10: Double-Slit Interference

Problem Solving 10: Double-Slit Interference MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of hysics roblem Solving 10: Double-Slit Interference OBJECTIVES 1. To introduce the concept of interference. 2. To find the conditions for constructive

More information

Physics Midterm I

Physics Midterm I Phys121 - February 6, 2009 1 Physics 121 - Midterm I Last Name First Name Student Number Signature Tutorial T.A. (circle one): Ricky Chu Firuz Demir Maysam Emadi Alireza Jojjati Answer ALL 10 questions.

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

5 10:00 AM 12:00 PM 1420 BPS

5 10:00 AM 12:00 PM 1420 BPS Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) I ve assigned 22.62 as a hand-in

More information

Optics Wave Behavior in Optics Diffraction

Optics Wave Behavior in Optics Diffraction Optics Wave Behavior in Optics Diffraction Lana Sheridan De Anza College June 15, 2018 Last time Interference of light: the Double-Slit experiment multiple slit interference diffraction gratings Overview

More information

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction

Physics 2c Lecture 25. Chapter 37 Interference & Diffraction Physics 2c Lecture 25 Chapter 37 Interference & Diffraction Outlook for rest of quarter Today: finish chapter 37 Tomorrow & Friday: E&M waves (Chapter 34) Next Monday, June 4 th : Quiz 8 on Chapter 37

More information

Introduction. Part I: Measuring the Wavelength of Light. Experiment 8: Wave Optics. Physics 11B

Introduction. Part I: Measuring the Wavelength of Light. Experiment 8: Wave Optics. Physics 11B Physics 11B Experiment 8: Wave Optics Introduction Equipment: In Part I you use a machinist rule, a laser, and a lab clamp on a stand to hold the laser at a grazing angle to the bench top. In Part II you

More information

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena

DIFFRACTION 4.1 DIFFRACTION Difference between Interference and Diffraction Classification Of Diffraction Phenomena 4.1 DIFFRACTION Suppose a light wave incident on a slit AB of sufficient width b, as shown in Figure 1. According to concept of rectilinear propagation of light the region A B on the screen should be uniformly

More information

Midterm II Physics 9B Summer 2002 Session I

Midterm II Physics 9B Summer 2002 Session I Midterm II Physics 9B Summer 00 Session I Name: Last 4 digits of ID: Total Score: ) Two converging lenses, L and L, are placed on an optical bench, 6 cm apart. L has a 0 cm focal length and is placed to

More information

Polarisation and Diffraction

Polarisation and Diffraction 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Polarisation and Diffraction Polarization Polarization is a characteristic of all transverse waves. Oscillation which take places

More information

COHERENCE AND INTERFERENCE

COHERENCE AND INTERFERENCE COHERENCE AND INTERFERENCE - An interference experiment makes use of coherent waves. The phase shift (Δφ tot ) between the two coherent waves that interfere at any point of screen (where one observes the

More information

Chapter 37. Wave Optics

Chapter 37. Wave Optics Chapter 37 Wave Optics Wave Optics Wave optics is a study concerned with phenomena that cannot be adequately explained by geometric (ray) optics. Sometimes called physical optics These phenomena include:

More information

Chapter 24. Wave Optics

Chapter 24. Wave Optics Chapter 24 Wave Optics hitt1 An upright object is located a distance from a convex mirror that is less than the mirror's focal length. The image formed by the mirror is (1) virtual, upright, and larger

More information

Chapter 15. Light Waves

Chapter 15. Light Waves Chapter 15 Light Waves Chapter 15 is finished, but is not in camera-ready format. All diagrams are missing, but here are some excerpts from the text with omissions indicated by... After 15.1, read 15.2

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves

PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves PHY 222 Lab 11 Interference and Diffraction Patterns Investigating interference and diffraction of light waves Print Your Name Print Your Partners' Names Instructions April 17, 2015 Before lab, read the

More information

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page)

1. (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) . (25pts) Answer the following questions. Justify your answers. (Use the space provided below and the next page) a). An object (an arrow) is placed as shown in front of each of the following optical instruments.

More information