Design of a control system model in SimulationX using calibration and optimization. Dynardo GmbH

Size: px
Start display at page:

Download "Design of a control system model in SimulationX using calibration and optimization. Dynardo GmbH"

Transcription

1 Design of a control system model in SimulationX using calibration and optimization Dynardo GmbH 1

2 Notes Please let your microphone muted Use the chat window to ask questions During short breaks we will answer your questions Supported versions From version 4.1 optislang supports SimulationX since version 3.5 2

3 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 3

4 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 4

5 Dynardo Founded: 2001 (Will, Bucher, CADFEM International) More than 60 employees, offices at Weimar and Vienna Leading technology companies Daimler, Bosch, E.ON, Nokia, Siemens, BMW are supported Software Development CAE-Consulting Dynardo is engineering specialist for CAE-based sensitivity analysis, optimization, robustness evaluation and robust design optimization Mechanical engineering Civil engineering & Geomechanics Automotive industry Consumer goods industry Power generation 5

6 Application of Multi-disciplinary Optimization Virtual prototyping is an interdisciplinary process Multidisciplinary approach requires to run different solvers in parallel and to handle different types of constraints and objectives Arbitrary engineering software with complex non-linear analysis have to be connected The resulting optimization problem may become very noisy, very sensitive to design changes or ill conditioned for mathematical function analysis (e.g. non-differentiable, non-convex, non-smooth) 6

7 Excellence of optislang algorithmic toolbox for sensitivity analysis, optimization, robustness evaluation, reliability analysis robust design optimization (RDO) complete functionality of stochastic analysis to run real world industrial applications optislang advantages: easy and reliable application, predefined workflows, algorithmic wizards and robust default settings 7

8 Example: design of a control system dynamic system control loop consisting of a dynamic system and a controller system transfer function should fit with a measured one from a real system consequence is a difference between input and output signal controller has to minimize the difference between both signals 8

9 Step 1: calibration of the dynamic system Design parameters System gain Delay time 2 time constants Responses Output signal Task Minimize the difference between output signal and measured reference signal SimulationX model measured reference signal 9

10 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 10

11 Process Integration Parametric model as base for User defined optimization (design) space Naturally given robustness (random) space Design variables Entities that define the design space Scattering variables Entities that define the robustness space The CAE process Generates the results according to the inputs Response variables Outputs from the system 11

12 Input and Response Variables Scalar design variables with continuous, discrete and binary resolution and real, integer or string type Scattering variables with continuous resolution Scalar responses with continuous resolution Vector responses with continuous resolution having variable length Signal responses having variable length and several channels 12

13 optislang Integrations Connection of arbitrary ASCII file based solvers Direct integrations Ansys Workbench Matlab Python Excel SimulationX Supported connections Ansys Abaqus Adams 13

14 Step 1: calibration of the dynamic system Definition of the Input Parameters The input parameters and its properties can be defined directly in the SimulationX integration node 14

15 Step 1: calibration of the dynamic system Definition of the Reference Signal The reference signal is given in an ASCII text file 15

16 Step 1: calibration of the dynamic system Definition of the Error Measure and Responses The SimulationX and the reference signal are compared in an ETK node The resulting error measure is used as scalar response within the objective function 16

17 Step 1: calibration of the dynamic system Definition of the Objective and Constraint The objective function is defined as a minimization criterion Constraints are not necessary 17

18 The Integration Flow Parametric System SimulationX node with loaded model system.isx Text ETK node to read the reference signal from text file and to compute the signal difference 18

19 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 19

20 The Sensitivity Flow 20

21 Scanning the Design Space Inputs Design of Experiments Model evaluation Outputs Uniform distribution of inputs is represented by Latin Hypercube Sampling Minimum number of samples (variants) should represent statistical properties, cover the input space optimally and avoid clustering For each design all responses are calculated 21

22 Metamodel of Optimal Prognosis (MOP) Approximation of model output by fast surrogate model Reduction of input space to get best compromise between available information (variants) and model representation (number of inputs) Determination of optimal approximation model Assessment of approximation quality Evaluation of variable sensitivities 22

23 Step 1: calibration of the dynamic system Sensitivity with Respect to the Objective The signal difference is mainly influenced by two parameters Moving Least Squares approximation is a sufficient meta-model Small values of the system gain results in strong signal deviations 23

24 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 24

25 The Optimization Flow Flow contains the existing sensitivity and an additional optimization Due to the small number of design parameters, the simplex algorithm is a good choice As start design automatically the best design of the sensitivity analysis is considered 25

26 optislang Optimization Algorithms Gradient-based Methods Most efficient method if gradients are accurate enough Consider its restrictions like local optima, only continuous variables and noise Start Gradient-free Methods Attractive methods for a small set of continuous variables Method of choice if gradient-based fails Nature inspired Optimization GA/EA/PSO imitate mechanisms of nature to improve individuals Method of choice if gradient-based or gradient-free fails Very robust against numerical noise, nonlinearity, number of variables, 26

27 Decision Tree for Optimizer Selection optislang automatically suggests an optimizer depending on the parameter properties, the defined criteria and user specified settings 27

28 Step 1: calibration of the dynamic system Optimization Downhill Simplex Method Convergence criteria fulfilled after 160 variants Small improvement after 81 variants 28

29 Step 1: calibration of the dynamic system Final variant The signal difference is reduced from 0.96 to 0.2 System transfer function fits well with the measured one from the real system The optimal parameter set is obtained 29

30 Step 2: controller design SimulationX model Design parameters Controller gain Integration time Responses Control time System output Overshoot Task Minimize the control time having a maximum overshoot of 5 % SimulationX model Input and output signal without using a controller 30

31 Step 2: controller design optislang workflow 31

32 Step 2: controller design Sensitivity results During Sensitivity Analysis only 7 variants (black) fulfill the constraint condition having control times between 3.5 s and 20 s A subsequent optimization using Simplex algorithm is performed 3.5 s 32

33 Step 2: controller design Optimization results The control time is reduced from 3.5 to 2.55 s using 61 simulation runs The final overshoot of 0.12 % is inside the given range of maximum 5 % The optimal parameter set is obtained and a fast controller is constructed 2.55 s 33

34 1. Introduction 2. Process integration 3. Sensitivity analysis 4. Optimization 5. Trainings & Contact 34

35 optislang Training optislang and SimulationX 1 day introduction to the integration of SimulationX models in a optislang solver chain, signal extraction, sensitivity analysis, optimization and calibration optislang 4 Basics 3 day introduction to process integration, sensitivity, optimization, calibration and robustness analysis Parameter Identification 1 day seminar on basics of model calibration, application of sensitivity analysis and optimization to calibration problems Robust Design and Reliability Analysis 1 day seminar on basics of probability, robustness and reliability analysis, robust design optimization See our website: 35

36 Visit our homepage for more information about software, trainings and webinars 36

Webinar Parameter Identification with optislang. Dynardo GmbH

Webinar Parameter Identification with optislang. Dynardo GmbH Webinar Parameter Identification with optislang Dynardo GmbH 1 Outline Theoretical background Process Integration Sensitivity analysis Least squares minimization Example: Identification of material parameters

More information

Webinar. Machine Tool Optimization with ANSYS optislang

Webinar. Machine Tool Optimization with ANSYS optislang Webinar Machine Tool Optimization with ANSYS optislang 1 Outline Introduction Process Integration Design of Experiments & Sensitivity Analysis Multi-objective Optimization Single-objective Optimization

More information

Webinar optislang & ANSYS Workbench. Dynardo GmbH

Webinar optislang & ANSYS Workbench. Dynardo GmbH Webinar optislang & ANSYS Workbench Dynardo GmbH 1 1. Introduction 2. Process Integration and variation studies 6. Signal Processing 5. ANSYS Mechanical APDL in optislang 3. optislang inside ANSYS 4. ANSYS

More information

DYNARDO Dynardo GmbH Technology update. optislang v4.1. Robust Design Optimization. Johannes Will Dynardo GmbH

DYNARDO Dynardo GmbH Technology update. optislang v4.1. Robust Design Optimization. Johannes Will Dynardo GmbH Technology update optislang v4.1 Robust Design Optimization Johannes Will Dynardo GmbH 1 optislang v4 Comprehensive systems easy and safe to use - Easy modeling of the process chain easy and safe to use

More information

"optislang inside ANSYS Workbench" efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization

optislang inside ANSYS Workbench efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization "optislang inside ANSYS Workbench" efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization Johannes Will, CEO Dynardo GmbH 1 Optimization using optislang

More information

Recent developments. the dynardo Team

Recent developments. the dynardo Team Recent developments the dynardo Team version 3.1.0 Significantly improved quality management V3.1.0_rcx: since September 2009 in productive use V3.1.0: Release October 2009 History of productive versions

More information

optislang recent developments

optislang recent developments optislang recent developments WOST 11 06. 07.11.2013 Dynardo GmbH 2014 optislang 4.2 version 4.1.0 Nov. 13 (WOST) version 4.1.1 Dec. 13 (WB15) version 4.1.2 Apr. 14 version 4.1.3 Jul. 14 More than 1500

More information

RDO-BOOKLET. CAE-Software & Consulting

RDO-BOOKLET. CAE-Software & Consulting dynamic software & engineering CAE-Software & Consulting Robust Design Optimization (RDO) Key technology for resource-efficient product development and performance enhancement RDO-BOOKLET optislang multiplas

More information

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff Lectures Robustness analysis of metal forming simulation state of the art in practice S. Wolff presented at the ICAFT-SFU 2015 Source: www.dynardo.de/en/library Robustness analysis of metal forming simulation

More information

DYNARDO Dynardo GmbH CAE-based Robustness Evaluation. Luxury or Necessity? Johannes Will Dynardo GmbH

DYNARDO Dynardo GmbH CAE-based Robustness Evaluation. Luxury or Necessity? Johannes Will Dynardo GmbH DYNARDO Dynardo GmbH 2014 CAE-based Robustness Evaluation Luxury or Necessity? Johannes Will Dynardo GmbH 1 Dynardo GmbH 2013 Necessity of RDO in Virtual Prototyping Virtual prototyping is necessary for

More information

2 nd Optimization & Stochastic Days India 2012

2 nd Optimization & Stochastic Days India 2012 Report 2 nd Optimization & Stochastic Days India 2012 December 3 4, 2012 9:00 Registrations Agenda Day 1 Seminar 9:50 Welcome by CADFEM 10:00 KEYNOTE: Why Robust Design Optimization in Virtual Product

More information

Interaction of simulation and test for the statistical validation of virtual product development. Lectures. Johannes Will

Interaction of simulation and test for the statistical validation of virtual product development. Lectures. Johannes Will Lectures Interaction of simulation and test for the statistical validation of virtual product development Johannes Will presented at the NAFEMS Conference 2008 Source: www.dynardo.de/en/library Interaction

More information

Multidisciplinary Analysis and Optimization

Multidisciplinary Analysis and Optimization OptiY Multidisciplinary Analysis and Optimization Process Integration OptiY is an open and multidisciplinary design environment, which provides direct and generic interfaces to many CAD/CAE-systems and

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

New developments in Statistics on Structures. Sebastian Wolff

New developments in Statistics on Structures. Sebastian Wolff New developments in Statistics on Structures Sebastian Wolff New developments in SoS Overview Releases since WOST 2016 SoS 3.3.0 March 2017 for optislang 6.0 SoS 3.3.1 May 2017 for optislang 6.1 Major

More information

Dr.-Ing. Johannes Will CAD-FEM GmbH/DYNARDO GmbH dynamic software & engineering GmbH

Dr.-Ing. Johannes Will CAD-FEM GmbH/DYNARDO GmbH dynamic software & engineering GmbH Evolutionary and Genetic Algorithms in OptiSLang Dr.-Ing. Johannes Will CAD-FEM GmbH/DYNARDO GmbH dynamic software & engineering GmbH www.dynardo.de Genetic Algorithms (GA) versus Evolutionary Algorithms

More information

Analysis of low cycle fatigue considering geometric manufacturing tolerances

Analysis of low cycle fatigue considering geometric manufacturing tolerances presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library Analysis of low cycle fatigue considering geometric manufacturing tolerances SIEMENS AG applies ANSYS,

More information

Search for alternative car concepts with OptiSLang

Search for alternative car concepts with OptiSLang Search for alternative car concepts with OptiSLang Dr.-Ing. Johannes Will, Dipl-Ing. Jörg Riedel DYNARDO GmbH, Germany, Weimar Prof. Dr.-techn. Christian Bucher Bauhaus Universität/DYNARDO GmbH, Germany,

More information

DYNARDO Robust Design Optimization Workshop Dynardo GmbH Robustness & Reliability Analysis

DYNARDO Robust Design Optimization Workshop Dynardo GmbH Robustness & Reliability Analysis Robustness & Reliability Analysis 1 Start Robust Design Optimization Robust Design Variance based Robustness Evaluation Probability based Robustness Evaluation, (Reliability analysis) Optimization Sensitivity

More information

DYNARDO Dynardo GmbH Robustness & Reliability Analysis

DYNARDO Dynardo GmbH Robustness & Reliability Analysis Robustness & Reliability Analysis 2 Start Robust Design Optimization Robust Design Variance based Robustness Evaluation Probability based Robustness Evaluation, (Reliability analysis) Optimization Sensitivity

More information

Definition of Output Parameters for Sensitivity Studies of Drop Tests with Randomly Varying Orientation

Definition of Output Parameters for Sensitivity Studies of Drop Tests with Randomly Varying Orientation Definition of Output Parameters for Sensitivity Studies of Drop Tests with Randomly Varying Orientation Gerald Grewolls 1*, Alexander Ptchelintsev 1 1 Nokia Corporation Abstract To ensure the mechanical

More information

Stochastic analyses as a method to evaluate the robustness of a light truck wheel pack design

Stochastic analyses as a method to evaluate the robustness of a light truck wheel pack design Stochastic analyses as a method to evaluate the robustness of a light truck wheel pack design Jaroslav Suchanek *, Johannes Will ** *Timken, Brno, Czech Republic, ** DYNARDO Dynamic Software and Engineering

More information

Optimization of an Axial Pump using CFturbo, PumpLinx & optislang

Optimization of an Axial Pump using CFturbo, PumpLinx & optislang 13th Annual Weimar Optimization and Stochastic Days 2016 Conference for CAE-based parametric optimization, stochastic analysis and Robust Design Optimization Optimization of an Axial Pump using CFturbo,

More information

Statistics on Structures 3.1

Statistics on Structures 3.1 New features exploring new fields of application Christian Bucher, Claudia Bucher, Christopher Riemel, Sebastian Wolff* DYNARDO Austria GmbH WOST 2014, 6./7.11.2014, Weimar optislang & SoS: What is the

More information

New developments in LS-OPT

New developments in LS-OPT 7. LS-DYNA Anwenderforum, Bamberg 2008 Optimierung II New developments in LS-OPT Nielen Stander, Tushar Goel, Willem Roux Livermore Software Technology Corporation, Livermore, CA94551, USA Summary: This

More information

Varianzbasierte Robustheitsoptimierung

Varianzbasierte Robustheitsoptimierung DVM Workshop Zuverlässigkeit und Probabilistik München, November 2017 Varianzbasierte Robustheitsoptimierung unter Pareto Kriterien Veit Bayer Thomas Most Dynardo GmbH Weimar Robustness Evaluation 2 How

More information

Parametric optimization of an oilpan - Implementation of the process-chain Pro/E - ANSYS Workbench - optislang. Lectures. Andreas Veiz & Johannes Will

Parametric optimization of an oilpan - Implementation of the process-chain Pro/E - ANSYS Workbench - optislang. Lectures. Andreas Veiz & Johannes Will Lectures Parametric optimization of an oilpan - Implementation of the process-chain Pro/E - ANSYS Workbench - optislang Andreas Veiz & Johannes Will presented at the Weimar Optimization and Stochastic

More information

Multi-objective optimization of a radial compressor impeller with subsequent robustness evaluation

Multi-objective optimization of a radial compressor impeller with subsequent robustness evaluation Multi-objective optimization of a radial compressor impeller with subsequent robustness evaluation T. Wanzek 1*, D. Karschnia 1, F. Seifert 1, J. Jasper 1, S. Rothgang 1 K. Cremanns 2, H. Lehmkuhl 2, D.

More information

Mathematical Optimization of Clamping Processes in Car-Body Production

Mathematical Optimization of Clamping Processes in Car-Body Production Mathematical Optimization of Clamping Processes in Car-Body Production 12. Weimarer Optimierungs- und Stochastiktage 2015 05.-06. November 2015 André Hofmann (VW) Markus Rössinger (VW) Patrick Ackert (IWU)

More information

Robust Design Optimization and Operating Maps for Computational Fluid Dynamics

Robust Design Optimization and Operating Maps for Computational Fluid Dynamics Robust Design Optimization and Operating Maps for Computational Fluid Dynamics Dr. R. Niemeier, Dr.-Ing. S. Kunath, Dr.-Ing. habil. T. Most, Dr.-Ing. J. Will (Dynardo GmbH, Germany); Dr.-Ing. J. Einzinger

More information

RDO-JOURNAL ISSUE 2/2016. Title Story // optislang - Ready for Digital Twin to bridge into Production 4.0 & Industrial Internet of Things

RDO-JOURNAL ISSUE 2/2016. Title Story // optislang - Ready for Digital Twin to bridge into Production 4.0 & Industrial Internet of Things dynamic software & engineering ISSUE 2/2016 Title Story // optislang - Ready for Digital Twin to bridge into Production 4.0 & Industrial Internet of Things Optimization of a piston geometry Structural

More information

Computer-aided Calibration of IGBT SPICE Model with optislang

Computer-aided Calibration of IGBT SPICE Model with optislang Computer-aided Calibration of IGBT SPICE Model with optislang WOST 2018 2018-06-21 A. Biswas, M. Cotorogea, P. Türkes, F.J. Niedernostheide Infineon Technologies AG Special thanks: Rene Kallmeyer (Dynardo)

More information

Robust Design Optimization in forming process simulation. Lectures. Johannes Will

Robust Design Optimization in forming process simulation. Lectures. Johannes Will Lectures Robust Design Optimization in forming process simulation Johannes Will presented at the 25th CADFEM Users Meeting, Dresden 2007 Source: www.dynardo.de/en/library Robust Design Optimization in

More information

MATLAB Based Optimization Techniques and Parallel Computing

MATLAB Based Optimization Techniques and Parallel Computing MATLAB Based Optimization Techniques and Parallel Computing Bratislava June 4, 2009 2009 The MathWorks, Inc. Jörg-M. Sautter Application Engineer The MathWorks Agenda Introduction Local and Smooth Optimization

More information

Effiziente Designverfahren für optische Laser- und Beleuchtungssysteme

Effiziente Designverfahren für optische Laser- und Beleuchtungssysteme 2015/11/06 Effiziente Designverfahren für optische Laser- und Beleuchtungssysteme Dr. Michael Kuhn, LightTrans GmbH Dr. Stephanie Kunath, Dynardo GmbH LightTrans A Short Overview Founded in 1999 Offices

More information

CAD-parametric optimization with optislang-ansys workbench

CAD-parametric optimization with optislang-ansys workbench CAD-parametric optimization with optislang-ansys workbench Andreas Veiz 1* & Markus Egerland 2 1 University of Applied Sciences Jena, Jena, Germany 2 SiemensVDO automotive AG, electric motor drives, Würzburg,

More information

Parameter based 3D Optimization of the TU Berlin TurboLab Stator with ANSYS optislang

Parameter based 3D Optimization of the TU Berlin TurboLab Stator with ANSYS optislang presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library Parameter based 3D Optimization of the TU Berlin TurboLab Stator with ANSYS optislang Benedikt Flurl

More information

DYNARDO Dynardo GmbH Robustness & Reliability Analysis

DYNARDO Dynardo GmbH Robustness & Reliability Analysis Robustness & Reliability Analysis 1 Start Robust Design Optimization Robust Design Variance based Robustness Evaluation Probability based Robustness Evaluation, (Reliability analysis) Optimization Sensitivity

More information

DYNARDO Dynardo GmbH CFD Examples. Dr.-Ing. Johannes Will President Dynardo GmbH

DYNARDO Dynardo GmbH CFD Examples. Dr.-Ing. Johannes Will President Dynardo GmbH CFD Examples Dr.-Ing. Johannes Will President Dynardo GmbH 1 Flow Simulation of LCD Manufacturing Process Task: - Optimization the flow conditions at a LCD manufacturing process - Inputs: - lab geometry

More information

modefrontier: Successful technologies for PIDO

modefrontier: Successful technologies for PIDO 10 modefrontier: Successful technologies for PIDO The acronym PIDO stands for Process Integration and Design Optimization. In few words, a PIDO can be described as a tool that allows the effective management

More information

PIDO Technology Transfered

PIDO Technology Transfered Research & Development Commercialization & Maintenance PIDO Technology Transfered Development of PIDO Tool Engineering Consulting Business Area Customization of Design Software Technical Support & Training

More information

Open source software tools for powertrain optimisation

Open source software tools for powertrain optimisation Open source software tools for powertrain optimisation Paolo Geremia Eugene de Villiers TWO-DAY MEETING ON INTERNAL COMBUSTION ENGINE SIMULATIONS USING OPENFOAM TECHNOLOGY 11-12 July, 2011 info@engys.eu

More information

Simulation-Supported Decision Making. Gene Allen Director, Collaborative Development MSC Software Corporation

Simulation-Supported Decision Making. Gene Allen Director, Collaborative Development MSC Software Corporation Simulation-Supported Decision Making Gene Allen Director, Collaborative Development MSC Software Corporation Simulation A Tool for Decision Making Quickly Identify and Understand How a Product Functions:

More information

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB

Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Hardware-Efficient Parallelized Optimization with COMSOL Multiphysics and MATLAB Frommelt Thomas* and Gutser Raphael SGL Carbon GmbH *Corresponding author: Werner-von-Siemens Straße 18, 86405 Meitingen,

More information

Isight - parametric optimization and automation. Marko Vrh SIMULIA seminar

Isight - parametric optimization and automation. Marko Vrh SIMULIA seminar Isight - parametric optimization and automation Marko Vrh SIMULIA seminar Ljubljana, 12.4.2016 Agenda What is Isight Licesing What can Isight do for (or instead) of you? How to work with Isight Design

More information

Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved.

Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. Parametric Modeling Best Practices Patrick Cunningham July, 2012 CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved. E-Learning Webinar Series This

More information

PROCESS DEVELOPMENT FOR MULTI-DISCIPLINARY SPOT WELD OPTIMIZATION WITH CAX-LOCO, LS-OPT AND ANSA

PROCESS DEVELOPMENT FOR MULTI-DISCIPLINARY SPOT WELD OPTIMIZATION WITH CAX-LOCO, LS-OPT AND ANSA PROCESS DEVELOPMENT FOR MULTI-DISCIPLINARY SPOT WELD OPTIMIZATION WITH CAX-LOCO, LS-OPT AND ANSA 1 Dr. Gordon Geißler *, 2 Thomas Hahn 1 DYNAmore GmbH, Germany, 2 Audi AG, Germany KEYWORDS Connection Modelling,

More information

KEYWORDS Non-parametric optimization, Parametric Optimization, Design of Experiments, Response Surface Modelling, Multidisciplinary Optimization

KEYWORDS Non-parametric optimization, Parametric Optimization, Design of Experiments, Response Surface Modelling, Multidisciplinary Optimization Session H2.5 OVERVIEW ON OPTIMIZATION METHODS Ioannis Nitsopoulos *, Boris Lauber FE-DESIGN GmbH, Germany KEYWORDS Non-parametric optimization, Parametric Optimization, Design of Experiments, Response

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

A multi-objective optimisation-based software environment for control systems design

A multi-objective optimisation-based software environment for control systems design A multi-objective optimisation-based software environment for control systems design Hans-Dieter Joos, Johann Bals, Gertjan Looye, Klaus Schnepper, Andras Varga Institute of Robotics and Mechatronics DLR

More information

Simulation and Optimization Methods for Reliability Analysis

Simulation and Optimization Methods for Reliability Analysis Simulation and Optimization Methods for Reliability Analysis M. Oberguggenberger, M. Prackwieser, M. Schwarz University of Innsbruck, Department of Engineering Science INTALES GmbH Engineering Solutions

More information

Optimization with LS-OPT: Possibilities and new developments in LS-OPT 6.0

Optimization with LS-OPT: Possibilities and new developments in LS-OPT 6.0 Infotag ANSA/LS-OPT/META Optimization with LS-OPT: Possibilities and new developments in LS-OPT 6.0 Nielen Stander (LSTC) Katharina Witowski (DYNAmore GmbH) Stuttgart, 05.02.2018 Outline About LS-OPT Methodologies

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

modefrontier v4.3 and Beyond

modefrontier v4.3 and Beyond modefrontier v4.3 and Beyond Product Roadmap Luka Onesti Outline Release Roadmap modefrontier v4.3 modefrontier v5 Visualization Overview Integration Concepts Release Roadmap Q1 Q2 Q3 Q4 Q1 modefrontier

More information

Introduction to Simulink Design Optimization

Introduction to Simulink Design Optimization 2009 The MathWorks, Inc. Introduction to Simulink Design Optimization Estimate and optimize Simulink model parameters Arkadiy Turevskiy and Alec Stothert Introduction to Simulink Design Optimization Estimate

More information

Parameter Identification based on quasi-continuous strain data captured by high resolution fiber optic sensing. Andreas Künzel TU Berlin

Parameter Identification based on quasi-continuous strain data captured by high resolution fiber optic sensing. Andreas Künzel TU Berlin Parameter Identification based on quasi-continuous strain data captured by high resolution fiber optic sensing Parameteridentifikation auf Basis faseroptisch gemessener quasikontinuierlicher Dehnungssignale

More information

Sensitivity Analysis of Evacuation Simulations

Sensitivity Analysis of Evacuation Simulations Sensitivity Analysis of Evacuation Simulations 07. November 2014, WOST Contents Introduction Project Motivation and Background Basics of Evacuation Simulation Pathfinder simulation Input and Output Parameters

More information

Louis Fourrier Fabien Gaie Thomas Rolf

Louis Fourrier Fabien Gaie Thomas Rolf CS 229 Stay Alert! The Ford Challenge Louis Fourrier Fabien Gaie Thomas Rolf Louis Fourrier Fabien Gaie Thomas Rolf 1. Problem description a. Goal Our final project is a recent Kaggle competition submitted

More information

MULTI-OBJECTIVE OPTIMISATION INTEGRATING ANSA WITH MODEFRONTIER

MULTI-OBJECTIVE OPTIMISATION INTEGRATING ANSA WITH MODEFRONTIER MULTI-OBJECTIVE OPTIMISATION INTEGRATING ANSA WITH MODEFRONTIER 1 Alberto Clarich *, 2 Paolo Geremia 1,2 ESTECO srl, Trieste, Italy KEYWORDS multi-objective optimisation, distributed and automatic computational

More information

Enabling Efficient Optimization / Sensitivity and Robustness Analysis for Crashworthiness, NVH, and Multi-disciplinary Concept Assessments

Enabling Efficient Optimization / Sensitivity and Robustness Analysis for Crashworthiness, NVH, and Multi-disciplinary Concept Assessments Parametric Modeling of Car Body Structures Enabling Efficient Optimization / Sensitivity and Robustness Analysis for Crashworthiness, NVH, and Multi-disciplinary Concept Assessments White Paper by Dr.

More information

Optimization and Probabilistic Analysis Using LS-DYNA

Optimization and Probabilistic Analysis Using LS-DYNA LS-OPT Optimization and Probabilistic Analysis Using LS-DYNA Nielen Stander Willem Roux Tushar Goel Livermore Software Technology Corporation Overview Introduction: LS-OPT features overview Design improvement

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

Large-scale workflows for wave-equation based inversion in Julia

Large-scale workflows for wave-equation based inversion in Julia Large-scale workflows for wave-equation based inversion in Julia Philipp A. Witte, Mathias Louboutin and Felix J. Herrmann SLIM University of British Columbia Motivation Use Geophysics to understand the

More information

Vorstellung von LS-OPT Version 5

Vorstellung von LS-OPT Version 5 Vorstellung von LS-OPT Version 5 Katharina Witowski kaw@dynamore.de DYNAmore GmbH Industriestraße 2 70565 Stuttgart http://www.dynamore.de 1 Outline Overview of methodologies and applications of LS-OPT

More information

LS-OPT : New Developments and Outlook

LS-OPT : New Developments and Outlook 13 th International LS-DYNA Users Conference Session: Optimization LS-OPT : New Developments and Outlook Nielen Stander and Anirban Basudhar Livermore Software Technology Corporation Livermore, CA 94588

More information

Convex Optimization. Lijun Zhang Modification of

Convex Optimization. Lijun Zhang   Modification of Convex Optimization Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Modification of http://stanford.edu/~boyd/cvxbook/bv_cvxslides.pdf Outline Introduction Convex Sets & Functions Convex Optimization

More information

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO Workshop HPC Methods for Engineering CINECA (Milan, Italy). June 17th-19th, 2015. Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

More information

Enhanced Six Sigma with Uncertainty Quantification. Mark Andrews SmartUQ, Madison WI

Enhanced Six Sigma with Uncertainty Quantification. Mark Andrews SmartUQ, Madison WI Enhanced Six Sigma with Uncertainty Quantification Mark Andrews SmartUQ, Madison WI ASQ World Conference Session T05 May 1, 2017 Learning Objectives In this session you will: Learn basic concepts of Uncertainty

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Recent Advances in ANSYS Toward RDO Practices Using optislang. Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH

Recent Advances in ANSYS Toward RDO Practices Using optislang. Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH Recent Advances in ANSYS Toward RDO Practices Using optislang Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH 1 Product Development Pressures Source: Engineering Simulation & HPC Usage Survey

More information

Robust Automotive Suspension Design Using Adaptive Response Surface Based Multi-Objective Optimization

Robust Automotive Suspension Design Using Adaptive Response Surface Based Multi-Objective Optimization Robust Automotive Suspension Design Using Adaptive Response Surface Based Multi-Objective Optimization Paul Tobe Ubben 1*, Jürgen Haug 1, Dieter Bestle 2 1 Daimler AG - Group Research & Advanced Engineering,

More information

PATTERN CLASSIFICATION AND SCENE ANALYSIS

PATTERN CLASSIFICATION AND SCENE ANALYSIS PATTERN CLASSIFICATION AND SCENE ANALYSIS RICHARD O. DUDA PETER E. HART Stanford Research Institute, Menlo Park, California A WILEY-INTERSCIENCE PUBLICATION JOHN WILEY & SONS New York Chichester Brisbane

More information

5 Machine Learning Abstractions and Numerical Optimization

5 Machine Learning Abstractions and Numerical Optimization Machine Learning Abstractions and Numerical Optimization 25 5 Machine Learning Abstractions and Numerical Optimization ML ABSTRACTIONS [some meta comments on machine learning] [When you write a large computer

More information

MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS

MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS EVOLUTIONARY METHODS FOR DESIGN, OPTIMIZATION AND CONTROL P. Neittaanmäki, J. Périaux and T. Tuovinen (Eds.) CIMNE, Barcelona, Spain 2007 MULTI-OBJECTIVE OPTIMISATION IN MODEFRONTIER FOR AERONAUTIC APPLICATIONS

More information

TIES598 Nonlinear Multiobjective Optimization Methods to handle computationally expensive problems in multiobjective optimization

TIES598 Nonlinear Multiobjective Optimization Methods to handle computationally expensive problems in multiobjective optimization TIES598 Nonlinear Multiobjective Optimization Methods to hle computationally expensive problems in multiobjective optimization Spring 2015 Jussi Hakanen Markus Hartikainen firstname.lastname@jyu.fi Outline

More information

Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3

Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3 Proceedings Recent Design Optimization Methods for Energy- Efficient Electric Motors and Derived Requirements for a New Improved Method Part 3 Johannes Schmelcher 1, *, Max Kleine Büning 2, Kai Kreisköther

More information

Multidisciplinary System Design Optimization (MSDO) Course Summary

Multidisciplinary System Design Optimization (MSDO) Course Summary Multidisciplinary System Design Optimization (MSDO) Course Summary Lecture 23 Prof. Olivier de Weck Prof. Karen Willcox 1 Outline Summarize course content Present some emerging research directions Interactive

More information

Mathematical Optimization of Clamping Processes in Car-Body Production

Mathematical Optimization of Clamping Processes in Car-Body Production Mathematical Optimization of Clamping Processes in Car-Body Production Christian Schwarz 1*, Patrick Ackert 1, Markus Rössinger 2, André Hofmann 2, Reinhard Mauermann 1, Dirk Landgrebe 1 1 Fraunhofer IWU

More information

Module 4. Computer-Aided Design (CAD) systems

Module 4. Computer-Aided Design (CAD) systems Module 4. Computer-Aided Design (CAD) systems Nowadays the design of complex systems is unconceivable without computers. The fast computers, the sophisticated developing environments and the well elaborated

More information

The Genetic Algorithm for finding the maxima of single-variable functions

The Genetic Algorithm for finding the maxima of single-variable functions Research Inventy: International Journal Of Engineering And Science Vol.4, Issue 3(March 2014), PP 46-54 Issn (e): 2278-4721, Issn (p):2319-6483, www.researchinventy.com The Genetic Algorithm for finding

More information

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz

Gradient Descent. Wed Sept 20th, James McInenrey Adapted from slides by Francisco J. R. Ruiz Gradient Descent Wed Sept 20th, 2017 James McInenrey Adapted from slides by Francisco J. R. Ruiz Housekeeping A few clarifications of and adjustments to the course schedule: No more breaks at the midpoint

More information

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman

Lecture 4. Convexity Robust cost functions Optimizing non-convex functions. 3B1B Optimization Michaelmas 2017 A. Zisserman Lecture 4 3B1B Optimization Michaelmas 2017 A. Zisserman Convexity Robust cost functions Optimizing non-convex functions grid search branch and bound simulated annealing evolutionary optimization The Optimization

More information

Developing Optimization Algorithms for Real-World Applications

Developing Optimization Algorithms for Real-World Applications Developing Optimization Algorithms for Real-World Applications Gautam Ponnappa PC Training Engineer Viju Ravichandran, PhD Education Technical Evangelist 2015 The MathWorks, Inc. 1 2 For a given system,

More information

Design Exploration and Robust Design. Judd Kaiser Product Manager, ANSYS Workbench Platform

Design Exploration and Robust Design. Judd Kaiser Product Manager, ANSYS Workbench Platform Design Exploration and Robust Design Judd Kaiser Product Manager, ANSYS Workbench Platform 1 Agenda 2 What is Robust Design? At ANSYS Workbench Principles DesignXplorer ANSYS Vision What is Robust Design?

More information

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey. Chapter 4 : Optimization for Machine Learning Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization: A Survey Chapter 4 : Optimization for Machine Learning Summary of Chapter 2 Chapter 2: Convex Optimization with Sparsity

More information

Development of optimization methods for Volvo fuel economy simulation. Master s thesis in Signal and Systems RAFAEL KLÜPPEL SMIJTINK

Development of optimization methods for Volvo fuel economy simulation. Master s thesis in Signal and Systems RAFAEL KLÜPPEL SMIJTINK Development of optimization methods for Volvo fuel economy simulation. Master s thesis in Signal and Systems RAFAEL KLÜPPEL SMIJTINK 1 Development of optimization methods for Volvo fuel economy simulation.

More information

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES

CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 70 CHAPTER 3 A FAST K-MODES CLUSTERING ALGORITHM TO WAREHOUSE VERY LARGE HETEROGENEOUS MEDICAL DATABASES 3.1 INTRODUCTION In medical science, effective tools are essential to categorize and systematically

More information

INTEROPERABILITY WITH FMI TOOLS AND SOFTWARE COMPONENTS. Johan Åkesson

INTEROPERABILITY WITH FMI TOOLS AND SOFTWARE COMPONENTS. Johan Åkesson INTEROPERABILITY WITH FMI TOOLS AND SOFTWARE COMPONENTS Johan Åkesson 1 OUTLINE FMI Technology FMI tools Industrial FMI integration example THE FUNCTIONAL MOCK-UP INTERFACE Problems/needs Component development

More information

Topology Optimization of Multiple Load Case Structures

Topology Optimization of Multiple Load Case Structures Topology Optimization of Multiple Load Case Structures Rafael Santos Iwamura Exectuive Aviation Engineering Department EMBRAER S.A. rafael.iwamura@embraer.com.br Alfredo Rocha de Faria Department of Mechanical

More information

Active contour: a parallel genetic algorithm approach

Active contour: a parallel genetic algorithm approach id-1 Active contour: a parallel genetic algorithm approach Florence Kussener 1 1 MathWorks, 2 rue de Paris 92196 Meudon Cedex, France Florence.Kussener@mathworks.fr Abstract This paper presents an algorithm

More information

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation

Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Subspace Clustering with Global Dimension Minimization And Application to Motion Segmentation Bryan Poling University of Minnesota Joint work with Gilad Lerman University of Minnesota The Problem of Subspace

More information

Summary and Conclusions

Summary and Conclusions Chapter 13 Summary and Conclusions 13.1 Summary Focusing on the abstract response mechanism of multiple-bolt joints in timber, this work presented the derivation of MULTBOLT, a robust model that predicts

More information

ADVANCED POST-PROCESSING OF RESULT FROM MOLDFLOW / MOLDEX3D AND EXTENSION

ADVANCED POST-PROCESSING OF RESULT FROM MOLDFLOW / MOLDEX3D AND EXTENSION ADVANCED POST-PROCESSING OF RESULT FROM MOLDFLOW / MOLDEX3D AND EXTENSION 1 Jing Jin * 2 Chenling Jiang * 3 Zhenyi Cao * 1 BASF /Performance Material, China 2 University of Victoria /Department of Mechanical

More information

Optimieren mit MATLAB jetzt auch gemischt-ganzzahlig Dr. Maka Karalashvili Application Engineer MathWorks

Optimieren mit MATLAB jetzt auch gemischt-ganzzahlig Dr. Maka Karalashvili Application Engineer MathWorks Optimieren mit MATLAB jetzt auch gemischt-ganzzahlig Dr. Maka Karalashvili Application Engineer MathWorks 2014 The MathWorks, Inc. 1 Let s consider the following modeling case study Requirements Item Nuts

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems

An evolutionary annealing-simplex algorithm for global optimisation of water resource systems FIFTH INTERNATIONAL CONFERENCE ON HYDROINFORMATICS 1-5 July 2002, Cardiff, UK C05 - Evolutionary algorithms in hydroinformatics An evolutionary annealing-simplex algorithm for global optimisation of water

More information

Integrierte Optimierung mit ANSA, LS-OPT und META

Integrierte Optimierung mit ANSA, LS-OPT und META DYNAmore Infoveranstaltung Integrierte Optimierung mit ANSA, LS-OPT und META Heiner Müllerschön DYNAmore GmbH Stuttgart, 01. März 2012 1 Einordnung Lineare / Nichtlineare Optimierung Introduction Optimization

More information

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization

Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic Algorithm and Particle Swarm Optimization 2017 2 nd International Electrical Engineering Conference (IEEC 2017) May. 19 th -20 th, 2017 at IEP Centre, Karachi, Pakistan Meta- Heuristic based Optimization Algorithms: A Comparative Study of Genetic

More information

Conference Dynamic Simulation in Vehicle Engineering Realtime Simulation of Vehicles Containing Detailed Components

Conference Dynamic Simulation in Vehicle Engineering Realtime Simulation of Vehicles Containing Detailed Components General Conference Dynamic Simulation in Vehicle Engineering Realtime Simulation of Vehicles Containing Detailed Components SIMPACK AG 2014, All rights reserved. SIMPACK Introduction Agenda SIMPACK AG

More information

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient

Today. Golden section, discussion of error Newton s method. Newton s method, steepest descent, conjugate gradient Optimization Last time Root finding: definition, motivation Algorithms: Bisection, false position, secant, Newton-Raphson Convergence & tradeoffs Example applications of Newton s method Root finding in

More information