Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis

Size: px
Start display at page:

Download "Overview. Efficient Simplification of Point-sampled Surfaces. Introduction. Introduction. Neighborhood. Local Surface Analysis"

Transcription

1 Overview Efficient Simplification of Pointsampled Surfaces Introduction Local surface analysis Simplification methods Error measurement Comparison PointBased Computer Graphics Mark Pauly PointBased Computer Graphics Mark Pauly Introduction Pointbased models are often sampled very densely Many applications require coarser approximations, e.g. for efficient Storage Transmission Processing Rendering we need simplification methods for reducing the complexity of pointbased surfaces Introduction We transfer different simplification methods from triangle meshes to point clouds: Incremental clustering Hierarchical clustering Iterative simplification Particle simulation Depending on the intended use, each method has its pros and cons (see comparison) PointBased Computer Graphics Mark Pauly 3 PointBased Computer Graphics Mark Pauly 4 Local Surface Analysis Cloud of point samples describes underlying (manifold) surface We need: mechanisms for locally approximating the surface MLS approach fast estimation of tangent plane and curvature principal component analysis of local neighborhood Neighborhood No explicit connectivity between samples (as with triangle meshes) Replace geodesic proximity with spatial proximity (requires sufficiently high sampling density!) Compute neighborhood according to Euclidean distance PointBased Computer Graphics Mark Pauly 5 PointBased Computer Graphics Mark Pauly 6

2 Neighborhood knearest neighbors Neighborhood Improvement: angle criterion (Linsen) can be quickly computed using spatial datastructures (e.g. kdtree, octree, bsptree) requires isotropic point distribution project points onto tangent plane sort neighbors according to angle include more points if angle between subsequent points is above some threshold PointBased Computer Graphics Mark Pauly 7 PointBased Computer Graphics Mark Pauly 8 Neighborhood Local Delaunay triangulation (Floater) Covariance Analysis Covariance matrix of local neighborhood N: pi p pi p C = L L, pi p n pi p n T i j N project points into tangent plane compute local Voronoi diagram with centroid p = N p i i N PointBased Computer Graphics Mark Pauly 9 PointBased Computer Graphics Mark Pauly 0 Covariance Analysis Consider the eigenproblem: C v l = λ v, l {0,,} l C is a 3x3, positive semidefinite matrix All eigenvalues are realvalued The eigenvector with smallest eigenvalue defines the leastsquares plane through the points in the neighborhood, i.e. approximates the surface normal l Covariance Analysis The total variation is given as: i N We define surface variation as: λ0 σ n ( p) =, λ0 λ λ λ λ λ 0 p i p = λ λ λ measures the fraction of variation along the surface normal, i.e. quantifies how strong the surface deviates from the tangent plane estimate for curvature 0 PointBased Computer Graphics Mark Pauly PointBased Computer Graphics Mark Pauly

3 Covariance Analysis Comparison with curvature: Surface Simplification Incremental clustering Hierarchical clustering Iterative simplification Particle simulation original mean curvature variation n=0 variation n=50 PointBased Computer Graphics Mark Pauly 3 PointBased Computer Graphics Mark Pauly 4 Incremental Clustering Clustering by regiongrowing: Start with random seed point Successively add nearest points to cluster until cluster reaches maximum size Choose new seed from remaining points Growth of clusters can also be bounded by surface variation Curvature adaptive clustering Incremental Clustering Incremental growth leads to internal fragmentation assign stray samples to closest cluster Note: this can increase maximum size and variation bounds! PointBased Computer Graphics Mark Pauly 5 PointBased Computer Graphics Mark Pauly 6 Incremental Clustering Replace each cluster by its centroid Hierarchical Clustering Topdown approach using binary space partition: Split the point cloud if: Size is larger than userspecified maximum or Surface variation is above maximum threshold original model with colorcoded clusters (34,384 points) (,000 points) Split plane defined by centroid and axis of greatest variation (= eigenvector of covariance matrix with largest associated eigenvector) Leaf nodes of the tree correspond to clusters PointBased Computer Graphics Mark Pauly 7 PointBased Computer Graphics Mark Pauly 8 3

4 Hierarchical Clustering D example Hierarchical Clustering Adaptive clustering original model with colorcoded clusters (34,384 points) (,000 points) PointBased Computer Graphics Mark Pauly 9 PointBased Computer Graphics Mark Pauly 0 Iterative Simplification Iteratively contracts point pairs Each contraction reduces the number of points by one Contractions are arranged in priority queue according to quadric error metric (Garland and Heckbert) Quadric measures cost of contraction and determines optimal position for contracted sample Equivalent to QSlim except for definition of approximating planes Iterative Simplification Quadric measures the squared distance to a set of planes defined over edges of neighborhood plane spanned by vectors e p p and e e e e = i = n n p p i PointBased Computer Graphics Mark Pauly PointBased Computer Graphics Mark Pauly Iterative Simplification Particle Simulation Resample surface by distributing particles on the surface Particles move on surface according to interparticle repelling forces Particle relaxation terminates when equilibrium is reached (requires damping) Can also be used for upsampling! original model (87,664 points) (,000 points) remaining point pair contraction candidates PointBased Computer Graphics Mark Pauly 3 PointBased Computer Graphics Mark Pauly 4 4

5 Particle Simulation Initialization randomly spread particles Repulsion linear repulsion force Fi ( p) = k( r p pi ) ( p pi ) only need to consider neighborhood of radius r Projection keep particles on surface by projecting onto tangent plane of closest point apply full MLS projection at end of simulation PointBased Computer Graphics Mark Pauly 5 Particle Simulation Adaptive simulation Adjust repulsion radius according to surface variation more samples in regions of high variation original model (75,78 points) (6,000 points) PointBased Computer Graphics Mark Pauly 6 Particle Simulation Usercontrolled simulation Adjust repulsion radius according to user input Measuring Error Measure the distance between two pointsampled surfaces using a sampling approach Maximum error: max ( S, S ) = max d(, S q Q q ) Twosided Hausdorff distance Mean error: S S = d q S avg (, ) (, ) Q q Q Areaweighted integral of pointtosurface distances Q is an upsampled version of the point cloud that describes the surface S PointBased Computer Graphics Mark Pauly 7 PointBased Computer Graphics Mark Pauly 8 Measuring Error d ( q, S ) measures the distance of point q to surface S using the MLS projection operator with linear basis functions Comparison Error estimate for Michelangelo s David simplified from,000,000 points to 5,000 points PointBased Computer Graphics Mark Pauly 9 PointBased Computer Graphics Mark Pauly 30 5

6 Comparison Execution time as a function of target model size (input: dragon, 535,545 points) Comparison Execution time as a function of input model size (reduction to %) PointBased Computer Graphics Mark Pauly 3 PointBased Computer Graphics Mark Pauly 3 Comparison Summary Pointbased vs. Mesh Simplification Incremental Clustering Hierarchical Clustering Iterative Simplification Particle Simulation Efficiency o Surface Error Control o Implementation o pointbased simplification with subsequent mesh reconstruction mesh reconstruction with subsequent mesh simplification (QSlim) pointbased simplification saves an expensive surface reconstruction on the dense point cloud! PointBased Computer Graphics Mark Pauly 33 PointBased Computer Graphics Mark Pauly 34 References Pauly, Gross: Efficient Simplification of Pointsampled Surfaces, IEEE Visualization 00 Shaffer, Garland: Efficient Adaptive Simplification of Massive Meshes, IEEE Visualization 00 Garland, Heckbert: Surface Simplification using Quadric Error Metrics, SIGGRAPH 997 Turk: ReTiling Polygonal Surfaces, SIGGRAPH 99 Alexa et al. Point Set Surfaces, IEEE Visualization 00 PointBased Computer Graphics Mark Pauly 35 6

Mesh Decimation. Mark Pauly

Mesh Decimation. Mark Pauly Mesh Decimation Mark Pauly Applications Oversampled 3D scan data ~150k triangles ~80k triangles Mark Pauly - ETH Zurich 280 Applications Overtessellation: E.g. iso-surface extraction Mark Pauly - ETH Zurich

More information

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles

Applications. Oversampled 3D scan data. ~150k triangles ~80k triangles Mesh Simplification Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies for efficient

More information

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data

Geometric Modeling. Mesh Decimation. Mesh Decimation. Applications. Copyright 2010 Gotsman, Pauly Page 1. Oversampled 3D scan data Applications Oversampled 3D scan data ~150k triangles ~80k triangles 2 Copyright 2010 Gotsman, Pauly Page 1 Applications Overtessellation: E.g. iso-surface extraction 3 Applications Multi-resolution hierarchies

More information

Point-based Simplification Algorithm

Point-based Simplification Algorithm Point-based Simplification Algorithm Pai-Feng Lee 1, Bin-Shyan Jong 2 Department of Information Management, Hsing Wu College 1 Dept. of Information and Computer Engineering Engineering, Chung Yuan Christian

More information

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein)

CGAL. Mesh Simplification. (Slides from Tom Funkhouser, Adam Finkelstein) CGAL Mesh Simplification (Slides from Tom Funkhouser, Adam Finkelstein) Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 In a nutshell Problem: Meshes have too many polygons for storage, rendering,

More information

Surface Reconstruction from Unorganized Points

Surface Reconstruction from Unorganized Points Survey of Methods in Computer Graphics: Surface Reconstruction from Unorganized Points H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, W. Stuetzle SIGGRAPH 1992. Article and Additional Material at: http://research.microsoft.com/en-us/um/people/hoppe/proj/recon/

More information

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview

Mesh Simplification. Mesh Simplification. Mesh Simplification Goals. Mesh Simplification Motivation. Vertex Clustering. Mesh Simplification Overview Mesh Simplification Mesh Simplification Adam Finkelstein Princeton University COS 56, Fall 008 Slides from: Funkhouser Division, Viewpoint, Cohen Mesh Simplification Motivation Interactive visualization

More information

Digital Geometry Processing

Digital Geometry Processing Digital Geometry Processing Spring 2011 physical model acquired point cloud reconstructed model 2 Digital Michelangelo Project Range Scanning Systems Passive: Stereo Matching Find and match features in

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 10: Surface reconstruction Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Curve, surface reconstruction Finding compact connected orientable 2-manifold surface

More information

Mesh Repairing and Simplification. Gianpaolo Palma

Mesh Repairing and Simplification. Gianpaolo Palma Mesh Repairing and Simplification Gianpaolo Palma Mesh Repairing Removal of artifacts from geometric model such that it becomes suitable for further processing Input: a generic 3D model Output: (hopefully)a

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Mesh Generation Algorithms Part 2 Fathi El-Yafi Project and Software Development Manager Engineering Simulation 21-25 April 2008 1 Overview Adaptive Meshing: Remeshing Decimation Optimization

More information

Simplification Algorithm for Airborne Point Clouds

Simplification Algorithm for Airborne Point Clouds Simplification Algorithm for Airborne Point Clouds Matthew Westaway 1, George Sithole 2 1 Geomatics Division, University of Cape Town, Cape Town, South Africa, wstmat003@myuct.ac.za 2 Geomatics Division,

More information

Moving Least Squares Multiresolution Surface Approximation

Moving Least Squares Multiresolution Surface Approximation Moving Least Squares Multiresolution Surface Approximation BORIS MEDEROS LUIZ VELHO LUIZ HENRIQUE DE FIGUEIREDO IMPA Instituto de Matemática Pura e Aplicada Estrada Dona Castorina 110, 22461-320 Rio de

More information

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005

A Developer s Survey of Polygonal Simplification algorithms. CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 A Developer s Survey of Polygonal Simplification algorithms CS 563 Advanced Topics in Computer Graphics Fan Wu Mar. 31, 2005 Some questions to ask Why simplification? What are my models like? What matters

More information

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations

Motivation. Freeform Shape Representations for Efficient Geometry Processing. Operations on Geometric Objects. Functional Representations Motivation Freeform Shape Representations for Efficient Geometry Processing Eurographics 23 Granada, Spain Geometry Processing (points, wireframes, patches, volumes) Efficient algorithms always have to

More information

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform

Overview. Spectral Processing of Point- Sampled Geometry. Introduction. Introduction. Fourier Transform. Fourier Transform Overview Spectral Processing of Point- Sampled Geometry Introduction Fourier transform Spectral processing pipeline Spectral filtering Adaptive subsampling Summary Point-Based Computer Graphics Markus

More information

Surface Reconstruction with MLS

Surface Reconstruction with MLS Surface Reconstruction with MLS Tobias Martin CS7960, Spring 2006, Feb 23 Literature An Adaptive MLS Surface for Reconstruction with Guarantees, T. K. Dey and J. Sun A Sampling Theorem for MLS Surfaces,

More information

3D Models and Matching

3D Models and Matching 3D Models and Matching representations for 3D object models particular matching techniques alignment-based systems appearance-based systems GC model of a screwdriver 1 3D Models Many different representations

More information

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662

Geometry Processing & Geometric Queries. Computer Graphics CMU /15-662 Geometry Processing & Geometric Queries Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans,

More information

Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes

Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes Fan-Meshes: A Geometric Primitive for Point-based Description of 3D Models and Scenes Xiaotian Yan, Fang Meng, Hongbin Zha National Laboratory on Machine Perception Peking University, Beijing, P. R. China

More information

Mesh and Mesh Simplification

Mesh and Mesh Simplification Slide Credit: Mirela Ben-Chen Mesh and Mesh Simplification Qixing Huang Mar. 21 st 2018 Mesh DataStructures Data Structures What should bestored? Geometry: 3D coordinates Attributes e.g. normal, color,

More information

Clustering CS 550: Machine Learning

Clustering CS 550: Machine Learning Clustering CS 550: Machine Learning This slide set mainly uses the slides given in the following links: http://www-users.cs.umn.edu/~kumar/dmbook/ch8.pdf http://www-users.cs.umn.edu/~kumar/dmbook/dmslides/chap8_basic_cluster_analysis.pdf

More information

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds

Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Feature Extraction for Illustrating 3D Stone Tools from Unorganized Point Clouds Enkhbayar Altantsetseg 1) Yuta Muraki 2) Katsutsugu Matsuyama 2) Fumito Chiba 3) Kouichi Konno 2) 1) Graduate School of

More information

Cluster Analysis. Ying Shen, SSE, Tongji University

Cluster Analysis. Ying Shen, SSE, Tongji University Cluster Analysis Ying Shen, SSE, Tongji University Cluster analysis Cluster analysis groups data objects based only on the attributes in the data. The main objective is that The objects within a group

More information

Surface Simplification Using Quadric Error Metrics

Surface Simplification Using Quadric Error Metrics Surface Simplification Using Quadric Error Metrics Authors: Michael Garland & Paul Heckbert Presented by: Niu Xiaozhen Disclaimer: Some slides are modified from original slides, which were designed by

More information

Mesh Decimation Using VTK

Mesh Decimation Using VTK Mesh Decimation Using VTK Michael Knapp knapp@cg.tuwien.ac.at Institute of Computer Graphics and Algorithms Vienna University of Technology Abstract This paper describes general mesh decimation methods

More information

University of Florida CISE department Gator Engineering. Clustering Part 2

University of Florida CISE department Gator Engineering. Clustering Part 2 Clustering Part 2 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville Partitional Clustering Original Points A Partitional Clustering Hierarchical

More information

Algorithm research of 3D point cloud registration based on iterative closest point 1

Algorithm research of 3D point cloud registration based on iterative closest point 1 Acta Technica 62, No. 3B/2017, 189 196 c 2017 Institute of Thermomechanics CAS, v.v.i. Algorithm research of 3D point cloud registration based on iterative closest point 1 Qian Gao 2, Yujian Wang 2,3,

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Digital Geometry Processing. Computer Graphics CMU /15-662

Digital Geometry Processing. Computer Graphics CMU /15-662 Digital Geometry Processing Computer Graphics CMU 15-462/15-662 Last time: Meshes & Manifolds Mathematical description of geometry - simplifying assumption: manifold - for polygon meshes: fans, not fins

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

View Dependent Stochastic Sampling for Efficient Rendering of Point Sampled Surfaces

View Dependent Stochastic Sampling for Efficient Rendering of Point Sampled Surfaces View Dependent Stochastic Sampling for Efficient Rendering of Point Sampled Surfaces Sushil Bhakar Liang Luo S.P. Mudur Department of Computer Science, Concordia University 1455 De Maisonneuve Blvd. West

More information

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM.

Olmo S. Zavala Romero. Clustering Hierarchical Distance Group Dist. K-means. Center of Atmospheric Sciences, UNAM. Center of Atmospheric Sciences, UNAM November 16, 2016 Cluster Analisis Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster)

More information

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight

coding of various parts showing different features, the possibility of rotation or of hiding covering parts of the object's surface to gain an insight Three-Dimensional Object Reconstruction from Layered Spatial Data Michael Dangl and Robert Sablatnig Vienna University of Technology, Institute of Computer Aided Automation, Pattern Recognition and Image

More information

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Alexander Greß and Reinhard Klein University of Bonn Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany

More information

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud

A Constrained Delaunay Triangle Mesh Method for Three-Dimensional Unstructured Boundary Point Cloud International Journal of Computer Systems (ISSN: 2394-1065), Volume 03 Issue 02, February, 2016 Available at http://www.ijcsonline.com/ A Constrained Delaunay Triangle Mesh Method for Three-Dimensional

More information

Point Cloud Collision Detection

Point Cloud Collision Detection Point Cloud Collision Detection Uni Paderborn & Gabriel Zachmann Uni Bonn Point Clouds Modern acquisition methods (scanning, sampling synthetic objects) lead to modern object representations. Efficient

More information

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo

Geometric Modeling. Bing-Yu Chen National Taiwan University The University of Tokyo Geometric Modeling Bing-Yu Chen National Taiwan University The University of Tokyo Surface Simplification Motivation Basic Idea of LOD Discrete LOD Continuous LOD Simplification Problem Characteristics

More information

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges

Outline. Reconstruction of 3D Meshes from Point Clouds. Motivation. Problem Statement. Applications. Challenges Reconstruction of 3D Meshes from Point Clouds Ming Zhang Patrick Min cs598b, Geometric Modeling for Computer Graphics Feb. 17, 2000 Outline - problem statement - motivation - applications - challenges

More information

CHAPTER 4: CLUSTER ANALYSIS

CHAPTER 4: CLUSTER ANALYSIS CHAPTER 4: CLUSTER ANALYSIS WHAT IS CLUSTER ANALYSIS? A cluster is a collection of data-objects similar to one another within the same group & dissimilar to the objects in other groups. Cluster analysis

More information

Methods for Intelligent Systems

Methods for Intelligent Systems Methods for Intelligent Systems Lecture Notes on Clustering (II) Davide Eynard eynard@elet.polimi.it Department of Electronics and Information Politecnico di Milano Davide Eynard - Lecture Notes on Clustering

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

Variational Shape Approximation

Variational Shape Approximation Movie, anyone? Variational Shape Approximation Scanned vs. Concise Geometry Abundant repositories of surface meshes with subtle details exquisitely sampled but so as all the less interesting parts From

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Introduction Often, we have only a set of features x = x 1, x 2,, x n, but no associated response y. Therefore we are not interested in prediction nor classification,

More information

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1

Cluster Analysis. Mu-Chun Su. Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Cluster Analysis Mu-Chun Su Department of Computer Science and Information Engineering National Central University 2003/3/11 1 Introduction Cluster analysis is the formal study of algorithms and methods

More information

Geometric Modeling and Processing

Geometric Modeling and Processing Geometric Modeling and Processing Tutorial of 3DIM&PVT 2011 (Hangzhou, China) May 16, 2011 6. Mesh Simplification Problems High resolution meshes becoming increasingly available 3D active scanners Computer

More information

The Ball-Pivoting Algorithm for Surface Reconstruction

The Ball-Pivoting Algorithm for Surface Reconstruction The Ball-Pivoting Algorithm for Surface Reconstruction 1. Briefly summarize the paper s contributions. Does it address a new problem? Does it present a new approach? Does it show new types of results?

More information

Fast and accurate Hausdorff distance calculation between meshes

Fast and accurate Hausdorff distance calculation between meshes Fast and accurate Hausdorff distance calculation between meshes Michael Guthe guthe@cs.uni-bonn.de Pavel Borodin University of Bonn Institute of Computer Science II Römerstraße 164 D-53117, Bonn, Germany

More information

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please)

Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in class hard-copy please) Virginia Tech. Computer Science CS 5614 (Big) Data Management Systems Fall 2014, Prakash Homework 4: Clustering, Recommenders, Dim. Reduction, ML and Graph Mining (due November 19 th, 2014, 2:30pm, in

More information

Chapter 4 Foundations And Representations ' 4

Chapter 4 Foundations And Representations ' 4 Chapter 4 Foundations And Representations w

More information

Geometric Modeling in Graphics

Geometric Modeling in Graphics Geometric Modeling in Graphics Part 2: Meshes properties Martin Samuelčík www.sccg.sk/~samuelcik samuelcik@sccg.sk Meshes properties Working with DCEL representation One connected component with simple

More information

EE 701 ROBOT VISION. Segmentation

EE 701 ROBOT VISION. Segmentation EE 701 ROBOT VISION Regions and Image Segmentation Histogram-based Segmentation Automatic Thresholding K-means Clustering Spatial Coherence Merging and Splitting Graph Theoretic Segmentation Region Growing

More information

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering

SYDE Winter 2011 Introduction to Pattern Recognition. Clustering SYDE 372 - Winter 2011 Introduction to Pattern Recognition Clustering Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 5 All the approaches we have learned

More information

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees

Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Efficient Representation and Extraction of 2-Manifold Isosurfaces Using kd-trees Alexander Greß gress@cs.uni-bonn.de Reinhard Klein rk@cs.uni-bonn.de University of Bonn Institute of Computer Science II

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

University of Florida CISE department Gator Engineering. Clustering Part 4

University of Florida CISE department Gator Engineering. Clustering Part 4 Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

The Curse of Dimensionality

The Curse of Dimensionality The Curse of Dimensionality ACAS 2002 p1/66 Curse of Dimensionality The basic idea of the curse of dimensionality is that high dimensional data is difficult to work with for several reasons: Adding more

More information

Voronoi Diagram. Xiao-Ming Fu

Voronoi Diagram. Xiao-Ming Fu Voronoi Diagram Xiao-Ming Fu Outlines Introduction Post Office Problem Voronoi Diagram Duality: Delaunay triangulation Centroidal Voronoi tessellations (CVT) Definition Applications Algorithms Outlines

More information

Smooth Surface Reconstruction from Noisy Clouds

Smooth Surface Reconstruction from Noisy Clouds Smooth Surface Reconstruction from Noisy Clouds Boris Mederos, Luiz Velho and Luiz Henrique de Figueiredo IMPA Instituto de Matemática Pura e Aplicada, Estrada Dona Castorina 110, 22461-320 Rio de Janeiro,

More information

Local patch blind spectral watermarking method for 3D graphics

Local patch blind spectral watermarking method for 3D graphics Local patch blind spectral watermarking method for 3D graphics Ming Luo 1, Kai Wang 2, Adrian G. Bors 1, and Guillaume Lavoué 2 1 Department of Computer Science, University of York, York YO10 5DD, UK 2

More information

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass

Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass Tutorial 3 Comparing Biological Shapes Patrice Koehl and Joel Hass University of California, Davis, USA http://www.cs.ucdavis.edu/~koehl/ims2017/ What is a shape? A shape is a 2-manifold with a Riemannian

More information

Lesson 05. Mid Phase. Collision Detection

Lesson 05. Mid Phase. Collision Detection Lesson 05 Mid Phase Collision Detection Lecture 05 Outline Problem definition and motivations Generic Bounding Volume Hierarchy (BVH) BVH construction, fitting, overlapping Metrics and Tandem traversal

More information

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes

Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Out of Core continuous LoD-Hierarchies for Large Triangle Meshes Hermann Birkholz Research Assistant Albert-Einstein-Str. 21 Germany, 18059, Rostock hb01@informatik.uni-rostock.de ABSTRACT In this paper,

More information

Clustering Part 4 DBSCAN

Clustering Part 4 DBSCAN Clustering Part 4 Dr. Sanjay Ranka Professor Computer and Information Science and Engineering University of Florida, Gainesville DBSCAN DBSCAN is a density based clustering algorithm Density = number of

More information

APPROVAL SHEET. Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC METRICS AND HARDWARE ACCELERATED POINT-BASED RENDERING

APPROVAL SHEET. Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC METRICS AND HARDWARE ACCELERATED POINT-BASED RENDERING APPROVAL SHEET Title of Thesis: HYBRID 3D-MODEL REPRESENTATION THROUGH QUADRIC METRICS AND HARDWARE ACCELERATED POINT-BASED RENDERING Name of Candidate: Hanli Ni Master of Science, 2005 Thesis and Abstract

More information

Finding point-pairs. Engineering Research Center for Computer Integrated Surgical Systems and Technology. Copyright CISST ERC, 2000

Finding point-pairs. Engineering Research Center for Computer Integrated Surgical Systems and Technology. Copyright CISST ERC, 2000 Finding point-pairs Given an a, find a corresponding b on the surface. Then one approach would be to search every possible triangle or surface point and then take the closest point. The key is to find

More information

Geometric Modeling Summer Semester 2012 Point-Based Modeling

Geometric Modeling Summer Semester 2012 Point-Based Modeling Geometric Modeling Summer Semester 2012 Point-Based Modeling 3D Scanning MLS-Surfaces Reconstruction & Registration Overview... Topics: Subdivision Surfaces Implicit Functions Variational Modeling Point-Based

More information

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors

10/14/2017. Dejan Sarka. Anomaly Detection. Sponsors Dejan Sarka Anomaly Detection Sponsors About me SQL Server MVP (17 years) and MCT (20 years) 25 years working with SQL Server Authoring 16 th book Authoring many courses, articles Agenda Introduction Simple

More information

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample

CS 1675 Introduction to Machine Learning Lecture 18. Clustering. Clustering. Groups together similar instances in the data sample CS 1675 Introduction to Machine Learning Lecture 18 Clustering Milos Hauskrecht milos@cs.pitt.edu 539 Sennott Square Clustering Groups together similar instances in the data sample Basic clustering problem:

More information

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov

Correspondence. CS 468 Geometry Processing Algorithms. Maks Ovsjanikov Shape Matching & Correspondence CS 468 Geometry Processing Algorithms Maks Ovsjanikov Wednesday, October 27 th 2010 Overall Goal Given two shapes, find correspondences between them. Overall Goal Given

More information

Approximate Nearest Neighbors. CS 510 Lecture #24 April 18 th, 2014

Approximate Nearest Neighbors. CS 510 Lecture #24 April 18 th, 2014 Approximate Nearest Neighbors CS 510 Lecture #24 April 18 th, 2014 How is the assignment going? 2 hcp://breckon.eu/toby/demos/videovolumes/ Review: Video as Data Cube Mathematically, the cube can be viewed

More information

Finding Shortest Path on Land Surface

Finding Shortest Path on Land Surface Finding Shortest Path on Land Surface Lian Liu, Raymond Chi-Wing Wong Hong Kong University of Science and Technology June 14th, 211 Introduction Land Surface Land surfaces are modeled as terrains A terrain

More information

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text

Voronoi Diagrams in the Plane. Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams in the Plane Chapter 5 of O Rourke text Chapter 7 and 9 of course text Voronoi Diagrams As important as convex hulls Captures the neighborhood (proximity) information of geometric objects

More information

Out-of-Core Simplification with Guaranteed Error Tolerance

Out-of-Core Simplification with Guaranteed Error Tolerance Out-of-Core Simplification with Guaranteed Error Tolerance Pavel Borodin, Michael Guthe, Reinhard Klein University of Bonn, Institute of Computer Science II Römerstraße 164, 53117 Bonn, Germany Email:

More information

Unsupervised Learning and Clustering

Unsupervised Learning and Clustering Unsupervised Learning and Clustering Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr CS 551, Spring 2008 CS 551, Spring 2008 c 2008, Selim Aksoy (Bilkent University)

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Hierarchical Clustering 4/5/17

Hierarchical Clustering 4/5/17 Hierarchical Clustering 4/5/17 Hypothesis Space Continuous inputs Output is a binary tree with data points as leaves. Useful for explaining the training data. Not useful for making new predictions. Direction

More information

Clustering and Visualisation of Data

Clustering and Visualisation of Data Clustering and Visualisation of Data Hiroshi Shimodaira January-March 28 Cluster analysis aims to partition a data set into meaningful or useful groups, based on distances between data points. In some

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

CSL 859: Advanced Computer Graphics. Dept of Computer Sc. & Engg. IIT Delhi

CSL 859: Advanced Computer Graphics. Dept of Computer Sc. & Engg. IIT Delhi CSL 859: Advanced Computer Graphics Dept of Computer Sc. & Engg. IIT Delhi Point Based Representation Point sampling of Surface Mesh construction, or Mesh-less Often come from laser scanning Or even natural

More information

Foundations of Multidimensional and Metric Data Structures

Foundations of Multidimensional and Metric Data Structures Foundations of Multidimensional and Metric Data Structures Hanan Samet University of Maryland, College Park ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE

More information

S p a t i a l D a t a M i n i n g. Spatial Clustering in the Presence of Obstacles

S p a t i a l D a t a M i n i n g. Spatial Clustering in the Presence of Obstacles S p a t i a l D a t a M i n i n g Spatial Clustering in the Presence of Obstacles Milan Magdics Spring, 2007 I n t r o d u c t i o n Clustering in spatial data mining is to group similar objects based

More information

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering

Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Data Clustering Hierarchical Clustering, Density based clustering Grid based clustering Team 2 Prof. Anita Wasilewska CSE 634 Data Mining All Sources Used for the Presentation Olson CF. Parallel algorithms

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

CIE L*a*b* color model

CIE L*a*b* color model CIE L*a*b* color model To further strengthen the correlation between the color model and human perception, we apply the following non-linear transformation: with where (X n,y n,z n ) are the tristimulus

More information

CSE 554 Lecture 6: Fairing and Simplification

CSE 554 Lecture 6: Fairing and Simplification CSE 554 Lecture 6: Fairing and Simplification Fall 2012 CSE554 Fairing and simplification Slide 1 Review Iso-contours in grayscale images and volumes Piece-wise linear representations Polylines (2D) and

More information

Recognition: Face Recognition. Linda Shapiro EE/CSE 576

Recognition: Face Recognition. Linda Shapiro EE/CSE 576 Recognition: Face Recognition Linda Shapiro EE/CSE 576 1 Face recognition: once you ve detected and cropped a face, try to recognize it Detection Recognition Sally 2 Face recognition: overview Typical

More information

Large-Scale Face Manifold Learning

Large-Scale Face Manifold Learning Large-Scale Face Manifold Learning Sanjiv Kumar Google Research New York, NY * Joint work with A. Talwalkar, H. Rowley and M. Mohri 1 Face Manifold Learning 50 x 50 pixel faces R 2500 50 x 50 pixel random

More information

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York

Clustering. Robert M. Haralick. Computer Science, Graduate Center City University of New York Clustering Robert M. Haralick Computer Science, Graduate Center City University of New York Outline K-means 1 K-means 2 3 4 5 Clustering K-means The purpose of clustering is to determine the similarity

More information

POINT CLOUDS. Berndt. Erik. When analyzing. necessary to. data and. optimize the. show suitable for,

POINT CLOUDS. Berndt. Erik. When analyzing. necessary to. data and. optimize the. show suitable for, ADAPTIVE PRE-PROCESSING OF LARGE POINT CLOUDS FROM OPTICAL 3D SCANNERS Erik Trostmann, Christian Teutsch, Dirk Berndt FraunhoferInstitute for Factory Operation and Automation (IFF) Sandtorstrasse 22, D-39106

More information

Clustering in Data Mining

Clustering in Data Mining Clustering in Data Mining Classification Vs Clustering When the distribution is based on a single parameter and that parameter is known for each object, it is called classification. E.g. Children, young,

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Faculty of Mathematics and Natural Sciences Exam: INF 4300 / INF 9305 Digital image analysis Date: Thursday December 21, 2017 Exam hours: 09.00-13.00 (4 hours) Number of pages: 8 pages

More information

Unsupervised Learning

Unsupervised Learning Outline Unsupervised Learning Basic concepts K-means algorithm Representation of clusters Hierarchical clustering Distance functions Which clustering algorithm to use? NN Supervised learning vs. unsupervised

More information

Predictive Point-Cloud Compression

Predictive Point-Cloud Compression Predictive Point-Cloud Compression S. Gumhold Z. Karni M. Isenburg H.-P. Seidel SMT-CGV Computer Science TU Dresden 01062 Dresden, Germany sg30@mail.inf.tu-dresden.de Computer Graphics Group Max-Planck-Institut

More information

Clustering Lecture 3: Hierarchical Methods

Clustering Lecture 3: Hierarchical Methods Clustering Lecture 3: Hierarchical Methods Jing Gao SUNY Buffalo 1 Outline Basics Motivation, definition, evaluation Methods Partitional Hierarchical Density-based Mixture model Spectral methods Advanced

More information

Texture Blending to Point Sampled Geometry Jose Luiz Soares Luz, Paulo Cezar Carvalho, Luiz Velho. Technical Report TR Relatório Técnico

Texture Blending to Point Sampled Geometry Jose Luiz Soares Luz, Paulo Cezar Carvalho, Luiz Velho. Technical Report TR Relatório Técnico Laboratório VISGRAF Instituto de Matemática Pura e Aplicada Texture Blending to Point Sampled Geometry Jose Luiz Soares Luz, Paulo Cezar Carvalho, Luiz Velho Technical Report TR-2004-06 Relatório Técnico

More information

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters

Types of general clustering methods. Clustering Algorithms for general similarity measures. Similarity between clusters Types of general clustering methods Clustering Algorithms for general similarity measures agglomerative versus divisive algorithms agglomerative = bottom-up build up clusters from single objects divisive

More information

MSA220 - Statistical Learning for Big Data

MSA220 - Statistical Learning for Big Data MSA220 - Statistical Learning for Big Data Lecture 13 Rebecka Jörnsten Mathematical Sciences University of Gothenburg and Chalmers University of Technology Clustering Explorative analysis - finding groups

More information

Robust Moving Least-squares Fitting with Sharp Features

Robust Moving Least-squares Fitting with Sharp Features Survey of Methods in Computer Graphics: Robust Moving Least-squares Fitting with Sharp Features S. Fleishman, D. Cohen-Or, C. T. Silva SIGGRAPH 2005. Method Pipeline Input: Point to project on the surface.

More information