Chapter 3. Interpolation. 3.1 Introduction

Size: px
Start display at page:

Download "Chapter 3. Interpolation. 3.1 Introduction"

Transcription

1 Chapter 3 Interpolation 3 Introduction One of the fundamental problems in Numerical Methods is the problem of interpolation, that is given a set of data points ( k, k ) for k =,, n, how do we find a function P () that connects the dots such that the function is guaranteed to go through the data (P ( k ) = k ) while being faithful to our understanding between the data points The first task is relativel straightforward, as Figure 3 shows, there are lots of was to thread 8 points ranging from polnomial interpolation to piecewise linear interpolation to cubic splines The more important issue is to understand what controls the behavior of the interpolants between the nodes so as to make wise choices that ma depend on the underling data 5 Interpolation Figure 3: Several interpolation schemes discussed in this chapter Figure produced b Moler s NCM routine interpguim

2 2 CHAPTER 3: Interpolation 32 The interpolating polnomial The place to begin however is with the Interpolating Polnomial Definition Through an n + distinct points (, ), (, ),, ( n, n ) with i j there is a unique interpolating polnomial P n () of degree n such that P n ( k ) = k There are man different was to epress and evaluate this polnomial depending on the choice of polnomial basis, however, as we ll show, as long as the coordinates are distinct, this polnomial is unique 32 Polnomial bases The standard wa we usuall think of Polnomials is as a linear combination of the monomials,, 2 ie P n () = p + p + p 2 2 p n n (32) with undetermined coefficients p,, p n To determine these coefficients we could solve the (n + ) (n + ) linear sstem P n ( ) = P n ( ) = P n ( 2 ) = 2 (322) P n ( ) = or in Matri-Vector notation 2 n 2 n n 2 n 2 3 n 3 p p p 2 p n = 2 n (323) as A = b In Matlab, this matri could be rapidl constructed given a column vector of coordinates n = length(); A = ones(n) for j = 2:n A(:,j) = A(:,j-)*; end If is a column vector of values, then p=a\; c 27, Marc Spiegelman, Columbia Universit

3 32 THE INTERPOLATING POLYNOMIAL 3 will solve the linear sstem for the coefficients p The actual polnomial can then be evaluated using Horner s method Clearl if there is an pair of points such that i = j, the Vandermonde matri A will be singular as there will be repeated rows While less obvious here, it can be shown that if all the coordinates are distinct, then A is invertible and therefore the coefficients are unique 322 Other Bases: Lagrange Polnomials While there is nothing particularl wrong with this approach, there is nothing terribl right either For large values of n, (which are often a bad idea for other reasons we will discuss), the matri A can be poorl conditioned and it still requires order n 3 /3 operations to solve the linear sstem However, there are man other bases for the space of polnomials of degree n and these can often be more convenient or efficient for working with An important basis is the Lagrange Polnomials which are defined b L k () = n i=,i k ( i ) ( k i ) (324) which is the product of the fractional distances of the point from the point k For eample, the three Lagrange Polnomials defined b the nodes, and 2 are L () = ( )( 2 ) L () = ( )( 2 ) L 2 () = ( )( ) ( )( 2 ) ( )( 2 ) ( 2 )( 2 ) (325) The critical propert of the Lagrange Polnomials is that the are either eactl or zero at the nodes i More specificall L k ( i ) = { i = k i k (326) Figure 32 shows the Lagrange Polnomials that pass through 4 and 8 evenl spaced points In the Lagrange basis, the interpolating polnomial can be written as P n () = n k= p kl k and the linear sstem defined b Eq (322) becomes = (327) or simpl Ip = Thus in the lagrange basis, we can write the interpolating polnomial as P n () = k L k () (328) k= which is just a linear combination of the Lagrange polnomials weighted b the values at the nodes This formulation can be a bit unwield to evaluate but provides a ver important framework for other applications of interpolation such as numerical quadrature or differentiation This is actuall what Matlab s functions polfit and polval do although the order of the columns are reversed, see help vander in Matlab p p p 2 p n 2 n c 27, Marc Spiegelman, Columbia Universit

4 4 CHAPTER 3: Interpolation Lagrange Interpolating Polnomials: n=4 k= k=2 k=3 k= Lagrange Interpolating Polnomials: n=8 k= k=2 k=3 k=4 k=5 k=6 k=7 k= a b Figure 32: Eample of the Lagrange Polnomials through (a) 4 Points, (b) 8 points Each polnomial L k is guaranteed to be eactl at node k and zero at all the rest of the nodes (here the numbering of the polnomials starts at rather than zero sorr for the confusion) Note that, for evenl spaced points, the Lagrange polnomials can oscillate wildl between the nodes 323 Newton Polnomials A third basis for polnomials that is quite useful for numerical work is the Newton Polnomials defined b { k = N k () = k i= ( (329) i) k =,, n Thus, the interpolating polnomial can be written as P n () = p k N k () = p +p ( )+p 2 ( )( )+p 3 ( )( )( 2 ) k= and the linear sstem defined b Eq (322) becomes the Lower Triangular sstem ( ) ( 2 ) ( 2 )( 2 ) N ( n ) N 2 ( n ) N n ( n ) p p p 2 p n = 2 n (32) (32) The triangular nature of this sstem allows for solution of the coefficients p i in onl n 2 operations (and leads to several other nice recursive properties of the Newton Polnomials) In addition, this basis shows clearl that for the polnomial to be unique, the nodes k must be distinct For the matri in Eq (32) to be invertible, it s determinant must not be zero However, the determinant of a triangular matri is simpl the product of the diagonal terms Clearl, this product will onl vanish if one or more points are equal, ie i = j for some i, j If all the points are distinct the Newton Polnomials are linearl independent and the solution for p is unique c 27, Marc Spiegelman, Columbia Universit

5 32 THE INTERPOLATING POLYNOMIAL Uniqueness of the interpolating polnomial Independent of the choice of basis however, it is important to understand that the actual polnomial P n () is unique if the nodes are distinct While I think the linear algebra representation makes this reasonabl clear, this can be shown more generall b the properties of polnomials Theorem The Interpolating polnomial P n () that satisfies P n ( k ) = k for k =,, n distinct points is unique Proof Assume that there are two distinct polnomials of degree n that both interpolate the same n + points P n () = p k k (322) and Q n () = k= q k k (323) such that P n ( k ) = Q n ( k ) = k If we form a new polnomial b subtraction ie k= R n () = P n () Q n () = (p k q k ) k (324) k= we will produce another n degree polnomial, which should have at most n roots However, R n () is guaranteed to vanish at the n + points k The onl polnomial of degree n that is zero at more than n points is the zero polnomial R n () = This implies that p k = q k and the interpolating polnomial is unique 325 Errors While the interpolating polnomial is unique, and guaranteed to pass eactl through the n + data points, it is not necessaril a good approimation for a function between the nodes For eample, Figure 322 compares the interpolating polnomial for regularl spaced points for against two functions e and /( ) Similar to Talor s theorem, the Lagrange Error theorem sas that, for an function f() can be approimated b the interpolating polnomial plus a remainder term, ie where P n () is the interpolating polnomial and f() = P n () + R n () (325) R n () = f (n+) (ζ) (n + )! ( )( )( 2 ) ( n ) (326) This Lagrange remainder term is similar to the Talor Remainder term ecept that it is guaranteed to vanish at each of the nodes (whereas the Talor remainder is onl zero at the point of epansion) Again, f (n+) (ζ) is the n + derivative of f evaluated at some (unknown) point ζ [, n ] As usual, this constant cannot be eactl evaluated but often can be bounded b c 27, Marc Spiegelman, Columbia Universit

6 6 CHAPTER 3: Interpolation 3 25 Interpolant Nodes true function F(), P(), N= 2 5 F(), P(), N= Interpolant Nodes true function a Error: f() P(), N= b Error: f() P(), N= 2 5 error error 2 5 c d Figure 322: Comparison of polnomial interpolation of two functions a comparison of the function f() = e and its interpolating polnomial for evenl spaced points in [ ] (c) the error R n () = f() P n () in interpolation For functions that are well approimated b high-order polnomials, this interpolant can work well However, (b,d) comparison of interpolant for same points and f() = /( ) For this function the Runge effects are etremel evident and the interpolating polnomial is a poor approimation Increasing the number of points actuall makes the error worse c 27, Marc Spiegelman, Columbia Universit

7 32 THE INTERPOLATING POLYNOMIAL 7 8 F(), P(), N= Interpolant Nodes true function 9 8 F(), P(), N=2 Interpolant Nodes true function a Error: f() P(), N= b Error: f() P(), N=2 5 5 error 5 error 5 5 c d Figure 323: Polnomial interpolation and error of f() = /( ) with (a) points located at the zeros of the Chebshev Polnomial T and (b) N = 2 Chebshev points For high-order polnomial approimation of functions on a fied interval, the Chebshev points are optimal for minimizing the error c 27, Marc Spiegelman, Columbia Universit

8 8 CHAPTER 3: Interpolation some constant M For evenl spaced points, there are eplicit error formulas (eg see [?]) However, in general, high-order polnomial interpolation approimation with evenl spaced points is a Bad! idea unless the underling function is well described b high-order polnomials (eg e, see Figure 322) The reason for this can be seen b eploring the behavior of the Lagrange interpolating polnomials for evenl spaced points as a function of the number of points N (see problem set 2), which have ver large ecursions from in the interval [, + h] 326 High-order polnomial interpolation using Chebshev points Unless ou reall understand our function, ou should rarel use polnomial approimation with evenl spaced points for more than about 5 points (m rule of thumb) If ou do, need to approimate a function b high-order polnomials over a fied interval, there is an optimal choice of points to interpolate A full description is beond the scope of these notes but Mathews and Fink provide a good beginning discussion The basic idea however is to tr and minimize the size of the Lagrange remainder term Inspection of Eq (326), however, shows that the remainder has two parts, the first depends on the properties of the function itself (which ou have no control over), but the second is the size of the monic polnomial 2 Q n+ () = ( )( )( 2 ) ( n ) (327) 33 Practical Algorithms: Piecewise Polnomial Interpolation 33 C : linear interpolation, overlapping cubic 332 C : piecewise cubic hermite polnomials 333 C 2 : Cubic Splines 34 Multi-dimensional interpolation 2 Monic polnomials are all polnomials whose highest order coefficient is c 27, Marc Spiegelman, Columbia Universit

Math College Algebra

Math College Algebra Math 5 - College Algebra Eam # - 08.0. Solutions. Below is the graph of a function f(), using the information on the graph, sketch on a separate graph the function F () = f( + ) +. Be sure to include important

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

Exponential Functions. Christopher Thomas

Exponential Functions. Christopher Thomas Mathematics Learning Centre Eponential Functions Christopher Thomas c 1998 Universit of Sdne Mathematics Learning Centre, Universit of Sdne 1 1 Eponential Functions 1.1 The functions =2 and =2 From our

More information

Chapter Goals: Evaluate limits. Evaluate one-sided limits. Understand the concepts of continuity and differentiability and their relationship.

Chapter Goals: Evaluate limits. Evaluate one-sided limits. Understand the concepts of continuity and differentiability and their relationship. MA123, Chapter 3: The idea of its (pp. 47-67) Date: Chapter Goals: Evaluate its. Evaluate one-sided its. Understand the concepts of continuit and differentiabilit and their relationship. Assignments: Assignment

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

Developed in Consultation with Tennessee Educators

Developed in Consultation with Tennessee Educators Developed in Consultation with Tennessee Educators Table of Contents Letter to the Student........................................ Test-Taking Checklist........................................ Tennessee

More information

1.5 LIMITS. The Limit of a Function

1.5 LIMITS. The Limit of a Function 60040_005.qd /5/05 :0 PM Page 49 SECTION.5 Limits 49.5 LIMITS Find its of functions graphicall and numericall. Use the properties of its to evaluate its of functions. Use different analtic techniques to

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

3.5 Rational Functions

3.5 Rational Functions 0 Chapter Polnomial and Rational Functions Rational Functions For a rational function, find the domain and graph the function, identifing all of the asmptotes Solve applied problems involving rational

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Locker LESSON 5. Graphing Polnomial Functions Common Core Math Standards The student is epected to: F.IF.7c Graph polnomial functions, identifing zeros when suitable factorizations are available, and showing

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka Rowan Universit Computer Science Department. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Determining the 2d transformation that brings one image into alignment (registers it) with another. And

Determining the 2d transformation that brings one image into alignment (registers it) with another. And Last two lectures: Representing an image as a weighted combination of other images. Toda: A different kind of coordinate sstem change. Solving the biggest problem in using eigenfaces? Toda Recognition

More information

ECE 204 Numerical Methods for Computer Engineers MIDTERM EXAMINATION /4:30-6:00

ECE 204 Numerical Methods for Computer Engineers MIDTERM EXAMINATION /4:30-6:00 ECE 4 Numerical Methods for Computer Engineers ECE 4 Numerical Methods for Computer Engineers MIDTERM EXAMINATION --7/4:-6: The eamination is out of marks. Instructions: No aides. Write your name and student

More information

A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL PDES

A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL PDES European Conference on Computational Fluid Dnamics ECCOMAS CFD 26 P. Wesseling, E. Oñate and J. Périau (Eds) c TU Delft, The Netherlands, 26 A SCATTERED DATA INTERPOLANT FOR THE SOLUTION OF THREE-DIMENSIONAL

More information

Numerical Analysis Fall. Numerical Differentiation

Numerical Analysis Fall. Numerical Differentiation Numerical Analysis 5 Fall Numerical Differentiation Differentiation The mathematical definition of a derivative begins with a difference approimation: and as is allowed to approach zero, the difference

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

High precision computation of elementary functions in Maple

High precision computation of elementary functions in Maple Proceedings of CASC 2002, Technische Universität München 183 High precision computation of elementar functions in Maple D.J. Jeffre Ontario Research Centre for Computer Algebra, Department of Applied Mathematics,

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

Scientific Computing: Interpolation

Scientific Computing: Interpolation Scientific Computing: Interpolation Aleksandar Donev Courant Institute, NYU donev@courant.nyu.edu Course MATH-GA.243 or CSCI-GA.22, Fall 25 October 22nd, 25 A. Donev (Courant Institute) Lecture VIII /22/25

More information

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics

CMSC 425: Lecture 10 Basics of Skeletal Animation and Kinematics : Lecture Basics of Skeletal Animation and Kinematics Reading: Chapt of Gregor, Game Engine Architecture. The material on kinematics is a simplification of similar concepts developed in the field of robotics,

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

Polynomial and Rational Functions

Polynomial and Rational Functions Polnomial and Rational Functions Figure -mm film, once the standard for capturing photographic images, has been made largel obsolete b digital photograph. (credit film : modification of work b Horia Varlan;

More information

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like

ES 240: Scientific and Engineering Computation. a function f(x) that can be written as a finite series of power functions like Polynomial Deinition a unction () that can be written as a inite series o power unctions like n is a polynomial o order n n ( ) = A polynomial is represented by coeicient vector rom highest power. p=[3-5

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals

A Rational Shift in Behavior. Translating Rational Functions. LEARnIng goals . A Rational Shift in Behavior LEARnIng goals In this lesson, ou will: Analze rational functions with a constant added to the denominator. Compare rational functions in different forms. Identif vertical

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

Image Metamorphosis By Affine Transformations

Image Metamorphosis By Affine Transformations Image Metamorphosis B Affine Transformations Tim Mers and Peter Spiegel December 16, 2005 Abstract Among the man was to manipulate an image is a technique known as morphing. Image morphing is a special

More information

Graphs, Linear Equations, and Functions

Graphs, Linear Equations, and Functions Graphs, Linear Equations, and Functions. The Rectangular R. Coordinate Fractions Sstem bjectives. Interpret a line graph.. Plot ordered pairs.. Find ordered pairs that satisf a given equation. 4. Graph

More information

Matrix Representations

Matrix Representations CONDENSED LESSON 6. Matri Representations In this lesson, ou Represent closed sstems with transition diagrams and transition matrices Use matrices to organize information Sandra works at a da-care center.

More information

APPM/MATH Problem Set 4 Solutions

APPM/MATH Problem Set 4 Solutions APPM/MATH 465 Problem Set 4 Solutions This assignment is due by 4pm on Wednesday, October 16th. You may either turn it in to me in class on Monday or in the box outside my office door (ECOT 35). Minimal

More information

Using the same procedure that was used in Project 5, enter matrix A and its label into an Excel spreadsheet:

Using the same procedure that was used in Project 5, enter matrix A and its label into an Excel spreadsheet: Math 6: Ecel Lab 6 Summer Inverse Matrices, Determinates and Applications: (Stud sections, 6, 7 and in the matri book in order to full understand the topic.) This Lab will illustrate how Ecel can help

More information

Non-linear models. Basis expansion. Overfitting. Regularization.

Non-linear models. Basis expansion. Overfitting. Regularization. Non-linear models. Basis epansion. Overfitting. Regularization. Petr Pošík Czech Technical Universit in Prague Facult of Electrical Engineering Dept. of Cbernetics Non-linear models Basis epansion.....................................................................................................

More information

5.2 Graphing Polynomial Functions

5.2 Graphing Polynomial Functions Name Class Date 5.2 Graphing Polnomial Functions Essential Question: How do ou sketch the graph of a polnomial function in intercept form? Eplore 1 Investigating the End Behavior of the Graphs of Simple

More information

CS 450 Numerical Analysis. Chapter 7: Interpolation

CS 450 Numerical Analysis. Chapter 7: Interpolation Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

SECTION 3-4 Rational Functions

SECTION 3-4 Rational Functions 20 3 Polnomial and Rational Functions 0. Shipping. A shipping bo is reinforced with steel bands in all three directions (see the figure). A total of 20. feet of steel tape is to be used, with 6 inches

More information

lecture 10: B-Splines

lecture 10: B-Splines 9 lecture : -Splines -Splines: a basis for splines Throughout our discussion of standard polynomial interpolation, we viewed P n as a linear space of dimension n +, and then expressed the unique interpolating

More information

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas Mathematics Learning Centre Introduction to Trigonometric Functions Pegg Adamson and Jackie Nicholas c 998 Universit of Sdne Acknowledgements A significant part of this manuscript has previousl appeared

More information

2-1. The Language of Functions. Vocabulary

2-1. The Language of Functions. Vocabulary Chapter Lesson -1 BIG IDEA A function is a special tpe of relation that can be described b ordered pairs, graphs, written rules or algebraic rules such as equations. On pages 78 and 79, nine ordered pairs

More information

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications

CSE328 Fundamentals of Computer Graphics: Theory, Algorithms, and Applications CSE328 Fundamentals of Computer Graphics: Theor, Algorithms, and Applications Hong in State Universit of New York at Ston Brook (Ston Brook Universit) Ston Brook, New York 794-44 Tel: (63)632-845; Fa:

More information

Bias-Variance Decomposition Error Estimators

Bias-Variance Decomposition Error Estimators Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Bias-Variance Decomposition Error Estimators Cross-Validation

Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance Decomposition Error Estimators Cross-Validation Bias-Variance tradeoff Intuition Model too simple does not fit the data well a biased solution. Model too comple small changes to the data,

More information

Domain of Rational Functions

Domain of Rational Functions SECTION 46 RATIONAL FU NCTIONS SKI LLS OBJ ECTIVES Find the domain of a rational function Determine vertical, horizontal, and slant asmptotes of rational functions Graph rational functions CONCE PTUAL

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical descriptions of geometric changes,

More information

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions

Unit I - Chapter 3 Polynomial Functions 3.1 Characteristics of Polynomial Functions Math 3200 Unit I Ch 3 - Polnomial Functions 1 Unit I - Chapter 3 Polnomial Functions 3.1 Characteristics of Polnomial Functions Goal: To Understand some Basic Features of Polnomial functions: Continuous

More information

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers

4.2 Properties of Rational Functions. 188 CHAPTER 4 Polynomial and Rational Functions. Are You Prepared? Answers 88 CHAPTER 4 Polnomial and Rational Functions 5. Obtain a graph of the function for the values of a, b, and c in the following table. Conjecture a relation between the degree of a polnomial and the number

More information

Computer Graphics. Geometric Transformations

Computer Graphics. Geometric Transformations Computer Graphics Geometric Transformations Contents coordinate sstems scalar values, points, vectors, matrices right-handed and left-handed coordinate sstems mathematical foundations transformations mathematical

More information

Handout 4 - Interpolation Examples

Handout 4 - Interpolation Examples Handout 4 - Interpolation Examples Middle East Technical University Example 1: Obtaining the n th Degree Newton s Interpolating Polynomial Passing through (n+1) Data Points Obtain the 4 th degree Newton

More information

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not.

Polynomials tend to oscillate (wiggle) a lot, even when our true function does not. AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 2: Spline Approximations Dianne P O Leary c 2001, 2002, 2007 Piecewise polynomial interpolation Piecewise polynomial interpolation Read: Chapter 3 Skip:

More information

Natural Quartic Spline

Natural Quartic Spline Natural Quartic Spline Rafael E Banchs INTRODUCTION This report describes the natural quartic spline algorithm developed for the enhanced solution of the Time Harmonic Field Electric Logging problem As

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods

Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods Generalized Gaussian Quadrature Rules in Enriched Finite Element Methods Abstract In this paper, we present new Gaussian integration schemes for the efficient and accurate evaluation of weak form integrals

More information

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 )

February 2017 (1/20) 2 Piecewise Polynomial Interpolation 2.2 (Natural) Cubic Splines. MA378/531 Numerical Analysis II ( NA2 ) f f f f f (/2).9.8.7.6.5.4.3.2. S Knots.7.6.5.4.3.2. 5 5.2.8.6.4.2 S Knots.2 5 5.9.8.7.6.5.4.3.2..9.8.7.6.5.4.3.2. S Knots 5 5 S Knots 5 5 5 5.35.3.25.2.5..5 5 5.6.5.4.3.2. 5 5 4 x 3 3.5 3 2.5 2.5.5 5

More information

1. We ll look at: Types of geometrical transformation. Vector and matrix representations

1. We ll look at: Types of geometrical transformation. Vector and matrix representations Tob Howard COMP272 Computer Graphics and Image Processing 3: Transformations Tob.Howard@manchester.ac.uk Introduction We ll look at: Tpes of geometrical transformation Vector and matri representations

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka, Rowan Universit Computer Science Department Januar 25. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Pre-Algebra Notes Unit 8: Graphs and Functions

Pre-Algebra Notes Unit 8: Graphs and Functions Pre-Algebra Notes Unit 8: Graphs and Functions The Coordinate Plane A coordinate plane is formed b the intersection of a horizontal number line called the -ais and a vertical number line called the -ais.

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside

CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside CS130 : Computer Graphics Curves (cont.) Tamar Shinar Computer Science & Engineering UC Riverside Blending Functions Blending functions are more convenient basis than monomial basis canonical form (monomial

More information

Cubic Spline Questions

Cubic Spline Questions Cubic Spline Questions. Find natural cubic splines which interpolate the following dataset of, points:.0,.,.,.0, 7.0,.,.0,0.; estimate the value for. Solution: Step : Use the n- cubic spline equations

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4.

7. f(x) = 1 2 x f(x) = x f(x) = 4 x at x = 10, 8, 6, 4, 2, 0, 2, and 4. Section 2.2 The Graph of a Function 109 2.2 Eercises Perform each of the following tasks for the functions defined b the equations in Eercises 1-8. i. Set up a table of points that satisf the given equation.

More information

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example

Glossary alternate interior angles absolute value function Example alternate exterior angles Example angle of rotation Example Glossar A absolute value function An absolute value function is a function that can be written in the form, where is an number or epression. alternate eterior angles alternate interior angles Alternate

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

NAG Library Chapter Introduction. D04 Numerical Differentiation

NAG Library Chapter Introduction. D04 Numerical Differentiation D4 Numerical Differentiation Introduction D4 NAG Library Chapter Introduction D4 Numerical Differentiation Contents 1 Scope of the Chapter... 2 2 Background to the Problems... 2 2.1 Description of the

More information

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n =

Name Class Date. subtract 3 from each side. w 5z z 5 2 w p - 9 = = 15 + k = 10m. 10. n = Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equalit properties of real numbers and inverse operations

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

LINEAR PROGRAMMING. Straight line graphs LESSON

LINEAR PROGRAMMING. Straight line graphs LESSON LINEAR PROGRAMMING Traditionall we appl our knowledge of Linear Programming to help us solve real world problems (which is referred to as modelling). Linear Programming is often linked to the field of

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Unit 4 Test REVIEW: Polynomial Functions

Unit 4 Test REVIEW: Polynomial Functions Name Algebra II Date Period Unit 4 Test REVIEW: Polnomial Functions 1. Given a polnomial of the form: = a n + b n 1 + c n 2 + + d 2 + e + f a. What are the maimum number of zeros for this polnomial? b.

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

Grid and Mesh Generation. Introduction to its Concepts and Methods

Grid and Mesh Generation. Introduction to its Concepts and Methods Grid and Mesh Generation Introduction to its Concepts and Methods Elements in a CFD software sstem Introduction What is a grid? The arrangement of the discrete points throughout the flow field is simpl

More information

Mar. 20 Math 2335 sec 001 Spring 2014

Mar. 20 Math 2335 sec 001 Spring 2014 Mar. 20 Math 2335 sec 001 Spring 2014 Chebyshev Polynomials Definition: For an integer n 0 define the function ( ) T n (x) = cos n cos 1 (x), 1 x 1. It can be shown that T n is a polynomial of degree n.

More information

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics:

Using Characteristics of a Quadratic Function to Describe Its Graph. The graphs of quadratic functions can be described using key characteristics: Chapter Summar Ke Terms standard form of a quadratic function (.1) factored form of a quadratic function (.1) verte form of a quadratic function (.1) concavit of a parabola (.1) reference points (.) transformation

More information

Numerical Analysis Notes

Numerical Analysis Notes Numerical Analsis Notes Foes Team Plotting of = f() contour-lines with Ecel Macro isol.ls The Ecel (XP/) macro isol.ls developed b SimonLuca Santoro and kindl released in the free public domain allows

More information

Chapter Three Chapter Three

Chapter Three Chapter Three Chapter Three Chapter Three 90 CHAPTER THREE ConcepTests for Section.. If f () = g (), then f() = g(). (a) True (b) False (b). If f () = g (), then f() = g() + C, where C is some constant. You might point

More information

Systems of Linear Equations

Systems of Linear Equations Sstems of Linear Equations Gaussian Elimination Tpes of Solutions A linear equation is an equation that can be written in the form: a a a n n b The coefficients a i and the constant b can be real or comple

More information

Fundamentals. Copyright Cengage Learning. All rights reserved.

Fundamentals. Copyright Cengage Learning. All rights reserved. Fundamentals Copyright Cengage Learning. All rights reserved. 1.4 Rational Expressions Copyright Cengage Learning. All rights reserved. Objectives The Domain of an Algebraic Expression Simplifying Rational

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

Using a Table of Values to Sketch the Graph of a Polynomial Function

Using a Table of Values to Sketch the Graph of a Polynomial Function A point where the graph changes from decreasing to increasing is called a local minimum point. The -value of this point is less than those of neighbouring points. An inspection of the graphs of polnomial

More information

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis

Linear Programming. Revised Simplex Method, Duality of LP problems and Sensitivity analysis Linear Programming Revised Simple Method, Dualit of LP problems and Sensitivit analsis Introduction Revised simple method is an improvement over simple method. It is computationall more efficient and accurate.

More information

Vocabulary. Term Page Definition Clarifying Example. dependent variable. domain. function. independent variable. parent function.

Vocabulary. Term Page Definition Clarifying Example. dependent variable. domain. function. independent variable. parent function. CHAPTER 1 Vocabular The table contains important vocabular terms from Chapter 1. As ou work through the chapter, fill in the page number, definition, and a clarifing eample. dependent variable Term Page

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

Essential Question How many turning points can the graph of a polynomial function have?

Essential Question How many turning points can the graph of a polynomial function have? .8 Analzing Graphs of Polnomial Functions Essential Question How man turning points can the graph of a polnomial function have? A turning point of the graph of a polnomial function is a point on the graph

More information

Special Products on Factoring

Special Products on Factoring Special Products on Factoring What Is This Module About? This module is a continuation of the module on polnomials. In the module entitled Studing Polnomials, ou learned what polnomials are as well as

More information

2.2 Differential Forms

2.2 Differential Forms 2.2 Differential Forms With vector analsis, there are some operations such as the curl derivative that are difficult to understand phsicall. We will introduce a notation called the calculus of differential

More information

Interpolation and Splines

Interpolation and Splines Interpolation and Splines Anna Gryboś October 23, 27 1 Problem setting Many of physical phenomenona are described by the functions that we don t know exactly. Often we can calculate or measure the values

More information

On the Kinematics of Undulator Girder Motion

On the Kinematics of Undulator Girder Motion LCLS-TN-09-02 On the Kinematics of Undulator Girder Motion J. Welch March 23, 2010 The theor of rigid bod kinematics is used to derive equations that govern the control and measurement of the position

More information

1.3 Introduction to Functions

1.3 Introduction to Functions . Introduction to Functions. Introduction to Functions One of the core concepts in College Algebra is the function. There are man was to describe a function and we begin b defining a function as a special

More information

Appendix C: Review of Graphs, Equations, and Inequalities

Appendix C: Review of Graphs, Equations, and Inequalities Appendi C: Review of Graphs, Equations, and Inequalities C. What ou should learn Just as ou can represent real numbers b points on a real number line, ou can represent ordered pairs of real numbers b points

More information

Chapter 3 : Computer Animation

Chapter 3 : Computer Animation Chapter 3 : Computer Animation Histor First animation films (Disne) 30 drawings / second animator in chief : ke frames others : secondar drawings Use the computer to interpolate? positions orientations

More information

Week 27 Algebra 1 Assignment:

Week 27 Algebra 1 Assignment: Week 7 Algebra Assignment: Da : p. 494 #- odd, -, 8- Da : pp. 496-497 #-9 odd, -6 Da : pp. 0-0 #-9 odd, -, -9 Da 4: p. 09 #-4, 7- Da : pp. - #-9 odd Notes on Assignment: Page 494: General notes for this

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Section 7. Partial Fractions 53 Partial Fraction Decomposition Algebraic techniques for determining the constants in the numerators of partial fractions are demonstrated in the eamples that follow. Note

More information

It s Not Complex Just Its Solutions Are Complex!

It s Not Complex Just Its Solutions Are Complex! It s Not Comple Just Its Solutions Are Comple! Solving Quadratics with Comple Solutions 15.5 Learning Goals In this lesson, ou will: Calculate comple roots of quadratic equations and comple zeros of quadratic

More information

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg

COMPUTER AIDED GEOMETRIC DESIGN. Thomas W. Sederberg COMPUTER AIDED GEOMETRIC DESIGN Thomas W. Sederberg January 31, 2011 ii T. W. Sederberg iii Preface This semester is the 24 th time I have taught a course at Brigham Young University titled, Computer Aided

More information

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions.

5.2. Exploring Quotients of Polynomial Functions. EXPLORE the Math. Each row shows the graphs of two polynomial functions. YOU WILL NEED graph paper coloured pencils or pens graphing calculator or graphing software Eploring Quotients of Polnomial Functions EXPLORE the Math Each row shows the graphs of two polnomial functions.

More information

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120

Course Number 432/433 Title Algebra II (A & B) H Grade # of Days 120 Whitman-Hanson Regional High School provides all students with a high- quality education in order to develop reflective, concerned citizens and contributing members of the global community. Course Number

More information

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching

Roberto s Notes on Differential Calculus Chapter 8: Graphical analysis Section 5. Graph sketching Roberto s Notes on Differential Calculus Chapter 8: Graphical analsis Section 5 Graph sketching What ou need to know alread: How to compute and interpret limits How to perform first and second derivative

More information

interpolation, multivariate, Newton polynomial, divided difference, algorithm,

interpolation, multivariate, Newton polynomial, divided difference, algorithm, MULTIVARIATE POLYNOMIAL INTERPOLATION IN NEWTON FORMS RICHARD D. NEIDINGER Abstract. Techniques of univariate Newton interpolating polynomials are extended to multivariate data points by different generalizations

More information