A taste of perfect graphs (continued)

Size: px
Start display at page:

Download "A taste of perfect graphs (continued)"

Transcription

1 A taste of perfect graphs (continued) Recall two theorems from last class characterizing perfect graphs (and that we observed that the α ω theorem implied the Perfect Graph Theorem). Perfect Graph Theorem. A graph G is perfect if and only if G is perfect. Theorem. A graph G is perfect if and only if every induced subgraph H of G satisfies the inequalilty V (H) α(h)ω(h). We also proved a lemma regarding minimally imperfect graphs that plays a key role in the proof of the α ω theorem. Lemma. Let G be a minimally imperfect graph. Then G contains α(g)ω(g)+1 independent sets S 0, S 1,..., S α(g)ω(g) and α(g)ω(g)+1 cliques C 0, C 1,..., C α(g)ω(g) such that (a) each vertex of G belongs to precisely α(g) of the independent sets S i, (b) each clique C i has ω(g) vertices, (c) C i S i = for 0 i α(g)ω(g), (d) and C i S j = 1 for 0 i < j α(g)ω(g). Math Prof. Kindred - Lecture 24 Page 1

2 Proof of α ω theorem. ( ) Suppose that G is perfect, and let H be an induced subgraph of G. We have ω(h) = χ(h) V (H) α(h) = V (H) α(h)ω(h). ( ) We prove this direction by showing that if G is minimally imperfect, then V (G) α(g)ω(g) + 1. Let n = V (G). Consider the families {S i : 0 i α(g)ω(g)} and {C i : 0 i α(g)ω(g)} of independent sets and cliques described in the previous lemma. Let M S and M C be the n (α(g)ω(g) + 1) incidence matrices of these families. It follows from the lemma that M T S M C = J I. Notice that J I is a nonsingular matrix (with inverse 1 α(g)ω(g) J I). Thus, it must be a full rank matrix, i.e., We have rank(j I) = α(g)ω(g) + 1. α(g)ω(g) + 1 = rank(j I) = rank(m T S M C ) min(rank(m S ), rank(m C )) rank(m S) or rank(m C ) n, where the last inequality follows from the fact that the two matrices have n rows. Thus, we have shown that n α(g)ω(g) + 1. If a graph is perfect, then so are all of its induced subgraphs. This means that we can characterize perfect graphs by describing all minimally imperfect graphs. Math Prof. Kindred - Lecture 24 Page 2

3 Berge (1961) conjectured that the odd cycles (of length at least 5) and their complements were the only minimally imperfect graphs. This conjecture was known as the Strong Perfect Graph Conjecture (and is printed as such in your text). But it was proven in 2002 by Chudnovsky and colleagues. Strong Perfect Graph Theorem. A graph is perfect if and only if it contains no odd cycle of length at least five or its complement as an induced subgraph. The proof of this theorem was a major achievement, as much effort had been expended over the years on attempts to settle the Strong Perfect Graph Conjecture. Furthermore, a polynomial-time recognition algorithm for perfect graphs was developed shortly thereafter by Chudnovsky, et al., (2005). Math Prof. Kindred - Lecture 24 Page 3

4 Chordal graphs Definition A chord of a cycle C is an edge not in C whose endpoints lie in C. A chordless cycle in a graph G is a cycle of length at least 4 in G that has no chord (that is, the cycle is an induced subgraph). G is a chordal graph if it is simple and has no chordless cycle. Being chordal is a hereditary property, inherited by all the induced subgraphs of a chordal graph. Recall the notion of an x, y-cut. Definition Let x, y be nonadjacent vertices of G. An x, y-cut, or x, y-separator, is a set of vertices S such that x and y are in different components of G S. A minimal x, y-cut is an x, y-cut S such that no proper subset of S is an x, y-cut. (Note: a minimal x, y-cut is not necessarily the smallest x, y-cut in G.) Theorem. Let a and b be nonadjacent vertices of a connected chordal graph G, and let S be a minimal a, b-cut. Then S is a clique. Proof. Let S be such a cut, and let G[A], G[B] be components of G S with a A and b B. Every vertex in v S must be adjacent to some vertex of A and to some vertex of B otherwise, S would not be minimal. If S only contains one vertex, then we are done (it is clearly a clique). So assume u, v S. We claim that u v. Suppose not. Then let P be a shortest u, v-path all of whose internal vertices are in A, so P = u a 1 a 2 a s v. Math Prof. Kindred - Lecture 24 Page 4

5 Likewise, let Q be a shortest u, v-path all of whose internal vertices are in B, so Q = u b 1 b 2 b t v. a 1 u b a s A v S b t B Then the union of P and Q is an induced cycle of length at least 4. Hence, it must be that u v for any pair of vertices u, v S, thereby implying that S is a clique. Note that trees are clearly chordal graphs since they are acyclic. It turns out that chordal graphs, in general, have a treelike structure composed of complete graphs (just as trees are composed of copies of K 2.) In this spirit, we generalize the notion of a leaf in a tree to that of a simplicial vertex. Definition A vertex of G is simplicial if its neighborhood in G is a clique. We prove two results for simplicial vertices and chordal graphs that are analogous to the following facts for trees and leaves: If T is a tree with at least 2 vertices, then T has a leaf. If v is a leaf of T, then T v is also a tree. Theorem. If G is a (nonempty) chordal graph, then G has a simplicial vertex. Furthermore, if G is not a complete graph, then G has two nonadjacent simplicial vertices. Math Prof. Kindred - Lecture 24 Page 5

Small Survey on Perfect Graphs

Small Survey on Perfect Graphs Small Survey on Perfect Graphs Michele Alberti ENS Lyon December 8, 2010 Abstract This is a small survey on the exciting world of Perfect Graphs. We will see when a graph is perfect and which are families

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1

Definition For vertices u, v V (G), the distance from u to v, denoted d(u, v), in G is the length of a shortest u, v-path. 1 Graph fundamentals Bipartite graph characterization Lemma. If a graph contains an odd closed walk, then it contains an odd cycle. Proof strategy: Consider a shortest closed odd walk W. If W is not a cycle,

More information

Vertex coloring, chromatic number

Vertex coloring, chromatic number Vertex coloring, chromatic number A k-coloring of a graph G is a labeling f : V (G) S, where S = k. The labels are called colors; the vertices of one color form a color class. A k-coloring is proper if

More information

The Structure of Bull-Free Perfect Graphs

The Structure of Bull-Free Perfect Graphs The Structure of Bull-Free Perfect Graphs Maria Chudnovsky and Irena Penev Columbia University, New York, NY 10027 USA May 18, 2012 Abstract The bull is a graph consisting of a triangle and two vertex-disjoint

More information

9 About Intersection Graphs

9 About Intersection Graphs 9 About Intersection Graphs Since this lecture we focus on selected detailed topics in Graph theory that are close to your teacher s heart... The first selected topic is that of intersection graphs, i.e.

More information

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras

Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras Algorithm design in Perfect Graphs N.S. Narayanaswamy IIT Madras What is it to be Perfect? Introduced by Claude Berge in early 1960s Coloring number and clique number are one and the same for all induced

More information

Characterizations of graph classes by forbidden configurations

Characterizations of graph classes by forbidden configurations Characterizations of graph classes by forbidden configurations Zdeněk Dvořák September 14, 2015 We consider graph classes that can be described by excluding some fixed configurations. Let us give some

More information

Colouring graphs with no odd holes

Colouring graphs with no odd holes Colouring graphs with no odd holes Paul Seymour (Princeton) joint with Alex Scott (Oxford) 1 / 17 Chromatic number χ(g): minimum number of colours needed to colour G. 2 / 17 Chromatic number χ(g): minimum

More information

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models.

These notes present some properties of chordal graphs, a set of undirected graphs that are important for undirected graphical models. Undirected Graphical Models: Chordal Graphs, Decomposable Graphs, Junction Trees, and Factorizations Peter Bartlett. October 2003. These notes present some properties of chordal graphs, a set of undirected

More information

Network flows and Menger s theorem

Network flows and Menger s theorem Network flows and Menger s theorem Recall... Theorem (max flow, min cut strong duality). Let G be a network. The maximum value of a flow equals the minimum capacity of a cut. We prove this strong duality

More information

THE LEAFAGE OF A CHORDAL GRAPH

THE LEAFAGE OF A CHORDAL GRAPH Discussiones Mathematicae Graph Theory 18 (1998 ) 23 48 THE LEAFAGE OF A CHORDAL GRAPH In-Jen Lin National Ocean University, Taipei, Taiwan Terry A. McKee 1 Wright State University, Dayton, OH 45435-0001,

More information

How many colors are needed to color a map?

How many colors are needed to color a map? How many colors are needed to color a map? Is 4 always enough? Two relevant concepts How many colors do we need to color a map so neighboring countries get different colors? Simplifying assumption (not

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 2 Solutions February 7, 2013 Introduction to Graph Theory, West Section 1.2: 26, 38, 42 Section 1.3: 14, 18 Section 2.1: 26, 29, 30 DO NOT RE-DISTRIBUTE

More information

Graphs and Discrete Structures

Graphs and Discrete Structures Graphs and Discrete Structures Nicolas Bousquet Louis Esperet Fall 2018 Abstract Brief summary of the first and second course. É 1 Chromatic number, independence number and clique number The chromatic

More information

Chordal Graphs: Theory and Algorithms

Chordal Graphs: Theory and Algorithms Chordal Graphs: Theory and Algorithms 1 Chordal graphs Chordal graph : Every cycle of four or more vertices has a chord in it, i.e. there is an edge between two non consecutive vertices of the cycle. Also

More information

if for every induced subgraph H of G the chromatic number of H is equal to the largest size of a clique in H. The triangulated graphs constitute a wid

if for every induced subgraph H of G the chromatic number of H is equal to the largest size of a clique in H. The triangulated graphs constitute a wid Slightly Triangulated Graphs Are Perfect Frederic Maire e-mail : frm@ccr.jussieu.fr Case 189 Equipe Combinatoire Universite Paris 6, France December 21, 1995 Abstract A graph is triangulated if it has

More information

MATH 350 GRAPH THEORY & COMBINATORICS. Contents

MATH 350 GRAPH THEORY & COMBINATORICS. Contents MATH 350 GRAPH THEORY & COMBINATORICS PROF. SERGEY NORIN, FALL 2013 Contents 1. Basic definitions 1 2. Connectivity 2 3. Trees 3 4. Spanning Trees 3 5. Shortest paths 4 6. Eulerian & Hamiltonian cycles

More information

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H.

Abstract. A graph G is perfect if for every induced subgraph H of G, the chromatic number of H is equal to the size of the largest clique of H. Abstract We discuss a class of graphs called perfect graphs. After defining them and getting intuition with a few simple examples (and one less simple example), we present a proof of the Weak Perfect Graph

More information

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition.

Matching Algorithms. Proof. If a bipartite graph has a perfect matching, then it is easy to see that the right hand side is a necessary condition. 18.433 Combinatorial Optimization Matching Algorithms September 9,14,16 Lecturer: Santosh Vempala Given a graph G = (V, E), a matching M is a set of edges with the property that no two of the edges have

More information

EE512 Graphical Models Fall 2009

EE512 Graphical Models Fall 2009 EE512 Graphical Models Fall 2009 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Fall Quarter, 2009 http://ssli.ee.washington.edu/~bilmes/ee512fa09 Lecture 11 -

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Abstract We present two parameterized algorithms for the Minimum Fill-In problem, also known as Chordal

More information

Fast Skew Partition Recognition

Fast Skew Partition Recognition Fast Skew Partition Recognition William S. Kennedy 1, and Bruce Reed 2, 1 Department of Mathematics and Statistics, McGill University, Montréal, Canada, H3A2K6 kennedy@math.mcgill.ca 2 School of Computer

More information

Faster parameterized algorithms for Minimum Fill-In

Faster parameterized algorithms for Minimum Fill-In Faster parameterized algorithms for Minimum Fill-In Hans L. Bodlaender Pinar Heggernes Yngve Villanger Technical Report UU-CS-2008-042 December 2008 Department of Information and Computing Sciences Utrecht

More information

K 4 C 5. Figure 4.5: Some well known family of graphs

K 4 C 5. Figure 4.5: Some well known family of graphs 08 CHAPTER. TOPICS IN CLASSICAL GRAPH THEORY K, K K K, K K, K K, K C C C C 6 6 P P P P P. Graph Operations Figure.: Some well known family of graphs A graph Y = (V,E ) is said to be a subgraph of a graph

More information

On a perfect problem

On a perfect problem R u t c o r Research R e p o r t On a perfect problem Igor E. Zverovich a RRR 26-2005, September 2005 RUTCOR Rutgers Center for Operations Research Rutgers University 640 Bartholomew Road Piscataway, New

More information

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version.

Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version. Claw-Free Graphs With Strongly Perfect Complements. Fractional and Integral Version. Part I. Basic graphs Maria Chudnovsky Department of Industrial Engineering and Operations Research Columbia University,

More information

Block Duplicate Graphs and a Hierarchy of Chordal Graphs

Block Duplicate Graphs and a Hierarchy of Chordal Graphs Block Duplicate Graphs and a Hierarchy of Chordal Graphs Martin Charles Golumbic Uri N. Peled August 18, 1998 Revised October 24, 2000 and March 15, 2001 Abstract A block graph is a graph whose blocks

More information

Math 776 Homework. Austin Mohr. June 15, Theorem 1.1. The following assertions are equivalent for a graph T : (i) T is a tree;

Math 776 Homework. Austin Mohr. June 15, Theorem 1.1. The following assertions are equivalent for a graph T : (i) T is a tree; Math 776 Homework Austin Mohr June 15, 2012 1 Problem 1 Theorem 1.1. The following assertions are equivalent for a graph T : (i) T is a tree; (ii) Any two vertices of T are linked by a unique path in T

More information

Chordal graphs MPRI

Chordal graphs MPRI Chordal graphs MPRI 2017 2018 Michel Habib habib@irif.fr http://www.irif.fr/~habib Sophie Germain, septembre 2017 Schedule Chordal graphs Representation of chordal graphs LBFS and chordal graphs More structural

More information

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture.

Mock Exam. Juanjo Rué Discrete Mathematics II, Winter Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Mock Exam Juanjo Rué Discrete Mathematics II, Winter 2013-2014 Deadline: 14th January 2014 (Tuesday) by 10:00, at the end of the lecture. Problem 1 (2 points): 1. State the definition of perfect graph

More information

9 Connectivity. Contents. 9.1 Vertex Connectivity

9 Connectivity. Contents. 9.1 Vertex Connectivity 9 Connectivity Contents 9.1 Vertex Connectivity.............................. 205 Connectivity and Local Connectivity............... 206 Vertex Cuts and Menger s Theorem................. 207 9.2 The Fan

More information

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv

Bayesian Networks, Winter Yoav Haimovitch & Ariel Raviv Bayesian Networks, Winter 2009-2010 Yoav Haimovitch & Ariel Raviv 1 Chordal Graph Warm up Theorem 7 Perfect Vertex Elimination Scheme Maximal cliques Tree Bibliography M.C.Golumbic Algorithmic Graph Theory

More information

Rigidity, connectivity and graph decompositions

Rigidity, connectivity and graph decompositions First Prev Next Last Rigidity, connectivity and graph decompositions Brigitte Servatius Herman Servatius Worcester Polytechnic Institute Page 1 of 100 First Prev Next Last Page 2 of 100 We say that a framework

More information

Skew partitions in perfect graphs

Skew partitions in perfect graphs Discrete Applied Mathematics 156 (2008) 1150 1156 www.elsevier.com/locate/dam Skew partitions in perfect graphs Bruce Reed a,b a McGill University, Montreal, Canada b CNRS, France Received 14 June 2005;

More information

Vertex 3-colorability of claw-free graphs

Vertex 3-colorability of claw-free graphs Algorithmic Operations Research Vol.2 (27) 5 2 Vertex 3-colorability of claw-free graphs Marcin Kamiński a Vadim Lozin a a RUTCOR - Rutgers University Center for Operations Research, 64 Bartholomew Road,

More information

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path.

Theorem 3.1 (Berge) A matching M in G is maximum if and only if there is no M- augmenting path. 3 Matchings Hall s Theorem Matching: A matching in G is a subset M E(G) so that no edge in M is a loop, and no two edges in M are incident with a common vertex. A matching M is maximal if there is no matching

More information

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs

Approximation slides 1. An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 1 An optimal polynomial algorithm for the Vertex Cover and matching in Bipartite graphs Approximation slides 2 Linear independence A collection of row vectors {v T i } are independent

More information

Excluding induced subgraphs

Excluding induced subgraphs Excluding induced subgraphs Maria Chudnovsky and Paul Seymour Abstract 1 Introduction Given two graphs, G and H, we say that H is an induced subgraph of G if V (H) V (G), and two vertices of H are adjacent

More information

This article was originally published in a journal published by Elsevier, and the attached copy is provided by Elsevier for the author s benefit and for the benefit of the author s institution, for non-commercial

More information

Bipartite Roots of Graphs

Bipartite Roots of Graphs Bipartite Roots of Graphs Lap Chi Lau Department of Computer Science University of Toronto Graph H is a root of graph G if there exists a positive integer k such that x and y are adjacent in G if and only

More information

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings

On the Relationships between Zero Forcing Numbers and Certain Graph Coverings On the Relationships between Zero Forcing Numbers and Certain Graph Coverings Fatemeh Alinaghipour Taklimi, Shaun Fallat 1,, Karen Meagher 2 Department of Mathematics and Statistics, University of Regina,

More information

Diskrete Mathematik und Optimierung

Diskrete Mathematik und Optimierung Diskrete Mathematik und Optimierung Stephan Dominique Andres Winfried Hochstättler: A strong perfect digraph theorem Technical Report feu-dmo026.11 Contact: dominique.andres@fernuni-hagen.de, winfried.hochstaettler@fernuni-hagen.de

More information

6. Lecture notes on matroid intersection

6. Lecture notes on matroid intersection Massachusetts Institute of Technology 18.453: Combinatorial Optimization Michel X. Goemans May 2, 2017 6. Lecture notes on matroid intersection One nice feature about matroids is that a simple greedy algorithm

More information

Fundamental Properties of Graphs

Fundamental Properties of Graphs Chapter three In many real-life situations we need to know how robust a graph that represents a certain network is, how edges or vertices can be removed without completely destroying the overall connectivity,

More information

1 Matchings with Tutte s Theorem

1 Matchings with Tutte s Theorem 1 Matchings with Tutte s Theorem Last week we saw a fairly strong necessary criterion for a graph to have a perfect matching. Today we see that this condition is in fact sufficient. Theorem 1 (Tutte, 47).

More information

Lecture 4: Walks, Trails, Paths and Connectivity

Lecture 4: Walks, Trails, Paths and Connectivity Lecture 4: Walks, Trails, Paths and Connectivity Rosa Orellana Math 38 April 6, 2015 Graph Decompositions Def: A decomposition of a graph is a list of subgraphs such that each edge appears in exactly one

More information

Tree Spanners of Simple Graphs

Tree Spanners of Simple Graphs Tree Spanners of Simple Graphs by Ioannis E. Papoutsakis A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science University

More information

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees

Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Contracting Chordal Graphs and Bipartite Graphs to Paths and Trees Pinar Heggernes Pim van t Hof Benjamin Léveque Christophe Paul Abstract We study the following two graph modification problems: given

More information

Minimal comparability completions of arbitrary graphs

Minimal comparability completions of arbitrary graphs Minimal comparability completions of arbitrary graphs Pinar Heggernes Federico Mancini Charis Papadopoulos Abstract A transitive orientation of an undirected graph is an assignment of directions to its

More information

arxiv: v2 [math.co] 25 May 2016

arxiv: v2 [math.co] 25 May 2016 arxiv:1605.06638v2 [math.co] 25 May 2016 A note on a conjecture of Gyárfás Ryan R. Martin Abstract This note proves that, given one member, T, of a particular family of radius-three trees, every radius-two,

More information

RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS

RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS SIAM J. DISCRETE MATH. Vol. 21, No. 3, pp. 573 591 c 2007 Society for Industrial and Applied Mathematics RECOGNIZING CHORDAL PROBE GRAPHS AND CYCLE-BICOLORABLE GRAPHS ANNE BERRY, MARTIN CHARLES GOLUMBIC,

More information

Characterizations of Trees

Characterizations of Trees Characterizations of Trees Lemma Every tree with at least two vertices has at least two leaves. Proof. 1. A connected graph with at least two vertices has an edge. 2. In an acyclic graph, an end point

More information

Independence Number and Cut-Vertices

Independence Number and Cut-Vertices Independence Number and Cut-Vertices Ryan Pepper University of Houston Downtown, Houston, Texas 7700 pepperr@uhd.edu Abstract We show that for any connected graph G, α(g) C(G) +1, where α(g) is the independence

More information

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009

Problem Set 3. MATH 776, Fall 2009, Mohr. November 30, 2009 Problem Set 3 MATH 776, Fall 009, Mohr November 30, 009 1 Problem Proposition 1.1. Adding a new edge to a maximal planar graph of order at least 6 always produces both a T K 5 and a T K 3,3 subgraph. Proof.

More information

Dirac-type characterizations of graphs without long chordless cycles

Dirac-type characterizations of graphs without long chordless cycles Dirac-type characterizations of graphs without long chordless cycles Vašek Chvátal Department of Computer Science Rutgers University chvatal@cs.rutgers.edu Irena Rusu LIFO Université de Orléans irusu@lifo.univ-orleans.fr

More information

Tolerance Representations of Graphs in Trees Nancy Eaton. Tolerance Representations of Graphs in Trees Lecture I. Tree Representations of Graphs

Tolerance Representations of Graphs in Trees Nancy Eaton. Tolerance Representations of Graphs in Trees Lecture I. Tree Representations of Graphs Tolerance Representations of Graphs in Trees Nancy Eaton Tolerance Representations of Graphs in Trees Lecture I Tree Representations of Graphs Tolerance Representations Some background A conjecture on

More information

On Sequential Topogenic Graphs

On Sequential Topogenic Graphs Int. J. Contemp. Math. Sciences, Vol. 5, 2010, no. 36, 1799-1805 On Sequential Topogenic Graphs Bindhu K. Thomas, K. A. Germina and Jisha Elizabath Joy Research Center & PG Department of Mathematics Mary

More information

MAT 145: PROBLEM SET 6

MAT 145: PROBLEM SET 6 MAT 145: PROBLEM SET 6 DUE TO FRIDAY MAR 8 Abstract. This problem set corresponds to the eighth week of the Combinatorics Course in the Winter Quarter 2019. It was posted online on Friday Mar 1 and is

More information

On Covering a Graph Optimally with Induced Subgraphs

On Covering a Graph Optimally with Induced Subgraphs On Covering a Graph Optimally with Induced Subgraphs Shripad Thite April 1, 006 Abstract We consider the problem of covering a graph with a given number of induced subgraphs so that the maximum number

More information

ON SOME CONJECTURES OF GRIGGS AND GRAFFITI

ON SOME CONJECTURES OF GRIGGS AND GRAFFITI ON SOME CONJECTURES OF GRIGGS AND GRAFFITI ERMELINDA DELAVINA, SIEMION FAJTLOWICZ, BILL WALLER Abstract. We discuss a conjecture of J. R. Griggs relating the maximum number of leaves in a spanning tree

More information

Exercise set 2 Solutions

Exercise set 2 Solutions Exercise set 2 Solutions Let H and H be the two components of T e and let F E(T ) consist of the edges of T with one endpoint in V (H), the other in V (H ) Since T is connected, F Furthermore, since T

More information

Excluding induced subgraphs

Excluding induced subgraphs Excluding induced subgraphs Maria Chudnovsky and Paul Seymour Abstract In this paper we survey some results concerning the structure and properties of families of graphs defined by excluding certain induced

More information

arxiv: v3 [cs.ds] 26 Sep 2013

arxiv: v3 [cs.ds] 26 Sep 2013 Preprocessing Subgraph and Minor Problems: When Does a Small Vertex Cover Help?, Fedor V. Fomin a, Bart M. P. Jansen a,, Micha l Pilipczuk a a Department of Informatics, University of Bergen. PO Box 7803,

More information

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes

Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes Minimal Dominating Sets in Graphs: Enumeration, Combinatorial Bounds and Graph Classes J.-F. Couturier 1 P. Heggernes 2 D. Kratsch 1 P. van t Hof 2 1 LITA Université de Lorraine F-57045 Metz France 2 University

More information

On the correspondence between tree representations of chordal and dually chordal graphs

On the correspondence between tree representations of chordal and dually chordal graphs On the correspondence between tree representations of chordal and dually chordal graphs Pablo De Caria, Marisa Gutierrez CONICET/ Departamento de Matemática, Universidad Nacional de La Plata, Calle 50

More information

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs

Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 18, no. 4, pp. 603 631 (2014) DOI: 10.7155/jgaa.00339 Complexity of Disjoint Π-Vertex Deletion for Disconnected Forbidden Subgraphs Jiong

More information

1 Matching in Non-Bipartite Graphs

1 Matching in Non-Bipartite Graphs CS 369P: Polyhedral techniques in combinatorial optimization Instructor: Jan Vondrák Lecture date: September 30, 2010 Scribe: David Tobin 1 Matching in Non-Bipartite Graphs There are several differences

More information

The External Network Problem

The External Network Problem The External Network Problem Jan van den Heuvel and Matthew Johnson CDAM Research Report LSE-CDAM-2004-15 December 2004 Abstract The connectivity of a communications network can often be enhanced if the

More information

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths

Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Partitions and Packings of Complete Geometric Graphs with Plane Spanning Double Stars and Paths Master Thesis Patrick Schnider July 25, 2015 Advisors: Prof. Dr. Emo Welzl, Manuel Wettstein Department of

More information

Chordal deletion is fixed-parameter tractable

Chordal deletion is fixed-parameter tractable Chordal deletion is fixed-parameter tractable Dániel Marx Institut für Informatik, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany. dmarx@informatik.hu-berlin.de Abstract. It

More information

NOTE ON MINIMALLY k-connected GRAPHS

NOTE ON MINIMALLY k-connected GRAPHS NOTE ON MINIMALLY k-connected GRAPHS R. Rama a, Suresh Badarla a a Department of Mathematics, Indian Institute of Technology, Chennai, India ABSTRACT A k-tree is either a complete graph on (k+1) vertices

More information

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN

CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN CLAW-FREE 3-CONNECTED P 11 -FREE GRAPHS ARE HAMILTONIAN TOMASZ LUCZAK AND FLORIAN PFENDER Abstract. We show that every 3-connected claw-free graph which contains no induced copy of P 11 is hamiltonian.

More information

arxiv: v1 [cs.ds] 8 Jan 2019

arxiv: v1 [cs.ds] 8 Jan 2019 Subset Feedback Vertex Set in Chordal and Split Graphs Geevarghese Philip 1, Varun Rajan 2, Saket Saurabh 3,4, and Prafullkumar Tale 5 arxiv:1901.02209v1 [cs.ds] 8 Jan 2019 1 Chennai Mathematical Institute,

More information

Line Graphs and Circulants

Line Graphs and Circulants Line Graphs and Circulants Jason Brown and Richard Hoshino Department of Mathematics and Statistics Dalhousie University Halifax, Nova Scotia, Canada B3H 3J5 Abstract The line graph of G, denoted L(G),

More information

5 Matchings in Bipartite Graphs and Their Applications

5 Matchings in Bipartite Graphs and Their Applications 5 Matchings in Bipartite Graphs and Their Applications 5.1 Matchings Definition 5.1 A matching M in a graph G is a set of edges of G, none of which is a loop, such that no two edges in M have a common

More information

On Cyclically Orientable Graphs

On Cyclically Orientable Graphs DIMACS Technical Report 2005-08 February 2005 On Cyclically Orientable Graphs by Vladimir Gurvich RUTCOR, Rutgers University 640 Bartholomew Road Piscataway NJ 08854-8003 gurvich@rutcor.rutgers.edu DIMACS

More information

Number Theory and Graph Theory

Number Theory and Graph Theory 1 Number Theory and Graph Theory Chapter 6 Basic concepts and definitions of graph theory By A. Satyanarayana Reddy Department of Mathematics Shiv Nadar University Uttar Pradesh, India E-mail: satya8118@gmail.com

More information

Edge colorings. Definition The minimum k such that G has a proper k-edge-coloring is called the edge chromatic number of G and is denoted

Edge colorings. Definition The minimum k such that G has a proper k-edge-coloring is called the edge chromatic number of G and is denoted Edge colorings Edge coloring problems often arise when objects being scheduled are pairs of underlying elements, e.g., a pair of teams that play each other, a pair consisting of a teacher and a class,

More information

Ton Kloks and Yue-Li Wang. Advances in Graph Algorithms. October 10, y X z

Ton Kloks and Yue-Li Wang. Advances in Graph Algorithms. October 10, y X z Ton Kloks and Yue-Li Wang Advances in Graph Algorithms October 10, 2013 x Z Y < y X z

More information

Preprocessing for treewidth

Preprocessing for treewidth Preprocessing for treewidth Bodlaender, H.L.; Jansen, B.M.P.; Kratsch, S. Published in: arxiv Published: 21/04/2011 Please check the document version of this publication: A submitted manuscript is the

More information

Topics in Combinatorics. Dorottya Sziráki Gergő Nemes

Topics in Combinatorics. Dorottya Sziráki Gergő Nemes Topics in Combinatorics Dorottya Sziráki Gergő Nemes ii Preface These notes are based on the lectures of the course titled Topics in Combinatorics, which were given by Ervin Győri in the winter trimester

More information

arxiv: v1 [cs.dm] 30 Apr 2014

arxiv: v1 [cs.dm] 30 Apr 2014 The stable set polytope of (P 6,triangle)-free graphs and new facet-inducing graphs Raffaele Mosca arxiv:1404.7623v1 [cs.dm] 30 Apr 2014 May 1, 2014 Abstract The stable set polytope of a graph G, denoted

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge.

Adjacent: Two distinct vertices u, v are adjacent if there is an edge with ends u, v. In this case we let uv denote such an edge. 1 Graph Basics What is a graph? Graph: a graph G consists of a set of vertices, denoted V (G), a set of edges, denoted E(G), and a relation called incidence so that each edge is incident with either one

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

Finding a -regular Supergraph of Minimum Order

Finding a -regular Supergraph of Minimum Order Finding a -regular Supergraph of Minimum Order Hans L. Bodlaender a, Richard B. Tan a,b and Jan van Leeuwen a a Department of Computer Science Utrecht University Padualaan 14, 3584 CH Utrecht The Netherlands

More information

Treewidth and graph minors

Treewidth and graph minors Treewidth and graph minors Lectures 9 and 10, December 29, 2011, January 5, 2012 We shall touch upon the theory of Graph Minors by Robertson and Seymour. This theory gives a very general condition under

More information

Lecture Notes on Graph Theory

Lecture Notes on Graph Theory Lecture Notes on Graph Theory Vadim Lozin 1 Introductory concepts A graph G = (V, E) consists of two finite sets V and E. The elements of V are called the vertices and the elements of E the edges of G.

More information

Paths, Flowers and Vertex Cover

Paths, Flowers and Vertex Cover Paths, Flowers and Vertex Cover Venkatesh Raman, M.S. Ramanujan, and Saket Saurabh Presenting: Hen Sender 1 Introduction 2 Abstract. It is well known that in a bipartite (and more generally in a Konig)

More information

Deciding k-colorability of P 5 -free graphs in polynomial time

Deciding k-colorability of P 5 -free graphs in polynomial time Deciding k-colorability of P 5 -free graphs in polynomial time Chính T. Hoàng Marcin Kamiński Vadim Lozin Joe Sawada Xiao Shu April 16, 2008 Abstract The problem of computing the chromatic number of a

More information

A Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs

A Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs Journal of Graph Algorithms and Applications http://jgaa.info/ vol. 21, no. 3, pp. 341 352 (2017) DOI: 10.7155/jgaa.00419 A Necessary Condition and a Sufficient Condition for Pairwise Compatibility Graphs

More information

arxiv: v1 [cs.ds] 14 Dec 2018

arxiv: v1 [cs.ds] 14 Dec 2018 Graph classes and forbidden patterns on three vertices Laurent Feuilloley 1,2,3 and Michel Habib 1,3 arxiv:1812.05913v1 [cs.ds] 14 Dec 2018 1 IRIF, UMR 8243 CNRS & Paris Diderot University, Paris, France

More information

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2

Graph Theory S 1 I 2 I 1 S 2 I 1 I 2 Graph Theory S I I S S I I S Graphs Definition A graph G is a pair consisting of a vertex set V (G), and an edge set E(G) ( ) V (G). x and y are the endpoints of edge e = {x, y}. They are called adjacent

More information

Some new results on circle graphs. Guillermo Durán 1

Some new results on circle graphs. Guillermo Durán 1 Some new results on circle graphs Guillermo Durán 1 Departamento de Ingeniería Industrial, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile gduran@dii.uchile.cl Departamento

More information

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs

Graphs and Network Flows IE411. Lecture 21. Dr. Ted Ralphs Graphs and Network Flows IE411 Lecture 21 Dr. Ted Ralphs IE411 Lecture 21 1 Combinatorial Optimization and Network Flows In general, most combinatorial optimization and integer programming problems are

More information

Parameterized coloring problems on chordal graphs

Parameterized coloring problems on chordal graphs Parameterized coloring problems on chordal graphs Dániel Marx Department of Computer Science and Information Theory, Budapest University of Technology and Economics Budapest, H-1521, Hungary dmarx@cs.bme.hu

More information

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour.

Some Upper Bounds for Signed Star Domination Number of Graphs. S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour. Some Upper Bounds for Signed Star Domination Number of Graphs S. Akbari, A. Norouzi-Fard, A. Rezaei, R. Rotabi, S. Sabour Abstract Let G be a graph with the vertex set V (G) and edge set E(G). A function

More information

V10 Metabolic networks - Graph connectivity

V10 Metabolic networks - Graph connectivity V10 Metabolic networks - Graph connectivity Graph connectivity is related to analyzing biological networks for - finding cliques - edge betweenness - modular decomposition that have been or will be covered

More information

Chapter 8 Independence

Chapter 8 Independence Chapter 8 Independence Section 8.1 Vertex Independence and Coverings Next, we consider a problem that strikes close to home for us all, final exams. At the end of each term, students are required to take

More information