Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved.

Size: px
Start display at page:

Download "Parametric. Practices. Patrick Cunningham. CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved."

Transcription

1 Parametric Modeling Best Practices Patrick Cunningham July, 2012 CAE Associates Inc. and ANSYS Inc. Proprietary 2012 CAE Associates Inc. and ANSYS Inc. All rights reserved.

2 E-Learning Webinar Series This the first of a series of E-Learning webinars to be offered by CAE Associates. If you are a New Jersey or New York resident you will earn continuing education credit for attending the full webinar, participating in the polls and completing a survey at the conclusion of the webinar. Other E-Learning webinar topics coming up are: CAD Cleanup August 14 th and August 16 th Meshing Part I - 3D Solids August 28 th Meshing Part II - Shells and Beams September 11 th Visit for details. 2

3 Topics 1. Benefits of a parametric modeling approach to analysis. 2. Defining input and output parameters. 3. Using the Parameter Set 4. Parameter Correlation 5. DesignXploration DOE Matrix Response Surfaces Goal Based Optimization Six Sigma Analysis 3

4 Why Model Parametrically? Reasons for creating models that are parametric: 1. If you are using a CAD system, you are probably already doing it. 2. You can gain a deeper understanding of your design at very little cost. 3. You can eliminate unwanted surprises in the design process. 4

5 Parametric Modeling Steps The setup of a parametric modeling environment involves the following steps: 1. Identify the input parameters. These are quantities that may alter the response. Input parameters can consist of the following: CAD parameters Material coefficients Loading magnitudes Mesh controls 2. Identify the output parameters. These are the responses of the system that you are interested in such as: Mass and volume Deflection, strain and stress Reaction force Contact t gap and pressure User Defined Results 5

6 Parametric Modeling Steps (continued) 3. Evaluate parameter sensitivity. 4. Perform Design of Experiments analysis using the critical the design parameters. 5. Curve fit the DOE results. 6. Find the optimum design configuration. 7. Use a statistical approach to determine the robustness of your design. 6

7 Parametric Modeling Example Consider the lower jaw of a vice grip. We would like to determine the optimum shape of the jaw based on the stress limit of the material, the amount of deflection under load, and the force required to close the jaw. 7

8 Demo Geometry For this example we will be using SolidWorks as the CAD modeling tool. A simplified representation of the lower jaw will be analyzed. Pivot_horz Jaw_length Jaw_thickness Pivot_vert Jaw_OD 8

9 Parametric Modeling The parametric modeling approach begins with the CAD model. Identify the features on the CAD side that may affect the design. Locate the dimensional parameters of the features and make them identifiable to the ANSYS Workbench environment. Select the parameter from the sketch. Rename the parameter with a prefix (Example MP ). 9

10 Parametric Modeling Named Selections can also be created at the CAD level. Named Selections can be used for model setup in the Mechanical environment. 10

11 Loading the Parametric Model into ANSYS There are two ways to launch ANSYS and connect to the CAD geometry: 1. Select Workbench from the plug in menu in the CAD tool. The connection to the active CAD model will me made automatically. 2. Run Workbench as a stand alone process and drag and drop a Geometry component or an Analysis System onto the project page. RMB click on the Geometry row to select the active CAD model. 11

12 Loading the Parametric Model into ANSYS With the geometry connected to the active CAD file, define the Properties to include CAD parameters as well as other items such as Named Selections and Coordinate Systems. Use the Parameter and key to filter out the specific parameters of interest. 12

13 Defining Geometry Input Parameters Double click (or RMB > Edit) the Model row open the Mechanical tool. Select the part in the Geometry section and look for the shared CAD parameter data in the Details menu. Click on the box to the left of each CAD parameter to add it to the Workbench Parameter Tool (indicated by the capital P in the box). Note: If DesignModeler is used this step is accomplished there. 13

14 Model Setup Apply all loads and supports in the Mechanical interface. If you have Named Selections that were imported from the CAD model you can use them to define loads and supports. 14

15 Input Parameters for Loads If any of the load magnitudes will be varied parametrically add them to the Parameter Set by clicking on the box to the left of item. 15

16 Output Parameters Output parameters consist of the result quantities that you want to keep track off. Output quantities can consist of the following: Mass and Volume from the Details menu of a body (in Geometry). Minimum or Maximum quantities for standard result items in the Solution folder (deformation, strain, stress, reaction force, User Defined Results, contact pressure, etc.). Scalar parameters defined in a post-processing command block. Pulling scalar parameters from an APDL postprocessing command block. 16

17 Material Input Parameters To identify material coefficients as input parameters return to the Project page and double click on the Engineering Data row to open it. Identify the material coefficient that you would like to define parametrically by clicking on the box in column E of the Properties window. 17

18 Working with Parameters Return to the Project Page and double click on the Parameter Set. 18

19 Working with Parameters You can set up design points and generate solutions by filling in the Table of Design Points and solving. The Output Parameters will be updated as each design point solution is completed. A table of design points can be pasted into the Parameter Set. 19

20 Solving Design Points Using ANSYS RSM The Remote Solve Manager is an ANSYS utility with which you can identify other computers on your network that can be used to generate design point solutions. You can identify single remote solver machines or a cluster of machines. 20

21 Solving Design Points Using RSM If your CAD program is not installed on the remote machines you will need to generate design point updates locally. Set the Update Option in the Properties of the Parameter Set to Run in Foreground. With this configuration the design point files are generated in series and submitted to the Remote Solve Manager. 21

22 Submitting Design Points to RSM To use an RSM cluster to generate each of the design point solutions select the Solution row of the Analysis System and set the Update Option to Submit to Remote Solve Manager. With a cluster of machines you can solve generate the design point solutions simultaneously. 22

23 Which Parameters are Important? The Parameters Correlation tool in ANSYS Workbench can be used to evaluate importance of an input parameter to the response. Drag and drop the Parameters Correlation tool onto the project page and edit. 23

24 Parameters Correlation Identify which parameters you would like to include in the Parameter Correlation and define a value range for each parameter. 24

25 Parameters Correlation Select the Parameters Correlation (A2) and define the properties in the window below: Preserve Design Points Correlation Type : Spearman (quadratic) or Pearson (linear) Number of samples Auto Stop Enabled (based on the defined accuracy criteria) 25

26 Parameters Correlation Use the Preview button on the tool bar to review the correlation design points and the Update button to generate the design point solutions. 26

27 Parameters Correlation When the design point solutions are complete review the correlation matrix to evaluate the relationship between the input and output parameters. The closer the value is to 1 (or -1) the stronger the relationship. 27

28 Parameters Correlation The Correlation Matrix has four quadrants: Q1 and Q3 are the input to output strengths and are symmetric. Q2 is the correlation between input parameters. Q4 is the correlation between output parameters Input to Input Input to Output Output to Input Output to Output 28

29 Parameters Correlation The Correlation Matrix indicates the following: Strong coupling of input P1 to P8, P2 to P7 and P9, and P4 to P6. Weak coupling of P3 and P5 to all output parameters. 29

30 Determination Matrix The quadratic coefficient of determination (also called R-square) tells you what proportion of the variation between the data points is explained or accounted for by the best fit curve (quadratic) fitted to the points. It indicates how close the points are to the curve. It provides a measure of how well future outcomes are likely to be predicted by the model. 30

31 Goal Driven Optimization Return to the project page and drag and drop the Goal Driven Optimization tool onto the project. Double click in the Design of Experiments row to open it. 31

32 Goal Driven Optimization Uncheck the input parameters that displayed a weak coupling with the output in the Parameters Correlation (P3 and P5). Select a Design of Experiments Type from the pull down menu. 32

33 Goal Driven Optimization Select the active parameters and set the desired parameter range for each parameter. Use the Preview button on the Toolbar to view the design points. 33

34 Goal Driven Optimization Select the Update button to generate the design point solutions. If you have specified the Remote Solve Manager as the update option for Mechanical the design points will be solved simultaneously. 34

35 Goal Driven Optimization When the design point solutions are complete you can perform a cursory check of the response by viewing input versus output parameters as line plots. 35

36 Goal Driven Optimization For a more detailed evaluation return to the project page and double click on the Response Surface row. 36

37 Response Surfaces Select Response Surface (A2 of the Outline view) Pick a response surface type under Meta Model in the Properties view. Click on the Update button in the toolbar to generate the response surface. 37

38 Response Surface Types There are several choices for Response Surface types: Standard Response Surface 2nd-Order Polynomial (default) Effective when the variation of the output is smooth with regard to the input parameters. Manual refine is available. Kriging Efficient in a large number of cases. Suited to highly nonlinear responses. Do NOT use when results are noisy; Kriging is an interpolation that matches the points exactly. Always use verification points to check Goodness of Fit. Auto and manual refinement is available. Non-Parametric Regression Suited to nonlinear responses. Use when results are noisy. Manual refine is available. Neural Network Suited to highly nonlinear responses. Use when results are noisy. Control over the algorithm is very limited. Manual refine is available. Sparse Grid Suited for studies containing discontinuities. Use when solve is fast. Auto and manual refinement is available. 38

39 Response Surfaces Goodness of Fit Check the Goodness of Fit for the response surface type (note: Kriging fits to all design points by definition). 39

40 Response Surfaces Set the response surface mode to 2D or 3D and select the variables to be plotted. Display the design points on the response as a further evaluation of goodness of fit. 40

41 Local Parameter Sensitivities You can plot local parameter sensitivities in the Response Surface window. Local parameter sensitivities differ from Global Correlation sensitivities in that they are based on the difference between the minimum and maximum value obtained by varying one input parameter while holding all other input parameters constant. 41

42 GDO Sensitivity vs Parameters Correlation The sensitivities available under the Six Sigma Analysis and the Goal Driven Optimization views are statistical sensitivities. Statistical sensitivities are global sensitivities, whereas the single parameter sensitivities available under the Responses view are local sensitivities. Global statistical sensitivities are based on a correlation analysis using the generated sample points, which are located throughout the entire space of input parameters. Global statistical sensitivities do not depend on the values of the input parameters, because all possible values for the input parameters are already taken into account when determining the sensitivities. Local parameter sensitivities are based on the difference between the minimum and maximum value obtained by varying one input parameter while holding all other input parameters constant. As such, the values obtained for local parameter sensitivities depend on the values of the input parameters that are held constant. 42

43 Goal Driven Optimization Return to the project page and double click on the Goal Driven Optimization row. 43

44 Goal Driven Optimization Goal Driven Optimization is a technique in used to identify the best possible designs are obtained from a sample set. The results are relative to the goals you set for parameters as well as the goodness of fit of the response surfaces. 44

45 Goal Driven Optimization Candidate designs are curve fits to the response functions. RMB click on a candidate and choose Verify by Design Point Update to generate a deterministic result. 45

46 Goal Driven Optimization Compared the verified result to the candidate result when the solution is complete. 46

47 Six Sigma Analysis To determine the design robustness return to the project page and drag and drop a Six Sigma Analysis onto the project. 47

48 What is Six Sigma Analysis? Typical analyses assume a fixed value for each input quantity. Design For Six Sigma provides a mechanism to include and account for scatter in input and provide insight into how they affect the system response from a probabilistic standpoint. A product has Six Sigma quality if only 3.4 parts out of every 1 million fail to meet design criteria for stress limits safety factors, etc.. The Six Sigma designation includes a15sigmashifttotakeintoaccount 1.5 to take into account variability in manufacturing processes over time. 48

49 Six Sigma Analysis Double click on the Design of Experiments row to edit the Six Sigma analysis setup. Click on each input variable and define the Distribution Type. 49

50 Six Sigma Input Data There are several distribution types that are used depending on the type of data available: 50

51 Six Sigma Input Data Distribution Types: 1. Uniform Used when only the limits of the input data are known (such as a min-max tolerance on a manufacturing dimension). Uniform 2. Ti Triangular Used when additional background information is available. Example: the machinist also knew from experience the upper and lower bounds as well as the most common value. Triangular 3. Normal Describes a Gaussian Normal distribution (bell curve). Normal 4. Truncated Normal Gaussian distribution with the outer extremes removed. 5. Log Normal - Typically used to describe the scatter of the measurement data of a physical phenomena. 6. Exponential used where there is a physical reason that the probability density strictly decreases as the uncertainty variable value increases. Lognormal Truncated Normal Exponential 7. Beta Useful for random variables that are bounded at both sides. 8. Weibull - Most often used for strength or strength-related life cycle parameters. Beta Weibull 51

52 Six Sigma Input When distribution type and limits for each of the input parameters are defined click Update on the toolbar to generate the new DOE results. 52

53 Six Sigma Output Once the design point solutions are complete update the Six Sigma analysis row. Double click to open it and review the probability distributions of the output parameters. 53

54 Six Sigma Compliance A product has Six Sigma quality if only 3.4 parts out of every 1 million fail to meet design criteria. To access the results for each output parameter select the parameter and set the Probability Table to Percentile-Quantile 54

55 Six Sigma Compliance Scroll down to the bottom of the Probability Table and enter in a value of (1-(3.4/1e6)). Note that in this case 3.4 out of 1,000,000 parts will experience an equivalent stress of PSI or greater. If a PSI stress is acceptable based on design criteria a Six Sigma quality criteria is satisfied. 55

56 Thank you! Thank you for attending CAE Associates webinar on parametric modeling. You will receive via a survey to fill out and return. We welcome any comments or additional questions on the content. A transcript of this presentation can be downloaded from our website: com 56

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Lecture 4 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 s are functions of different nature where the output parameters are described in terms of the input parameters

More information

Webinar. Machine Tool Optimization with ANSYS optislang

Webinar. Machine Tool Optimization with ANSYS optislang Webinar Machine Tool Optimization with ANSYS optislang 1 Outline Introduction Process Integration Design of Experiments & Sensitivity Analysis Multi-objective Optimization Single-objective Optimization

More information

Introduction to ANSYS DesignXplorer

Introduction to ANSYS DesignXplorer Overview 14. 5 Release Introduction to ANSYS DesignXplorer 1 2013 ANSYS, Inc. September 27, 2013 What is DesignXplorer? DesignXplorer (DX) is a tool that uses response surfaces and direct optimization

More information

Statistics on Structures 3.1

Statistics on Structures 3.1 New features exploring new fields of application Christian Bucher, Claudia Bucher, Christopher Riemel, Sebastian Wolff* DYNARDO Austria GmbH WOST 2014, 6./7.11.2014, Weimar optislang & SoS: What is the

More information

Topology Optimization in Fluid Dynamics

Topology Optimization in Fluid Dynamics A Methodology for Topology Optimization in Fluid Dynamics 1 Chris Cowan Ozen Engineering, Inc. 1210 E. Arques Ave, Suite 207 Sunnyvale, CA 94085 info@ozeninc.com Ozen Engineering Inc. We are your local

More information

Application. Toolkit. Eric Stamper. CAE Associates Inc. and ANSYS Inc. Proprietary

Application. Toolkit. Eric Stamper. CAE Associates Inc. and ANSYS Inc. Proprietary Application Customization ti Toolkit Eric Stamper March 2013 CAE Associates Inc. and ANSYS Inc. Proprietary 2013 2008 CAE Associates CAE Associates Inc. and ANSYS Inc. All rights reserved. e-learning Webinar

More information

Webinar Parameter Identification with optislang. Dynardo GmbH

Webinar Parameter Identification with optislang. Dynardo GmbH Webinar Parameter Identification with optislang Dynardo GmbH 1 Outline Theoretical background Process Integration Sensitivity analysis Least squares minimization Example: Identification of material parameters

More information

Tutorial Week 7 Optimisation

Tutorial Week 7 Optimisation Introduction Tutorial Week 7 Optimisation This tutorial will introduce the optimisation study technique using the Response Surface Method in Workbench. You will learn to: Import a SolidWorks geometry into

More information

Workbench Simulation. Contact Analysis. 1 ANSYS, ANSYS, Inc. Inc. Proprietary

Workbench Simulation. Contact Analysis. 1 ANSYS, ANSYS, Inc. Inc. Proprietary Workbench Simulation Contact Analysis 1 ANSYS, ANSYS, Inc. Inc. Proprietary Objective and Outline Contact related features available in ANSYS Workbench Contact objects Initial contact status Contact meshing

More information

Design Exploration and Robust Design. Judd Kaiser Product Manager, ANSYS Workbench Platform

Design Exploration and Robust Design. Judd Kaiser Product Manager, ANSYS Workbench Platform Design Exploration and Robust Design Judd Kaiser Product Manager, ANSYS Workbench Platform 1 Agenda 2 What is Robust Design? At ANSYS Workbench Principles DesignXplorer ANSYS Vision What is Robust Design?

More information

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks

Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Multi-Disciplinary Design of an Aircraft Landing Gear with Altair HyperWorks Altair Engineering, October 2008 Introduction Task: To design an aircraft landing gear that meets design requirements of several

More information

Webinar optislang & ANSYS Workbench. Dynardo GmbH

Webinar optislang & ANSYS Workbench. Dynardo GmbH Webinar optislang & ANSYS Workbench Dynardo GmbH 1 1. Introduction 2. Process Integration and variation studies 6. Signal Processing 5. ANSYS Mechanical APDL in optislang 3. optislang inside ANSYS 4. ANSYS

More information

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff

Robustness analysis of metal forming simulation state of the art in practice. Lectures. S. Wolff Lectures Robustness analysis of metal forming simulation state of the art in practice S. Wolff presented at the ICAFT-SFU 2015 Source: www.dynardo.de/en/library Robustness analysis of metal forming simulation

More information

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench

Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Finite Element Analysis using ANSYS Mechanical APDL & ANSYS Workbench Course Curriculum (Duration: 120 Hrs.) Section I: ANSYS Mechanical APDL Chapter 1: Before you start using ANSYS a. Introduction to

More information

Finite Element Analysis Using Pro/Engineer

Finite Element Analysis Using Pro/Engineer Appendix A Finite Element Analysis Using Pro/Engineer A.1 INTRODUCTION Pro/ENGINEER is a three-dimensional product design tool that promotes practices in design while ensuring compliance with industry

More information

Analysis of low cycle fatigue considering geometric manufacturing tolerances

Analysis of low cycle fatigue considering geometric manufacturing tolerances presented at the 14th Weimar Optimization and Stochastic Days 2017 Source: www.dynardo.de/en/library Analysis of low cycle fatigue considering geometric manufacturing tolerances SIEMENS AG applies ANSYS,

More information

New developments in Statistics on Structures. Sebastian Wolff

New developments in Statistics on Structures. Sebastian Wolff New developments in Statistics on Structures Sebastian Wolff New developments in SoS Overview Releases since WOST 2016 SoS 3.3.0 March 2017 for optislang 6.0 SoS 3.3.1 May 2017 for optislang 6.1 Major

More information

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force

CHAPTER 4. Numerical Models. descriptions of the boundary conditions, element types, validation, and the force CHAPTER 4 Numerical Models This chapter presents the development of numerical models for sandwich beams/plates subjected to four-point bending and the hydromat test system. Detailed descriptions of the

More information

Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment

Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment Super Elastic Alloy Eyeglass Frame Design Using the ANSYS Workbench Environment Peter R. Barrett, P.E. Computer Aided Engineering Associates Inc. Patrick Cunningham Computer Aided Engineering Associates

More information

ANSYS - Workbench Overview. From zero to results. AGH 2014 April, 2014 W0-1

ANSYS - Workbench Overview. From zero to results. AGH 2014 April, 2014 W0-1 ANSYS - Workbench Overview From zero to results 2014 W0-1 Runing ANSYS WEiP ANSYS We are going to work in most advanced ANSYS Workbench W0-2 ANSYS Workbench WEiP What is Workbench? Platform for integration

More information

ANSYS Customization. Mechanical and Mechanical APDL. Eric Stamper. Presented by CAE Associates

ANSYS Customization. Mechanical and Mechanical APDL. Eric Stamper. Presented by CAE Associates ANSYS Customization Mechanical and Mechanical APDL Presented by Eric Stamper 2011 CAE Associates Introduction CAE Associates Inc. Engineering consulting firm since 1981. ANSYS consulting, custom software

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole

Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 4 Plate With a Hole Consider the classic example of a circular hole in a rectangular plate of constant thickness. The plate

More information

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam

Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Problem Specification Finite Element Course ANSYS Mechanical Tutorial Tutorial 3 Cantilever Beam Consider the beam in the figure below. It is clamped on the left side and has a point force of 8kN acting

More information

Verification of Laminar and Validation of Turbulent Pipe Flows

Verification of Laminar and Validation of Turbulent Pipe Flows 1 Verification of Laminar and Validation of Turbulent Pipe Flows 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 1 (ANSYS 18.1; Last Updated: Aug. 1, 2017) By Timur Dogan, Michael Conger, Dong-Hwan

More information

Appendix B Submodeling Technique

Appendix B Submodeling Technique Appendix B Submodeling Technique 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter controlling meshing operations is described. Topics:

More information

Shape optimisation using breakthrough technologies

Shape optimisation using breakthrough technologies Shape optimisation using breakthrough technologies Compiled by Mike Slack Ansys Technical Services 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Introduction Shape optimisation technologies

More information

Supersonic Flow Over a Wedge

Supersonic Flow Over a Wedge SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 2 Supersonic Flow Over a Wedge Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification A uniform supersonic stream encounters a wedge

More information

Generative Part Structural Analysis Fundamentals

Generative Part Structural Analysis Fundamentals CATIA V5 Training Foils Generative Part Structural Analysis Fundamentals Version 5 Release 19 September 2008 EDU_CAT_EN_GPF_FI_V5R19 About this course Objectives of the course Upon completion of this course

More information

Application Customization Toolkit. Jim Kosloski

Application Customization Toolkit. Jim Kosloski Application Customization Toolkit Jim Kosloski What is ACT? ANSYS ACT is the unified and consistent tool for the customization and expansion of ANSYS products. Using ACT, you can create vertical apps or

More information

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06)

Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Quarter Symmetry Tank Stress (Draft 4 Oct 24 06) Introduction You need to carry out the stress analysis of an outdoor water tank. Since it has quarter symmetry you start by building only one-fourth of

More information

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction

Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering. Introduction Revision of the SolidWorks Variable Pressure Simulation Tutorial J.E. Akin, Rice University, Mechanical Engineering Introduction A SolidWorks simulation tutorial is just intended to illustrate where to

More information

Module 1.5: Moment Loading of a 2D Cantilever Beam

Module 1.5: Moment Loading of a 2D Cantilever Beam Module 1.5: Moment Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing 9 Loads

More information

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents

Geostatistics 2D GMS 7.0 TUTORIALS. 1 Introduction. 1.1 Contents GMS 7.0 TUTORIALS 1 Introduction Two-dimensional geostatistics (interpolation) can be performed in GMS using the 2D Scatter Point module. The module is used to interpolate from sets of 2D scatter points

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit Agenda 9:00 Welcome 1:00 - Computing Utilities Introductions What is new at CAEA 9:15 - Mechanical Demonstration CAD connection utilities (within the CAD API) Mechanical setup Rigid Bodies, Joints, contact,

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project TN-O-G0003 Effects on Surface Figure Due to Random Error in Support Actuator Forces for an 8-m Primary Mirror Myung K. Cho Optics Group February 22, 1993 ABSTRACT The effects

More information

and ANSYS Workbench Model Optimization Prepared by: OPTIMUM Power Technology

and ANSYS Workbench Model Optimization Prepared by: OPTIMUM Power Technology and ANSYS Workbench Model Optimization Prepared by: OPTIMUM Power Technology Revised March 27, 2012 Table of Contents Table of Contents 2 Creating the Original Parametric Design 3 Analysis of the Baseline

More information

ANSYS Workbench Guide

ANSYS Workbench Guide ANSYS Workbench Guide Introduction This document serves as a step-by-step guide for conducting a Finite Element Analysis (FEA) using ANSYS Workbench. It will cover the use of the simulation package through

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

Random Vibration Analysis of a Circuit Board. Sean Harvey August 2000 CSI Tip of the Week

Random Vibration Analysis of a Circuit Board. Sean Harvey August 2000 CSI Tip of the Week Random Vibration Analysis of a Circuit Board Sean Harvey August 2000 CSI Tip of the Week Random Vibrations Outline Introduction Sample Problem Description Pre Processing Steps Omitted Interactive steps

More information

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook

ANSYS. DesignXplorer - Design for Six Sigma. Crane Hook ANSYS DesignXplorer - Crane Hook Purpose Using the crane hook model at right we will demonstrate how the design for six sigma results can be used in DesignXplorer 8.1 Goal Our first goal is to verify that

More information

Nouveautés ANSYS pour le calcul structurel et l impression 3D. CADFEM 2017 ANSYS Additive Manufacturing

Nouveautés ANSYS pour le calcul structurel et l impression 3D. CADFEM 2017 ANSYS Additive Manufacturing Titelmasterformat Journée Technologique durch AddiPole Klicken bearbeiten Nouveautés ANSYS pour le calcul structurel et l impression 3D Titelmasterformat Structural design with durch ANSYS Klicken bearbeiten

More information

Using Periodic Boundary Conditions

Using Periodic Boundary Conditions 1 of 6 2004 11 08 15:20 Use periodic boundary conditions, periodic edge conditions, and periodic point conditions to define a constraint that makes two quantities equal on two different (but usually equally

More information

Multiple Regression White paper

Multiple Regression White paper +44 (0) 333 666 7366 Multiple Regression White paper A tool to determine the impact in analysing the effectiveness of advertising spend. Multiple Regression In order to establish if the advertising mechanisms

More information

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015

Lecture 3 : General Preprocessing. Introduction to ANSYS Mechanical Release ANSYS, Inc. February 27, 2015 Lecture 3 : General Preprocessing 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter we cover basic preprocessing operations that are common

More information

"optislang inside ANSYS Workbench" efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization

optislang inside ANSYS Workbench efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization "optislang inside ANSYS Workbench" efficient, easy, and safe to use Robust Design Optimization (RDO) - Part I: Sensitivity and Optimization Johannes Will, CEO Dynardo GmbH 1 Optimization using optislang

More information

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0

Exercise 1. 3-Point Bending Using the Static Structural Module of. Ansys Workbench 14.0 Exercise 1 3-Point Bending Using the Static Structural Module of Contents Ansys Workbench 14.0 Learn how to...1 Given...2 Questions...2 Taking advantage of symmetries...2 A. Getting started...3 A.1 Choose

More information

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering

Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Engineering Effects of Boundary Conditions (Fixtures and Temperatures) J.E. Akin, Rice University, Mechanical Engineering Here SolidWorks stress simulation tutorials will be re-visited to show how they

More information

Visit the following websites to learn more about this book:

Visit the following websites to learn more about this book: Visit the following websites to learn more about this book: 6 Introduction to Finite Element Simulation Historically, finite element modeling tools were only capable of solving the simplest engineering

More information

Probabilistic Analysis Tutorial

Probabilistic Analysis Tutorial Probabilistic Analysis Tutorial 2-1 Probabilistic Analysis Tutorial This tutorial will familiarize the user with the Probabilistic Analysis features of Swedge. In a Probabilistic Analysis, you can define

More information

Multidisciplinary Analysis and Optimization

Multidisciplinary Analysis and Optimization OptiY Multidisciplinary Analysis and Optimization Process Integration OptiY is an open and multidisciplinary design environment, which provides direct and generic interfaces to many CAD/CAE-systems and

More information

ACP (ANSYS Composite Prep/Post) Jim Kosloski

ACP (ANSYS Composite Prep/Post) Jim Kosloski ACP (ANSYS Composite Prep/Post) Jim Kosloski ACP Background ANSYS Composite PrepPost is an add-on module dedicated to the modeling of layered composite structures. ACP is now included with the Mechanical

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Introduction to ANSYS FLUENT Meshing

Introduction to ANSYS FLUENT Meshing Workshop 04 CAD Import and Meshing from Conformal Faceting Input 14.5 Release Introduction to ANSYS FLUENT Meshing 2011 ANSYS, Inc. December 21, 2012 1 I Introduction Workshop Description: CAD files will

More information

ASME Fatigue DOCUMENTATION. ANSYS Mechanical Application. Extension version Compatible ANSYS version

ASME Fatigue DOCUMENTATION. ANSYS Mechanical Application. Extension version Compatible ANSYS version ASME Fatigue ANSYS Mechanical Application DOCUMENTATION Extension version 180.1 Release date 06-Apr-17 Compatible ANSYS version 18.0 www.edrmedeso.com Table of Contents 1 INTRODUCTION... 3 2 PRODUCT RESTRICTIONS...

More information

Module 1.6: Distributed Loading of a 2D Cantilever Beam

Module 1.6: Distributed Loading of a 2D Cantilever Beam Module 1.6: Distributed Loading of a 2D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Geometry 4 Preprocessor 7 Element Type 7 Real Constants and Material Properties 8 Meshing

More information

ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd.

ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd. ANSYS 14.0 Geometry and Meshing Update Steve Varnam ANSYS UK Ltd. 1 ANSYS Workbench Platform The most comprehensive platform for Multiphysics Simulations ANSYS Workbench Framework ANSYS DesignXplorer ANSYS

More information

SIMULATION CAPABILITIES IN CREO

SIMULATION CAPABILITIES IN CREO SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information

ME 442. Marc/Mentat-2011 Tutorial-1

ME 442. Marc/Mentat-2011 Tutorial-1 ME 442 Overview Marc/Mentat-2011 Tutorial-1 The purpose of this tutorial is to introduce the new user to the MSC/MARC/MENTAT finite element program. It should take about one hour to complete. The MARC/MENTAT

More information

Module 1.3W Distributed Loading of a 1D Cantilever Beam

Module 1.3W Distributed Loading of a 1D Cantilever Beam Module 1.3W Distributed Loading of a 1D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution

More information

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit

Agenda. 9:00 Welcome. 1:00 - Computing Utilities. 9:15 - Mechanical Demonstration. 1:30 - CFD Update. 3:00 Break 3:15 ANSYS Customization Toolkit Agenda 9:00 Welcome 1:00 - Computing Utilities Introductions HPC What is new at CAEA GPU 9:15 - Mechanical Demonstration CAD connection utilities (within the CAD API) Mechanical setup Rigid Bodies, Joints,

More information

Simulation of RF HEat Test

Simulation of RF HEat Test Simulation of RF HEat Test Date: Tuesday, December 22, 2015 Designer: Solidworks Study name: Stress One Third Emissivity Analysis type: Nonlinear - Dynamic Description No Data Table of Contents Description...

More information

ECE421: Electronics for Instrumentation

ECE421: Electronics for Instrumentation ECE421: Electronics for Instrumentation Lecture #8: Introduction to FEA & ANSYS Mostafa Soliman, Ph.D. March 23 rd 2015 Mostafa Soliman, Ph.D. 1 Outline Introduction to Finite Element Analysis Introduction

More information

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO Workshop HPC Methods for Engineering CINECA (Milan, Italy). June 17th-19th, 2015. Design optimization and design exploration using an open source framework on HPC facilities Presented by: Joel GUERRERO

More information

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench

Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Aufgabe 1: Dreipunktbiegung mit ANSYS Workbench Contents Beam under 3-Pt Bending [Balken unter 3-Pkt-Biegung]... 2 Taking advantage of symmetries... 3 Starting and Configuring ANSYS Workbench... 4 A. Pre-Processing:

More information

Varianzbasierte Robustheitsoptimierung

Varianzbasierte Robustheitsoptimierung DVM Workshop Zuverlässigkeit und Probabilistik München, November 2017 Varianzbasierte Robustheitsoptimierung unter Pareto Kriterien Veit Bayer Thomas Most Dynardo GmbH Weimar Robustness Evaluation 2 How

More information

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003

SDC. Engineering Analysis with COSMOSWorks. Paul M. Kurowski Ph.D., P.Eng. SolidWorks 2003 / COSMOSWorks 2003 Engineering Analysis with COSMOSWorks SolidWorks 2003 / COSMOSWorks 2003 Paul M. Kurowski Ph.D., P.Eng. SDC PUBLICATIONS Design Generator, Inc. Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

Product Engineering Optimizer

Product Engineering Optimizer CATIA V5 Training Foils Product Engineering Optimizer Version 5 Release 19 January 2009 EDU_CAT_EN_PEO_FI_V5R19 1 About this course Objectives of the course Upon completion of this course, you will learn

More information

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole

ANSYS AIM Tutorial Structural Analysis of a Plate with Hole ANSYS AIM Tutorial Structural Analysis of a Plate with Hole Author(s): Sebastian Vecchi, ANSYS Created using ANSYS AIM 18.1 Problem Specification Pre-Analysis & Start Up Analytical vs. Numerical Approaches

More information

Tutorial Week 4 Biomedical Modelling in Ansys Workbench (The Complete Guide with Anatomy and Implant)

Tutorial Week 4 Biomedical Modelling in Ansys Workbench (The Complete Guide with Anatomy and Implant) Tutorial Week 4 Biomedical Modelling in Ansys Workbench (The Complete Guide with Anatomy and Implant) Step 1: Create the Anatomical Model in ScanIP Import the DICOM files for the Proximal Femur dataset

More information

2008 International ANSYS Conference

2008 International ANSYS Conference 2008 International ANSYS Conference Simulation Driven Product Development using ANSYS Technology Padmesh Mandloi Rahul Kumar Samir Kadam 2008 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

More information

Practice to Informatics for Energy and Environment

Practice to Informatics for Energy and Environment Practice to Informatics for Energy and Environment Part 3: Finite Elemente Method Example 1: 2-D Domain with Heat Conduction Tutorial by Cornell University https://confluence.cornell.edu/display/simulation/ansys+-+2d+steady+conduction

More information

Validation Report: Additional Data Mapping to Structural Analysis Packages

Validation Report: Additional Data Mapping to Structural Analysis Packages Autodesk Moldflow Structural Alliance 2012 Validation Report: Additional Data Mapping to Structural Analysis Packages Mapping process-induced stress data from Autodesk Moldflow Insight Dual Domain and

More information

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can

Element Order: Element order refers to the interpolation of an element s nodal results to the interior of the element. This determines how results can TIPS www.ansys.belcan.com 鲁班人 (http://www.lubanren.com/weblog/) Picking an Element Type For Structural Analysis: by Paul Dufour Picking an element type from the large library of elements in ANSYS can be

More information

DMU Engineering Analysis Review

DMU Engineering Analysis Review DMU Engineering Analysis Review Overview Conventions What's New? Getting Started Entering DMU Engineering Analysis Review Workbench Generating an Image Visualizing Extrema Generating a Basic Analysis Report

More information

TUTORIAL 3: Third Time is a Charm Design of Cross-Section to Meet Specific Stress Requirements Duplicate DesignModeler Geometry Static Structural

TUTORIAL 3: Third Time is a Charm Design of Cross-Section to Meet Specific Stress Requirements Duplicate DesignModeler Geometry Static Structural TUTORIAL 3: Third Time is a Charm Design of Cross-Section to Meet Specific Stress Requirements ANSYS has many tools that help designers determine near-optimal cross-sections, lengths, loads, etc. for specific

More information

Finite Element Analysis Using Creo Simulate 4.0

Finite Element Analysis Using Creo Simulate 4.0 Introduction to Finite Element Analysis Using Creo Simulate 4.0 Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

RDO-BOOKLET. CAE-Software & Consulting

RDO-BOOKLET. CAE-Software & Consulting dynamic software & engineering CAE-Software & Consulting Robust Design Optimization (RDO) Key technology for resource-efficient product development and performance enhancement RDO-BOOKLET optislang multiplas

More information

EPILYSIS. The new FEA solver

EPILYSIS. The new FEA solver EPILYSIS The new FEA solver The most promising and dynamically developed solver for our contemporary needs EPILYSIS serves as a contemporary solution in the field of Finite Element Analysis, embodying

More information

pre- & post-processing f o r p o w e r t r a i n

pre- & post-processing f o r p o w e r t r a i n pre- & post-processing f o r p o w e r t r a i n www.beta-cae.com With its complete solutions for meshing, assembly, contacts definition and boundary conditions setup, ANSA becomes the most efficient and

More information

Introduction to ANSYS Mechanical

Introduction to ANSYS Mechanical Lecture 6 Modeling Connections 15.0 Release Introduction to ANSYS Mechanical 1 2012 ANSYS, Inc. February 12, 2014 Chapter Overview In this chapter, we will extend the discussion of contact control begun

More information

Contents. 1 CoreTech System Co., Ltd.

Contents. 1 CoreTech System Co., Ltd. Contents Advanced Support for Intelligent Workflow Improved User Interface 2 Expanded Gate Types.. 2 Enhanced Runner Wizard. 2 Customized Cooling Channel Templates. 3 Parameterized Mesh Generator... 3

More information

Learning Module 8 Shape Optimization

Learning Module 8 Shape Optimization Learning Module 8 Shape Optimization What is a Learning Module? Title Page Guide A Learning Module (LM) is a structured, concise, and self-sufficient learning resource. An LM provides the learner with

More information

COMPUTER AIDED ENGINEERING. Part-1

COMPUTER AIDED ENGINEERING. Part-1 COMPUTER AIDED ENGINEERING Course no. 7962 Finite Element Modelling and Simulation Finite Element Modelling and Simulation Part-1 Modeling & Simulation System A system exists and operates in time and space.

More information

KEYWORDS Morphing, CAE workflow, Optimization, Automation, DOE, Regression, CFD, FEM, Python

KEYWORDS Morphing, CAE workflow, Optimization, Automation, DOE, Regression, CFD, FEM, Python DESIGN OPTIMIZATION WITH ANSA MORPH 1 Tobias Eidevåg *, 1 David Tarazona Ramos *, 1 Mohammad El-Alti 1 Alten AB, Sweden KEYWORDS Morphing, CAE workflow, Optimization, Automation, DOE, Regression, CFD,

More information

Exercise 1: 3-Pt Bending using ANSYS Workbench

Exercise 1: 3-Pt Bending using ANSYS Workbench Exercise 1: 3-Pt Bending using ANSYS Workbench Contents Starting and Configuring ANSYS Workbench... 2 1. Starting Windows on the MAC... 2 2. Login into Windows... 2 3. Start ANSYS Workbench... 2 4. Configuring

More information

Getting Quality Results with Your Simulation

Getting Quality Results with Your Simulation Getting Quality Results with Your Simulation Brandon Adkins Application Engineer, CSWE Quest Integration Agenda SOLIDWORKS Simulation Determining the Proper Toolset Common issues and experiences Setting

More information

Recent Advances in ANSYS Toward RDO Practices Using optislang. Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH

Recent Advances in ANSYS Toward RDO Practices Using optislang. Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH Recent Advances in ANSYS Toward RDO Practices Using optislang Wim Slagter, ANSYS Inc. Herbert Güttler, MicroConsult GmbH 1 Product Development Pressures Source: Engineering Simulation & HPC Usage Survey

More information

Lecture 5 Modeling Connections

Lecture 5 Modeling Connections Lecture 5 Modeling Connections 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter, we will extend the discussion of contact control begun

More information

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will

Recent advances in Metamodel of Optimal Prognosis. Lectures. Thomas Most & Johannes Will Lectures Recent advances in Metamodel of Optimal Prognosis Thomas Most & Johannes Will presented at the Weimar Optimization and Stochastic Days 2010 Source: www.dynardo.de/en/library Recent advances in

More information

Shape and parameter optimization with ANSA and LS-OPT using a new flexible interface

Shape and parameter optimization with ANSA and LS-OPT using a new flexible interface IT / CAE Prozesse I Shape and parameter optimization with ANSA and LS-OPT using a new flexible interface Korbetis Georgios BETA CAE Systems S.A., Thessaloniki, Greece Summary: Optimization techniques becomes

More information

Module 1.7W: Point Loading of a 3D Cantilever Beam

Module 1.7W: Point Loading of a 3D Cantilever Beam Module 1.7W: Point Loading of a 3D Cantilever Beam Table of Contents Page Number Problem Description 2 Theory 2 Workbench Analysis System 4 Engineering Data 5 Geometry 6 Model 11 Setup 13 Solution 14 Results

More information

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley

Mesh Morphing and the Adjoint Solver in ANSYS R14.0. Simon Pereira Laz Foley Mesh Morphing and the Adjoint Solver in ANSYS R14.0 Simon Pereira Laz Foley 1 Agenda Fluent Morphing-Optimization Feature RBF Morph with ANSYS DesignXplorer Adjoint Solver What does an adjoint solver do,

More information

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses

Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Exercise 2: Mesh Resolution, Element Shapes, Basis Functions & Convergence Analyses Goals In this exercise, we will explore the strengths and weaknesses of different element types (tetrahedrons vs. hexahedrons,

More information

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization

Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization 10 th World Congress on Structural and Multidisciplinary Optimization May 19-24, 2013, Orlando, Florida, USA Inclusion of Aleatory and Epistemic Uncertainty in Design Optimization Sirisha Rangavajhala

More information

Module 1.7: Point Loading of a 3D Cantilever Beam

Module 1.7: Point Loading of a 3D Cantilever Beam Module 1.7: Point Loading of a D Cantilever Beam Table of Contents Page Number Problem Description Theory Geometry 4 Preprocessor 6 Element Type 6 Material Properties 7 Meshing 8 Loads 9 Solution 15 General

More information

2: Static analysis of a plate

2: Static analysis of a plate 2: Static analysis of a plate Topics covered Project description Using SolidWorks Simulation interface Linear static analysis with solid elements Finding reaction forces Controlling discretization errors

More information

Step Change in Design: Exploring Sixty Stent Design Variations Overnight

Step Change in Design: Exploring Sixty Stent Design Variations Overnight Step Change in Design: Exploring Sixty Stent Design Variations Overnight Frank Harewood, Ronan Thornton Medtronic Ireland (Galway) Parkmore Business Park West, Ballybrit, Galway, Ireland frank.harewood@medtronic.com

More information

Engineering Analysis

Engineering Analysis Engineering Analysis with SOLIDWORKS Simulation 2018 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites

More information

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis

SIMULATION CAPABILITIES IN CREO. Enhance Your Product Design with Simulation & Analysis SIMULATION CAPABILITIES IN CREO Enhance Your Product Design with Simulation & Using digital prototypes to understand how your designs perform in real-world conditions is vital to your product development

More information