Matrix-Rechnung I ' z =... Universität Frankfurt

Size: px
Start display at page:

Download "Matrix-Rechnung I ' z =... Universität Frankfurt"

Transcription

1 Matrix-Rechnung I x =Ax = = ' ' ' ' ' z y x a a a a w z y x

2 Matrix-Rechnung II Matrixmultiplikation ist assoziativ, abernicht kommutativ. OpenGL multipliziert Matrizen von rechts: ( A ( Ax) ) 1 x' = AAAx = A Merke: Die zuletzt definierte Transformation wird als erste auf das Objekt angewendet.

3 Transformation der Normalen I Normalenform der Tangential-Ebene: nx d = ( ) T nx ny nz x d = T ( a b c d) bezeichnet eine Ebene mit: T ( a b c d ) x = für alle Punkte der Ebene und T ( a b c ) Normalenvektor

4 Transformation der Normalen II n T x = n T Ex = n T A 1 Ax = ( ) ) T A 1 T n ( Ax) =

5 Modell-Transformation Translation = z y x t t t z y x x'

6 Modell-Transformation Rotation um die x-achse Θ Θ Θ Θ = 1 1 cos sin sin cos 1 z y x x'

7 Modell-Transformation Skalierung = 1 1 z y x s s s z y x x'

8 Transformationen I void glmatrixmode (GLenum mode) mode: GL_MODELVIEW, GL_PROJECTION,

9 Transformationen II void glloadidentity(void) void glloadmatrix{fd} (const TYPE *m) m[]={m 11,m 21,, m 12, m 22,, m 44 } void gltranslate{fd} (TYPE x, TYPE y, TYPE z) void glrotate{fd} (TYPE angle, TYPE x, TYPE y, TYPE z) void glscale{fd} (TYPE x, TYPE y, TYPE z)

10 Matrix-Stack I void glpushmatrix (void) void glpopmatrix (void)

11 Matrix-Stack II Beispiel

12 Matrix-Stack III glmatrixmode(gl_modelview); // Reset the modelview matrix glloadidentity(); // Translate the whole scene out and into view // This is the initial viewing transformation gltranslatef(.f,.f, -2.f); glcolor3ub(255,, ); // Red Nucleus glutsolidsphere(1.f, 15, 15); glcolor3ub(255,255,); // Yellow Electrons // First Electron Orbit glpushmatrix(); // Save viewing transformation glrotatef(felect1,.f, 1.f,.f); gltranslatef(9.f,.f,.f); glutwiresphere(6.f, 15, 15); // Rotate by angle of revolution // Translate out from origin to orbit distance // Draw the electron glpopmatrix(); // Restore the viewing transformation

13 // Second Electron Orbit glpushmatrix(); glrotatef(45.f,.f,.f, 1.f); glrotatef(felect1,.f, 1.f,.f); gltranslatef(-7.f,.f,.f); glutwiresphere(6.f, 15, 15); glpopmatrix(); Matrix-Stack IV // Third Electron Orbit glpushmatrix(); glrotatef(36.f-45.f,.f,.f, 1.f); glrotatef(felect1,.f, 1.f,.f); gltranslatef(.f,.f, 6.f); glutwiresphere(6.f, 15, 15); glpopmatrix(); // Increment the angle of revolution felect1 += 1.f; if(felect1 > 36.f) felect1 =.f;

14 Viewing Pipeline

15 Viewing Kamera-Analogie:

16 Viewing Transformation OpenGL: Augpunkt im Ursprung Blickrichtung entlang der negativen z-achse Viewing Transformation: void glulookat( GLdouble eye_x, GLdouble eye_y, GLdouble eye_z, GLdouble center_x, GLdouble center_y, GLdouble center_z, GLdouble up_x, GLdouble up_y, GLdouble up_z)

17 Projektions-Transformation I Parallel-Projektion

18 Parallel-Projektion I View/Clipping Volume

19 Parallel-Projektion II glmatrixmode(gl_projection); glloadidentity(); void glortho( GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, Gldouble near, Gldouble far )

20 Projektions-Transformation II Perspektivische Projektion

21 Perspektivische Projektion I View/Clipping Volume

22 Perspektivische Projektion II void glfrustum (GLdouble left, GLdouble right, GLdouble bottom, GLdouble top, GLdouble near, GLdouble far)

23 Perspektivische Projektion III void gluperspective (GLdouble fovy, GLdouble aspect_ratio, GLdouble near, GLdouble far)

24 Viewport Transformation void glviewport(glint x, Glint y, GLsizei width, GLsizei height)

25 void reshape (int w, int h) { if (h==) h=1; WindowWidth = w; WindowHeight = h; Viewing Putting it all together I glmatrixmode (GL_PROJECTION); glloadidentity (); gluperspective(3., (GLfloat)w / (GLfloat)h, 1.5, 2); glmatrixmode (GL_MODELVIEW); }

26 void display(void) { glclear (GL_COLOR_BUFFER_BIT); Viewing Putting it all together II glviewport (,, (GLsizei) WindowWidth/2, (GLsizei) WindowHeight/2); //Set Viewport 1 glcolor3f (1., 1., 1.); glloadidentity (); /* clear the modeling matrix */ // viewing transformation glulookat (vx, 3., vz,.,.,.,., 1.,.); glscalef (1., 2., 1.); /* modeling transformation */ glutwirecube (1.); //Set Viewport 2 glviewport (, WindowHeight/2, (GLsizei) WindowWidth/2, (GLsizei) WindowHeight/2); glcolor3f (1., 1.,.); glloadidentity (); /* clear the modeling matrix */ //viewing transformation glulookat (vx,., vz,.,.,.,., 1.,.); glscalef (1., 2., 1.); /* modeling transformation */ glutwirecube (1.);

27 Viewing Putting it all together III //Set Viewport 3 glviewport (WindowWidth/2, WindowHeight/4, (GLsizei) WindowWidth/2, (GLsizei) WindowHeight/2); glcolor3f (., 1., 1.); glloadidentity (); /* clear the modeling matrix */ /* viewing transformation */ glulookat (vx, 5., vz,.,.,.,., 1.,.); glscalef (1., 3., 1.); /* modeling transformation */ glutwirecube (1.); } glutswapbuffers();

28 Viewing Reverse Transformation int gluunproject (GLdouble winx, GLdouble winy, GLdouble winz, const GLdouble modelmatrix[16], const GLdouble projmatrix[16], const Glint viewport[4], GLdouble *worldx, GLdouble *worldy, GLdouble *worldz )

29 Reverse Transformation Beispiel I void reshape(int w, int h) { glviewport (,, (GLsizei) w, (GLsizei) h); glmatrixmode(gl_projection); glloadidentity(); gluperspective (45., (GLfloat) w/(glfloat) h, 1., 1.); glmatrixmode(gl_modelview); glloadidentity(); }

30 Reverse Transformation Beispiel II void mouse(int button, int state, int x, int y) { GLint viewport[4]; GLdouble mvmatrix[16], projmatrix[16]; GLint realy; /* OpenGL y coordinate position is different from MS Windows coordinate */ GLdouble wx, wy, wz; /* returned world x, y, z coords */ switch (button) { case GLUT_LEFT_BUTTON: if (state == GLUT_DOWN) { glgetintegerv (GL_VIEWPORT, viewport); glgetdoublev (GL_MODELVIEW_MATRIX, mvmatrix); glgetdoublev (GL_PROJECTION_MATRIX, projmatrix); /* note viewport[3] is height of window in pixels */ realy = viewport[3] - (GLint) y - 1; printf ("Coordinates at cursor are (%4d, %4d)\n", x, realy); gluunproject ((GLdouble) x, (GLdouble) realy,., mvmatrix, projmatrix, viewport, &wx, &wy, &wz); printf ("World coords at z=. are (%f, %f, %f)\n", wx, wy, wz); gluunproject ((GLdouble) x, (GLdouble) realy, 1., mvmatrix, projmatrix, viewport, &wx, &wy, &wz); printf ("World coords at z=1. are (%f, %f, %f)\n", wx, wy, wz); } break;...

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Introduction to OpenGL General OpenGL Introduction An Example OpenGL Program Drawing with OpenGL Transformations Animation and Depth Buffering

More information

Viewing Transformation

Viewing Transformation CS38: Computer Graphics Viewing Transformation Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Know camera setup parameters Understand viewing and projection processes

More information

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010)

Lecture 5: Viewing. CSE Computer Graphics (Fall 2010) Lecture 5: Viewing CSE 40166 Computer Graphics (Fall 2010) Review: from 3D world to 2D pixels 1. Transformations are represented by matrix multiplication. o Modeling o Viewing o Projection 2. Clipping

More information

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1

1 Transformations. Chapter 1. Transformations. Department of Computer Science and Engineering 1-1 Transformations 1-1 Transformations are used within the entire viewing pipeline: Projection from world to view coordinate system View modifications: Panning Zooming Rotation 1-2 Transformations can also

More information

OpenGL Transformations

OpenGL Transformations OpenGL Transformations R. J. Renka Department of Computer Science & Engineering University of North Texas 02/18/2014 Introduction The most essential aspect of OpenGL is the vertex pipeline described in

More information

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics.

Getting Started. Overview (1): Getting Started (1): Getting Started (2): Getting Started (3): COSC 4431/5331 Computer Graphics. Overview (1): Getting Started Setting up OpenGL/GLUT on Windows/Visual Studio COSC 4431/5331 Computer Graphics Thursday January 22, 2004 Overview Introduction Camera analogy Matrix operations and OpenGL

More information

CS380: Computer Graphics Viewing Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS380: Computer Graphics Viewing Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL: CS38: Computer Graphics Viewing Transformation Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Class Objectives Know camera setup parameters Understand viewing and projection processes

More information

Introduction to OpenGL

Introduction to OpenGL Introduction to OpenGL Tutorial 1: Create a window and draw a 2D square Introduction: The aim of the first tutorial is to introduce you to the magic world of graphics based on the OpenGL and GLUT APIs.

More information

Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013

Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013 Spring 2013, CS 112 Programming Assignment 2 Submission Due: April 26, 2013 PROJECT GOAL: Write a restricted OpenGL library. The goal of the project is to compute all the transformation matrices with your

More information

12. Selection. - The objects selected are specified by hit records in the selection buffer. E.R. Bachmann & P.L. McDowell MV 4202 Page 1 of 13

12. Selection. - The objects selected are specified by hit records in the selection buffer. E.R. Bachmann & P.L. McDowell MV 4202 Page 1 of 13 12. Selection Picking is a method of capturing mouse clicks at some window position and determining what objects are beneath it. The basic idea is to enter the selection rendering mode with a small viewing

More information

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy

3D Graphics Pipeline II Clipping. Instructor Stephen J. Guy 3D Graphics Pipeline II Clipping Instructor Stephen J. Guy 3D Rendering Pipeline (for direct illumination) 3D Geometric Primitives 3D Model Primitives Modeling Transformation 3D World Coordinates Lighting

More information

Order of Transformations

Order of Transformations Order of Transformations Because the same transformation is applied to many vertices, the cost of forming a matrix M=ABCD is not significant compared to the cost of computing Mp for many vertices p Note

More information

Lecture 4 of 41. Lab 1a: OpenGL Basics

Lecture 4 of 41. Lab 1a: OpenGL Basics Lab 1a: OpenGL Basics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://snipurl.com/1y5gc Course web site: http://www.kddresearch.org/courses/cis636 Instructor

More information

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky

7. 3D Viewing. Projection: why is projection necessary? CS Dept, Univ of Kentucky 7. 3D Viewing Projection: why is projection necessary? 1 7. 3D Viewing Projection: why is projection necessary? Because the display surface is 2D 2 7.1 Projections Perspective projection 3 7.1 Projections

More information

Transformation, Input and Interaction. Hanyang University

Transformation, Input and Interaction. Hanyang University Transformation, Input and Interaction Hanyang University Transformation, projection, viewing Pipeline of transformations Standard sequence of transforms Cornell CS4620 Fall 2008 Lecture 8 3 2008 Steve

More information

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: OpenGL Transformation Li Zhang Spring 2008 CS559: Computer Graphics Lecture 2: OpenGL Transformation Li Zhang Spring 28 Today Transformation in OpenGL Reading Chapter 3 Last time Primitive Details glpolygonmode(glenum face, GLenum mode); face:

More information

Computer Graphics. Chapter 10 Three-Dimensional Viewing

Computer Graphics. Chapter 10 Three-Dimensional Viewing Computer Graphics Chapter 10 Three-Dimensional Viewing Chapter 10 Three-Dimensional Viewing Part I. Overview of 3D Viewing Concept 3D Viewing Pipeline vs. OpenGL Pipeline 3D Viewing-Coordinate Parameters

More information

1 (Practice 1) Introduction to OpenGL

1 (Practice 1) Introduction to OpenGL 1 (Practice 1) Introduction to OpenGL This first practical is intended to get you used to OpenGL command. It is mostly a copy/paste work. Try to do it smartly by tweaking and messing around with parameters,

More information

C OMPUTER G RAPHICS Thursday

C OMPUTER G RAPHICS Thursday C OMPUTER G RAPHICS 2017.04.27 Thursday Professor s original PPT http://calab.hanyang.ac.kr/ Courses Computer Graphics practice3.pdf TA s current PPT not uploaded yet GRAPHICS PIPELINE What is Graphics

More information

CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011

CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011 CIS 636 Interactive Computer Graphics CIS 736 Computer Graphics Spring 2011 Lab 1a of 7 OpenGL Setup and Basics Fri 28 Jan 2011 Part 1a (#1 5) due: Thu 03 Feb 2011 (before midnight) The purpose of this

More information

Fachhochschule Regensburg, Germany, February 15, 2017

Fachhochschule Regensburg, Germany, February 15, 2017 s Operations Fachhochschule Regensburg, Germany, February 15, 2017 s Motivating Example s Operations To take a photograph of a scene: Set up your tripod and point camera at the scene (Viewing ) Position

More information

CS 591B Lecture 9: The OpenGL Rendering Pipeline

CS 591B Lecture 9: The OpenGL Rendering Pipeline CS 591B Lecture 9: The OpenGL Rendering Pipeline 3D Polygon Rendering Many applications use rendering of 3D polygons with direct illumination Spring 2007 Rui Wang 3D Polygon Rendering Many applications

More information

Advanced Computer Graphics (CS & SE )

Advanced Computer Graphics (CS & SE ) Advanced Computer Graphics (CS & SE 233.420) Topics Covered Picking Pipeline Viewing and Transformations Rendering Modes OpenGL can render in one of three modes selected by glrendermode(mode) GL_RENDER

More information

Precept 2 Aleksey Boyko February 18, 2011

Precept 2 Aleksey Boyko February 18, 2011 Precept 2 Aleksey Boyko February 18, 2011 Getting started Initialization Drawing Transformations Cameras Animation Input Keyboard Mouse Joystick? Textures Lights Programmable pipeline elements (shaders)

More information

OpenGL for dummies hello.c #include int main(int argc, char** argv) { glutinit(&argc, argv); glutinitdisplaymode (GLUT_SINGLE GLUT_RGB); glutinitwindowsize (250, 250); glutinitwindowposition

More information

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou

Introduction to OpenGL Transformations, Viewing and Lighting. Ali Bigdelou Introduction to OpenGL Transformations, Viewing and Lighting Ali Bigdelou Modeling From Points to Polygonal Objects Vertices (points) are positioned in the virtual 3D scene Connect points to form polygons

More information

part 3 Martin Samuelčík Room I4

part 3 Martin Samuelčík  Room I4 art 3 Martin Sauelčík htt://www.sccg.sk/~sauelcik Roo I4 Vertex coordinates Fro inut coordinates to window coordinates Coordinates are always related to coordinates syste, sace, frae Transforing vertex

More information

// double buffering and RGB glutinitdisplaymode(glut_double GLUT_RGBA); // your own initializations

// double buffering and RGB glutinitdisplaymode(glut_double GLUT_RGBA); // your own initializations #include int main(int argc, char** argv) { glutinit(&argc, argv); Typical OpenGL/GLUT Main Program // GLUT, GLU, and OpenGL defs // program arguments // initialize glut and gl // double buffering

More information

Fundamental Types of Viewing

Fundamental Types of Viewing Viewings Fundamental Types of Viewing Perspective views finite COP (center of projection) Parallel views COP at infinity DOP (direction of projection) perspective view parallel view Classical Viewing Specific

More information

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes

The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes The Viewing Pipeline adaptation of Paul Bunn & Kerryn Hugo s notes What is it? The viewing pipeline is the procession of operations that are applied to the OpenGL matrices, in order to create a 2D representation

More information

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益

Modeling Transform. Chapter 4 Geometric Transformations. Overview. Instancing. Specify transformation for objects 李同益 Modeling Transform Chapter 4 Geometric Transformations 李同益 Specify transformation for objects Allow definitions of objects in own coordinate systems Allow use of object definition multiple times in a scene

More information

CS559: Computer Graphics. Lecture 12: OpenGL Li Zhang Spring 2008

CS559: Computer Graphics. Lecture 12: OpenGL Li Zhang Spring 2008 CS559: Computer Graphics Lecture 12: OpenGL Li Zhang Spring 2008 Reading Redbook Ch 1 & 2 So far: 3D Geometry Pipeline Model Space (Object Space) Rotation Translation Resizing World Space M Rotation Translation

More information

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science

CSC Graphics Programming. Budditha Hettige Department of Statistics and Computer Science CSC 307 1.0 Graphics Programming Department of Statistics and Computer Science Graphics Programming OpenGL 3D Drawing 2 3D Graphics Projections Getting 3D to 2D 3D scene 2D image 3 Projections Orthographic

More information

OpenGL. 1 OpenGL OpenGL 1.2 3D. (euske) 1. Client-Server Model OpenGL

OpenGL. 1 OpenGL OpenGL 1.2 3D. (euske) 1. Client-Server Model OpenGL OpenGL (euske) 1 OpenGL - 1.1 OpenGL 1. Client-Server Model 2. 3. 1.2 3D OpenGL (Depth-Buffer Algorithm Z-Buffer Algorithm) (polygon ) ( rendering) Client-Server Model X Window System ( GL ) GL (Indy O

More information

CS354 Computer Graphics Viewing and Modeling

CS354 Computer Graphics Viewing and Modeling Slide Credit: Donald S. Fussell CS354 Computer Graphics Viewing and Modeling Qixing Huang February 21th 2018 Computer Viewing There are three aspects of the viewing process, all of which are implemented

More information

Transformations (Rotations with Quaternions) October 24, 2005

Transformations (Rotations with Quaternions) October 24, 2005 Computer Graphics Transformations (Rotations with Quaternions) October 4, 5 Virtual Trackball (/3) Using the mouse position to control rotation about two axes Supporting continuous rotations of objects

More information

Describe the Orthographic and Perspective projections. How do we combine together transform matrices?

Describe the Orthographic and Perspective projections. How do we combine together transform matrices? Aims and objectives By the end of the lecture you will be able to Work with multiple transform matrices Describe the viewing process in OpenGL Design and build a camera control APIs Describe the Orthographic

More information

Geometry: Outline. Projections. Orthographic Perspective

Geometry: Outline. Projections. Orthographic Perspective Geometry: Cameras Outline Setting up the camera Projections Orthographic Perspective 1 Controlling the camera Default OpenGL camera: At (0, 0, 0) T in world coordinates looking in Z direction with up vector

More information

Graphics and Visualization

Graphics and Visualization International University Bremen Spring Semester 2006 Recap Representing graphic objects by homogenous points and vectors Using affine transforms to modify objects Using projections to display objects

More information

Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D

Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D Books, OpenGL, GLUT, GLUI, CUDA, OpenCL, OpenCV, PointClouds, and G3D CS334 Spring 2012 Daniel G. Aliaga Department of Computer Science Purdue University Computer Graphics Pipeline Geometric Primitives

More information

Lecture 5b. Transformation

Lecture 5b. Transformation Lecture 5b Transformation Refresher Transformation matrices [4 x 4]: the fourth coordinate is homogenous coordinate. Rotation Transformation: Axis of rotation must through origin (0,0,0). If not, translation

More information

Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt

Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt Books, OpenGL, GLUT, CUDA, OpenCL, OpenCV, PointClouds, G3D, and Qt CS334 Fall 2015 Daniel G. Aliaga Department of Computer Science Purdue University Books (and by now means complete ) Interactive Computer

More information

3D Graphics and API with OpenGL

3D Graphics and API with OpenGL 3D Graphics and API with OpenGL Human-Centered CAD Lab. 29-3-3 Contents 3D Graphics API & OpenGL Interactive Computer Graphics Example of OpenGL Programming Preparatory Simple code GLUT Functions Transformation

More information

Computer Graphics. Chapter 7 2D Geometric Transformations

Computer Graphics. Chapter 7 2D Geometric Transformations Computer Graphics Chapter 7 2D Geometric Transformations Chapter 7 Two-Dimensional Geometric Transformations Part III. OpenGL Functions for Two-Dimensional Geometric Transformations OpenGL Geometric Transformation

More information

Computer Viewing Computer Graphics I, Fall 2008

Computer Viewing Computer Graphics I, Fall 2008 Computer Viewing 1 Objectives Introduce mathematics of projection Introduce OpenGL viewing functions Look at alternate viewing APIs 2 Computer Viewing Three aspects of viewing process All implemented in

More information

Introduction to OpenGL

Introduction to OpenGL OpenGL is an alternative to Direct3D for 3D graphics rendering Originally developed by Silicon Graphics Inc (SGI), turned over to multi-vendor group (OpenGL Architecture Review Board) in 1992 Unlike DirectX,

More information

GRAFIKA KOMPUTER. ~ M. Ali Fauzi

GRAFIKA KOMPUTER. ~ M. Ali Fauzi GRAFIKA KOMPUTER ~ M. Ali Fauzi Drawing 2D Graphics VIEWPORT TRANSFORMATION Recall :Coordinate System glutreshapefunc(reshape); void reshape(int w, int h) { glviewport(0,0,(glsizei) w, (GLsizei) h); glmatrixmode(gl_projection);

More information

CSCI E-74. Simulation and Gaming

CSCI E-74. Simulation and Gaming CSCI E-74 Virtual and Augmented Reality for Simulation and Gaming Fall term 2017 Gianluca De Novi, PhD Lesson 3 General Introduction to OpenGL APIs and TRS Perspective Simulation Perspective simulation

More information

OpenGL. What it is: Client-server model Network transparent. Computer Graphics

OpenGL. What it is: Client-server model Network transparent. Computer Graphics OpenGL OpenGL What it is: Software interface to graphics hardware ~ 120 C-callable routines for 3D graphics Hardware independent When running with X (with GLX extension) Client-server model Network transparent

More information

Better Interactive Programs

Better Interactive Programs Better Interactive Programs Objectives Learn to build more sophisticated interactive programs using Picking Select objects from the display Rubberbanding Interactive drawing of lines and rectangles Display

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 470 Computer Graphics Transformations of Objects CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 1 Transformations of objects - 2D CSC 470 Computer Graphics, Dr.N. Georgieva, CSI/CUNY 2 Using

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

Computer graphics MN1

Computer graphics MN1 Computer graphics MN1 http://www.opengl.org Todays lecture What is OpenGL? How do I use it? Rendering pipeline Points, vertices, lines,, polygons Matrices and transformations Lighting and shading Code

More information

Computer Graphics. Transformations. CSC 470 Computer Graphics 1

Computer Graphics. Transformations. CSC 470 Computer Graphics 1 Computer Graphics Transformations CSC 47 Computer Graphics 1 Today s Lecture Transformations How to: Rotate Scale and Translate 2 Introduction An important concept in computer graphics is Affine Transformations.

More information

Working Style of Program

Working Style of Program Table of Contents Working Style of Program...2 Linked List &Drawing Function...2 Selection Array...4 Buffer...5 Popup Menu...6 User Guide...7 Drawing an Item...7 Moving Item and Changing Color...8 Delete

More information

20 GLuint objects; 36 Scale += 0.1; 37 break; 38 case GLUT_KEY_DOWN:

20 GLuint objects; 36 Scale += 0.1; 37 break; 38 case GLUT_KEY_DOWN: 1 1. 1 #include 2 #include 3 Program 1 (OpenGL Sample016) 4 // 5 static int MouseX = 0; // X 6 static int MouseY = 0; // Y 7 static float SpinX = 0; // X 8 static float SpinY = 0;

More information

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S

COMP Computer Graphics and Image Processing. 5: Viewing 1: The camera. In part 1 of our study of Viewing, we ll look at ˆʹ U ˆ ʹ F ˆʹ S COMP27112 Û ˆF Ŝ Computer Graphics and Image Processing ˆʹ U ˆ ʹ F C E 5: iewing 1: The camera ˆʹ S Toby.Howard@manchester.ac.uk 1 Introduction In part 1 of our study of iewing, we ll look at iewing in

More information

6. Modelview Transformations

6. Modelview Transformations 6. Modelview Transformations Transformation Basics Transformations map coordinates from one frame of reference to another through matri multiplications Basic transformation operations include: - translation

More information

GL_MODELVIEW transformation

GL_MODELVIEW transformation lecture 3 view transformations model transformations GL_MODELVIEW transformation view transformations: How do we map from world coordinates to camera/view/eye coordinates? model transformations: How do

More information

Chapter 13 Selection and Feedback

Chapter 13 Selection and Feedback OpenGL Programming Guide (Addison-Wesley Publishing Company) Chapter 13 Selection and Feedback Chapter Objectives After reading this chapter, you ll be able to do the following: Create applications that

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coordinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective Projections [Geri s Game, Pixar, 1997] January 26, 2011

More information

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification

Wire-Frame 3D Graphics Accelerator IP Core. C Library Specification Wire-Frame 3D Graphics Accelerator IP Core C Library Specification Kenji Ishimaru 1 / 29 Revision History Rev. Date Author Description 1.0 2015/09/30 Kenji Ishimaru First release

More information

CSC 470 Computer Graphics. Three Dimensional Viewing

CSC 470 Computer Graphics. Three Dimensional Viewing CSC 470 Computer Graphics Three Dimensional Viewing 1 Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Projections Producing Stereo Views 2 Introduction

More information

CSC 470 Computer Graphics

CSC 470 Computer Graphics CSC 47 Computer Graphics Three Dimensional Viewing Today s Lecture Three Dimensional Viewing Developing a Camera Fly through a scene Mathematics of Producing Stereo Views 1 2 Introduction We have already

More information

COMP3421. Introduction to 3D Graphics

COMP3421. Introduction to 3D Graphics COMP3421 Introduction to 3D Graphics 3D coodinates Moving to 3D is simply a matter of adding an extra dimension to our points and vectors: 3D coordinates 3D coordinate systems can be left or right handed.

More information

Image Rendering. Rendering can be divided into three sub-problems. Image Formation The hidden surface problem visibility determination steps

Image Rendering. Rendering can be divided into three sub-problems. Image Formation The hidden surface problem visibility determination steps Image Rendering Rendering can be divided into three sub-problems Image Formation The hidden surface problem visibility determination steps Illumination Direct illumination Indirect illumination Shading

More information

Viewing and Projection

Viewing and Projection CSCI 480 Computer Graphics Lecture 5 Viewing and Projection January 25, 2012 Jernej Barbic University of Southern California Shear Transformation Camera Positioning Simple Parallel Projections Simple Perspective

More information

3.1 Viewing and Projection

3.1 Viewing and Projection Fall 2017 CSCI 420: Computer Graphics 3.1 Viewing and Projection Hao Li http://cs420.hao-li.com 1 Recall: Affine Transformations Given a point [xyz] > form homogeneous coordinates [xyz1] > The transformed

More information

Android and OpenGL. Android Smartphone Programming. Matthias Keil. University of Freiburg

Android and OpenGL. Android Smartphone Programming. Matthias Keil. University of Freiburg Android and OpenGL Android Smartphone Programming Matthias Keil Institute for Computer Science Faculty of Engineering 1. Februar 2016 Outline 1 OpenGL Introduction 2 Displaying Graphics 3 Interaction 4

More information

Understand how real-world lighting conditions are approximated by OpenGL

Understand how real-world lighting conditions are approximated by OpenGL OpenGL Programming Guide (Addison-Wesley Publishing Company) Chapter 5 Lighting Chapter Objectives After reading this chapter, you ll be able to do the following: Understand how real-world lighting conditions

More information

Transformation Pipeline

Transformation Pipeline Transformation Pipeline Local (Object) Space Modeling World Space Clip Space Projection Eye Space Viewing Perspective divide NDC space Normalized l d Device Coordinatesd Viewport mapping Screen space Coordinate

More information

CS D Transformation. Junqiao Zhao 赵君峤

CS D Transformation. Junqiao Zhao 赵君峤 CS10101001 3D Transformation Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Review Translation Linear transformation

More information

C++ is Fun Part 13 at Turbine/Warner Bros.! Russell Hanson

C++ is Fun Part 13 at Turbine/Warner Bros.! Russell Hanson C++ is Fun Part 13 at Turbine/Warner Bros.! Russell Hanson Syllabus 1) First program and introduction to data types and control structures with applications for games learning how to use the programming

More information

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3)

To Do. Computer Graphics (Fall 2008) Course Outline. Course Outline. Methodology for Lecture. Demo: Surreal (HW 3) Computer Graphics (Fall 2008) COMS 4160, Lecture 9: OpenGL 1 http://www.cs.columbia.edu/~cs4160 To Do Start thinking (now) about HW 3. Milestones are due soon. Course Course 3D Graphics Pipeline 3D Graphics

More information

Project Sketchpad. Ivan Sutherland (MIT 1963) established the basic interactive paradigm that characterizes interactive computer graphics:

Project Sketchpad. Ivan Sutherland (MIT 1963) established the basic interactive paradigm that characterizes interactive computer graphics: Project Sketchpad Ivan Sutherland (MIT 1963) established the basic interactive paradigm that characterizes interactive computer graphics: User sees an object on the display User points to (picks) the object

More information

Outline. Other Graphics Technology. OpenGL Background and History. Platform Specifics. The Drawing Process

Outline. Other Graphics Technology. OpenGL Background and History. Platform Specifics. The Drawing Process Outline 433-380 Graphics and Computation Introduction to OpenGL OpenGL Background and History Other Graphics Technology Drawing Viewing and Transformation Lighting GLUT Resources Some images in these slides

More information

Graphics and Computation Introduction to OpenGL

Graphics and Computation Introduction to OpenGL 433-380 Graphics and Computation Introduction to OpenGL Some images in these slides are taken from The OpenGL Programming Manual, which is copyright Addison Wesley and the OpenGL Architecture Review Board.

More information

CS380: Computer Graphics 2D Imaging and Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL:

CS380: Computer Graphics 2D Imaging and Transformation. Sung-Eui Yoon ( 윤성의 ) Course URL: CS380: Computer Graphics 2D Imaging and Transformation Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg Class Objectives Write down simple 2D transformation matrixes Understand the

More information

Modeling with Transformations

Modeling with Transformations Modeling with Transformations Prerequisites This module requires some understanding of 3D geometry, particularly a sense of how objects can be moved around in 3-space. The student should also have some

More information

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1

CS 428: Fall Introduction to. Transformations in OpenGL + hierarchical modeling. Andrew Nealen, Rutgers, /21/2009 1 CS 428: Fall 2009 Introduction to Computer Graphics Transformations in OpenGL + hierarchical modeling 9/21/2009 1 Review of affine transformations Use projective geometry staple of CG Euclidean (x,z) (x,y,z)

More information

Display Lists in OpenGL

Display Lists in OpenGL Display Lists in OpenGL Display lists are a mechanism for improving performance of interactive OpenGL applications. A display list is a group of OpenGL commands that have been stored for later execution.

More information

Today s class. Viewing transformation Menus Mandelbrot set and pixel drawing. Informationsteknologi

Today s class. Viewing transformation Menus Mandelbrot set and pixel drawing. Informationsteknologi Today s class Viewing transformation Menus Mandelbrot set and pixel drawing Monday, November 2, 27 Computer Graphics - Class 7 The world & the window World coordinates describe the coordinate system used

More information

An Interactive Introduction to OpenGL Programming

An Interactive Introduction to OpenGL Programming An Interactive Introduction to OpenGL Programming Course # 29 Dave Shreiner Ed Angel Vicki Shreiner Table of Contents Introduction...iv Prerequisites...iv Topics...iv Presentation Course Notes...vi An

More information

CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control. Emmanuel Agu

CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control. Emmanuel Agu CS 543: Computer Graphics Lecture 6 (Part I): 3D Viewing and Camera Control Emmanuel Agu 3D Viewing Similar to taking a photograph Control the lens of the camera Project the object from 3D world to 2D

More information

CS 4204 Computer Graphics

CS 4204 Computer Graphics CS 424 Computer Graphics 2D Transformations Yong Cao Virginia Tech References: Introduction to Computer Graphics course notes by Doug Bowman Interactive Computer Graphics, Fourth Edition, Ed Angle Transformations

More information

The View Frustum. Lecture 9 Sections 2.6, 5.1, 5.2. Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2011

The View Frustum. Lecture 9 Sections 2.6, 5.1, 5.2. Robb T. Koether. Hampden-Sydney College. Wed, Sep 14, 2011 The View Frustum Lecture 9 Sections 2.6, 5.1, 5.2 Robb T. Koether Hampden-Sydney College Wed, Sep 14, 2011 Robb T. Koether (Hampden-Sydney College) The View Frustum Wed, Sep 14, 2011 1 / 36 Outline 1 The

More information

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification

蔡侑庭 (Yu-Ting Tsai) National Chiao Tung University, Taiwan. Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification 蔡侑庭 (Yu-Ting Tsai) Department of Computer Science National Chiao Tung University, Taiwan Prof. Wen-Chieh Lin s CG Slides OpenGL 2.1 Specification OpenGL Programming Guide, Chap. 3 & Appendix F 2 OpenGL

More information

Computer Graphics. Basic 3D Programming. Contents

Computer Graphics. Basic 3D Programming. Contents Computer Graphics Basic 3D Programming September 21, 2005 Sun-Jeong Kim 1 http://www.hallym.ac.kr/~sunkim/teach/2005/cga Contents Cameras and objects Perspective projections Orthographic projections Viewing

More information

Working with Callbacks

Working with Callbacks Working with Callbacks 1 Objectives Learn to build interactive programs using GLUT callbacks Mouse Keyboard Reshape Introduce menus in GLUT 2 The mouse callback glutmousefunc(mymouse) void mymouse(glint

More information

Visualizing Molecular Dynamics

Visualizing Molecular Dynamics Visualizing Molecular Dynamics Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Department of Computer Science Department of Physics & Astronomy Department of Chemical Engineering & Materials

More information

An Introduction to. Graphics Programming

An Introduction to. Graphics Programming An Introduction to Graphics Programming with Tutorial and Reference Manual Toby Howard School of Computer Science The University of Manchester V3.4 Contents 1 About this manual 1 1.1 How to read this manual................................

More information

Scientific Visualization Basics

Scientific Visualization Basics Scientific Visualization Basics Aiichiro Nakano Collaboratory for Advanced Computing & Simulations Dept. of Computer Science, Dept. of Physics & Astronomy, Dept. of Chemical Engineering & Materials Science,

More information

API for creating a display window and using keyboard/mouse interations. See RayWindow.cpp to see how these are used for Assignment3

API for creating a display window and using keyboard/mouse interations. See RayWindow.cpp to see how these are used for Assignment3 OpenGL Introduction Introduction OpenGL OpenGL is an API for computer graphics. Hardware-independent Windowing or getting input is not included in the API Low-level Only knows about triangles (kind of,

More information

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico

3D Viewing. With acknowledge to: Ed Angel. Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 3D Viewing With acknowledge to: Ed Angel Professor of Computer Science, Electrical and Computer Engineering, and Media Arts University of New Mexico 1 Classical Viewing Viewing plane projectors Classical

More information

Questions HW1 Transform Q/A. Transform. Shaoting Zhang. May 11, 2008

Questions HW1 Transform Q/A. Transform. Shaoting Zhang. May 11, 2008 May 11, 2008 My office Hour: Mon. 1:00-3:00pm, Hill-418 All of the slides and codes can be found by clicking my name in the course s website 1 2 3 4 Question 1 What s the result? glcolor3f(1.0,0.0,0.0);

More information

Transformations. CSCI 420 Computer Graphics Lecture 4

Transformations. CSCI 420 Computer Graphics Lecture 4 CSCI 420 Computer Graphics Lecture 4 Transformations Jernej Barbic University of Southern California Vector Spaces Euclidean Spaces Frames Homogeneous Coordinates Transformation Matrices [Angel, Ch. 4]

More information

GL_COLOR_BUFFER_BIT, GL_PROJECTION, GL_MODELVIEW

GL_COLOR_BUFFER_BIT, GL_PROJECTION, GL_MODELVIEW OpenGL Syntax Functions have prefix gl and initial capital letters for each word glclearcolor(), glenable(), glpushmatrix() glu for GLU functions glulookat(), gluperspective() constants begin with GL_,

More information

Lighting. Chapter 5. Chapter Objectives. After reading this chapter, you'll be able to do the following:

Lighting. Chapter 5. Chapter Objectives. After reading this chapter, you'll be able to do the following: Chapter 5 Lighting Chapter Objectives After reading this chapter, you'll be able to do the following: Understand how real-world lighting conditions are approximated by OpenGL Render illuminated objects

More information

Fall CSCI 420: Computer Graphics. 2.2 Transformations. Hao Li.

Fall CSCI 420: Computer Graphics. 2.2 Transformations. Hao Li. Fall 2017 CSCI 420: Computer Graphics 2.2 Transformations Hao Li http://cs420.hao-li.com 1 OpenGL Transformations Matrices Model-view matrix (4x4 matrix) Projection matrix (4x4 matrix) vertices in 3D Model-view

More information