GRAPHICAL ALGORITHMS. UNIT _II Lecture-12 Slides No. 3-7 Lecture Slides No Lecture Slides No

Size: px
Start display at page:

Download "GRAPHICAL ALGORITHMS. UNIT _II Lecture-12 Slides No. 3-7 Lecture Slides No Lecture Slides No"

Transcription

1 GRAPHICAL ALGORITHMS UNIT _II Lecture-12 Slides No. 3-7 Lecture Slides No Lecture Slides No

2 Topics Covered Graphs & Trees ( Some Basic Terminologies) Spanning Trees (BFS & DFS) Disjoint set Operations: Union & Find Algorithms Connected Components Bi-Conncted Components

3 Graphs The diagrammatical representation of a set of Vertices (nodes) and a set of Edges is called a Graph. It is a non-linear data structure. It is hierarchical structure. Examples: In the real world are Airlines, Source-Destination Network, Konigsberg s Bridges, and Flowchart of a Program.

4 Graph Terminology 1. Graph 1. Digraph 2. Weighted Graph 2. Adjacent Vertices 3. Self-loop 3. Parallel Edges 4. Simple Graph 4. Complete Graph 5. Circuit 5. Bipartite Graph 6. Isolated Vertex 6. Degree of Vertex 7. Pendant Vertex 7. Connected Graph 8. Path 8. Tree 9. Sub graph 9. Spanning Tree 10.Isomorphic graphs 10. Biconnected Graphs Height, Level, Parent, Child, Ancestor, leaf etc.

5 A graph is said to be a tree if it is a simple connected graph with no cycles. Directed tree and Non directed tree. In a directed tree there is a specially designated node called the root, remaining nodes are partitioned into n (n>0) disjoint sets T 1, T 2, T 3,,T n, where each T i (i=1,2,3 n) is a tree, T 1, T 2, T 3,,T n are called sub-trees of the root. the path is always fro root to the leaf.

6 Trees A tree is a non-linear data structure. It require two-dimensional representations. Jan Feb Mar Apr Jul May Aug Jun Oct Nov Dec Sep

7 A T1 T2 T3 B C D E F G H I J K Fig A Sample Tree T

8 Representation of Graphs Graph can be represented in many ways: 1. Set representation 2. Linked representation 3. Adjacency Matrix representation 4. Incidence Matrix representation 5. Sparse Matrix representation 6. Multi-lists representation

9 1. Subgraph 1. A subgraph of a graph G is a graph H whose vertices and edges are subsets of the vertices and edges of G. 2. Spanning Subgraph 1. A Spanning Subgraph of G is subgraph of G that contains all the vertices of the graph G. 3. Forest 1. A Forest is a graph without cycles. 4. Tree 1. A Tree is a connected forest, i.e, a connected graph without cycles. 5. Spanning Tree 1. A Spanning tree of a graph is a spanning subgraph that is a tree.

10 Graph Traversal Techniques A traversal is a systematic procedure for exploring a graph by examining all of its vertices and edges. A traversal is efficient if it visits all the vertices and edges in time proportional to their number, i.e., in linear time. There are two methods, called Breadth First Search (BFS) and Depth First Search (DFS).

11 Breadth First Search BFS proceeds in rounds and subdivides the vertices into Levels. BFS can also be thought of as a traversal using a string and paint. With BFS unrolling the string in a more conservative manner. BFS starts at a given vertex s, which is at level-0 and defines the anchor for our string.

12 BFS Algorithm Input: A connected graph G with vertices labeled V 1, V 2,, V n Output: A Spanning tree T for G. Method: Step1: (Start) Let V 1, be the root of T. From the set V= {V 1 }.

13 Step2: (Add new edges) Consider the vertices of V in order consistent with the original labeling. Then for each vertex x V, add the edge {x,v k } to T where k is the minimum index such that adding the edge {x, V k }to T does not produce a cycle. If no edge can be added, then stop; T is a spanning tree for G. After all the vertices of v have been considered in order, go to Step 3.

14 Step3: (Update V) Replace V by all the children Vin T of the vertices x of V where the edges {x, V k } were added in Step2. Go back and repeat Step2 for the new set V.

15 Algorithm BFT (G, n) { //breadth first traversal graph for i=1 to n do //mark all vertices unvisited visited[i]=0; for i=1 to n do if (visited[i] = 0) then BFS(i); }

16 Algorithm BFS (v) // code for Breadth First Search { u = v; //q is a queue of unexplored vertices visited[v] = 1; repeat { for all vertices w adjacent from u do { if (visited[w] = 0) then { add w to q; // w is unexplored visited[w] = 1; } } } If q is empty then return; //no unexplored vertex delete u from q; //get unexplored vertex } until(false)

17 Properties of BFS 1. It is a graph traversal Technique. 2. It is based on visiting FIFO rule. 3. It is based exploring edges. 4. The traversal visits all the vertices in the connected component of s. 5. The discovery edges form a spanning tree T of the connected component of s. 6. For each vertex v at level i, the path of tree T, between s and v has i edges, and any other path of G between s and v has at least i edges. 7. If (u, v) is a cross edge, then the level numbers of u and v differ by at most 1.

18 2. Let G be a graph with n vertices and e edges represented with the adjacency list structure. 3. The time complexity is O (e + n). 4. Problems can be solved based on BFS are 1. Testing whether G is connected. 2. Computing a spanning forest of G. 3. Computing the connected component of G. 4. Computing a cycle in G, or reporting that G has no cycles. 5. Given a start vertex s of G, computing, for every vertex v of G, path with the minimum number of edges between u an v, or reporting that no such path exists.

19 DFS DFS is an Non-directed graph. DFS is useful for performing a number of computations on graphs. It also calculates the path from one vertex to another. It determines a graph is connected or not. And computing a spanning tree for a connected graph. It applies Backtracking technique.

20 DFS Algorithm Input: A connected graph G with vertices labeled V 1, V 2,, V n Output: A Spanning tree T for G. Method: Step1: (Start) Let V 1, be the root of T. And set L=V 1. L stands for the vertex last visited.

21 Step2: (Find unexamined edge and unvisited vertex adjacent to L) For all vertices adjacent to L, choose the edge {L, V k }, where k is the minimum index such that adding {L, V k } to T does not create a cycle. I f no such edge exists, go to Step 3, otherwise, add edge {L, V k } to T and set L= V k ; repeat Step 2 at the new value for L.

22 Step3: (Backtrack or terminate) If x is the parent of L in T, set L= x and apply Step2 at the new value of L. If, on the other hand L has no parent in T (so that L=V 1 ) then the depth First Search terminates and T is a spanning tree for G.

23 Construct Spanning tree using BFS and DFS.

24 Algorithm DFS(v) { visited[v] = 1; for each vertex w adjacent from v do { if (visited[w] = 0) then DFS(w); } }

25 Backtracking Algorithm genbacktrack(n) { k = 1; while (k 0) do { if (there remains an untried x[k] T(x[1], x[2],, x[k-1] and B k (x[1], x[2], x[k]) is true) then { if(x[1], x[k] is a path to an answer node) then write (x[1..k]); } else k=k-1; //backtrack to the previous set } }

26 Algorithm recurbacktrack(k) { for (each x[k] T(x[1], x[2],,x[k-1]) do { if (Bk (x[1], x[2],,x[k]) 0) then { if (x[1], x[2],, x[k]) is a path to an answer node then write (x[1..k]); if (k < n) then backtrack(k+1); } } }

27 Applications of Graphs 1. Transportation problem 2. Map Coloring 3. Shortest Path Problem 1. Warshall s algorithm 2. Floyd s algorithm 3. Dijkstra s algorithm 4. Topological Sorting algorithm 5. Minimum Spanning Tree 1. Kruskal s algorithm 2. Prim s algorithm 6. Connectivity in Graph 1. Strongly connectivity 2. Bi-connectivity 7. Euler s path and Hamiltonian Circuits 8. Binary Decision Diagram

28 Let us suppose that we have some finite Universe of n elements, out of which sets will be constructed. These sets may be empty or contain any subsets of the elements of Universe. A common way to represent such sets is to allocate a bit vector of length n, SET(1:n). For example, SET(i) = 1 if the i th element of U is in this set = 0 otherwise.

29 Let us assume that the elements of the sets are the numbers 1,2,3, n. These numbers are the indices into a symbol table where actual names of elements are stored. Assume that the sets are represented pair wise disjoint. Example: S 1 = {1, 7, 8, 9}; S 2 = {2,5,10}; S 3 = {3,4,6}.

30 Operations on Disjoint Sets 1. Disjoint set Union: Combining the sets S i U S j = { All elements x such that x is in Si or Sj}. 2. Find(i): Finding the set containing element i.

31 Simple Union and Find Algorithm Let i and j be the roots of two disjoint sets. Algorithm to Union of two disjoint sets Integer i, j Parent(i) j end of U Algorithm to Find the i th root of the tree containing element i Integer i, j j i While Parent(j)>0 do j Parent(j) repeat return(j) end F

32 Count(i) = number of nodes in that tree. The count can be maintained in the Parent field as a negative number. Parent(i) = -count(i) If Parent (i)= 0 if this is a root node. Weighting rule for Union (I,j). If the number of nodes in tree I is less than the number in tree j, then make j the parent of I, other wise make I the parent of j.

33 Weighting Rule for UNION Weighting rule for Union (i, j): If the number of nodes in tree i is less than the number in tree j, then make j the parent of i, other wise make i the parent of j.

34 UNION Algorithm integer i, j, x x Parent(i) + Parent(j) If Parent(i) > Parent(j) then Parent(i) j Parent (j) x else Parent of (j) i Parent (i) x End if.

35 Find Algorithm j I While Parent(j) > 0 do j parent(j) Repeat k I While k j do t parent(k) Parent(k) j k t Repeat Return(j) End Find. Note: Using the collapsing rule to collapse all nodes from I to the root j.

36 Example on Union operation

37 Let T be a tree with n nodes created as aresult of algorithm Union. No node in T has level greater Floor(logn)+1

38 A vertex v in a connected graph G is an articulation point iff the deletion of vertex v together with all edges incident to v disconnects the graph into two or more non empty components.

39 Example

40 A graph G is bi-connected if and only if it contains no articulation point. G is a maximal bi-connected sub-graph of G if and only if G has no bi connected sub-graph G such that V and E are subsets of V and E

41 Construction of Bi-Connected Graph Step-1: for each articulation point a do Step-2: let B 1, B 2, B k be the bi-connected components containing vertex a Step-3: let vi, vi a be a vertex in B i, 1 i k Step-4: add to G the edges (v i, v i+1 ) 1 i < k Step-5: repeat Note: The step4 is repeated a is no longer an articulation point.

42 Finding DFN and L Procedure ART(u,v) Global DFN(n), L(n), num, n DFN(u) num; L(u) num; num num+1 for each vertex w adjacent from u do if DFN(w) = 0 then call ART(w,u) L(u) min(l(u), L(w)) else if w v then L(u) min (L(u), DFN(w)) End if Repeat end ART End if

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

UNIT III TREES. A tree is a non-linear data structure that is used to represents hierarchical relationships between individual data items.

UNIT III TREES. A tree is a non-linear data structure that is used to represents hierarchical relationships between individual data items. UNIT III TREES A tree is a non-linear data structure that is used to represents hierarchical relationships between individual data items. Tree: A tree is a finite set of one or more nodes such that, there

More information

國立清華大學電機工程學系. Outline

國立清華大學電機工程學系. Outline 國立清華大學電機工程學系 EE Data Structure Chapter Graph (Part I) Outline The Graph Abstract Data Type Introduction Definitions Graph Representations Elementary Graph Operations Minimum Cost Spanning Trees ch.- River

More information

Elementary Graph Algorithms CSE 6331

Elementary Graph Algorithms CSE 6331 Elementary Graph Algorithms CSE 6331 Reading Assignment: Chapter 22 1 Basic Depth-First Search Algorithm procedure Search(G = (V, E)) // Assume V = {1, 2,..., n} // // global array visited[1..n] // visited[1..n]

More information

Konigsberg Bridge Problem

Konigsberg Bridge Problem Graphs Konigsberg Bridge Problem c C d g A Kneiphof e D a B b f c A C d e g D a b f B Euler s Graph Degree of a vertex: the number of edges incident to it Euler showed that there is a walk starting at

More information

Undirected Graphs. Hwansoo Han

Undirected Graphs. Hwansoo Han Undirected Graphs Hwansoo Han Definitions Undirected graph (simply graph) G = (V, E) V : set of vertexes (vertices, nodes, points) E : set of edges (lines) An edge is an unordered pair Edge (v, w) = (w,

More information

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list

UNIT Name the different ways of representing a graph? a.adjacencymatrix b. Adjacency list UNIT-4 Graph: Terminology, Representation, Traversals Applications - spanning trees, shortest path and Transitive closure, Topological sort. Sets: Representation - Operations on sets Applications. 1. Name

More information

Outline. Introduction. Representations of Graphs Graph Traversals. Applications. Definitions and Basic Terminologies

Outline. Introduction. Representations of Graphs Graph Traversals. Applications. Definitions and Basic Terminologies Graph Chapter 9 Outline Introduction Definitions and Basic Terminologies Representations of Graphs Graph Traversals Breadth first traversal Depth first traversal Applications Single source shortest path

More information

UNIT IV -NON-LINEAR DATA STRUCTURES 4.1 Trees TREE: A tree is a finite set of one or more nodes such that there is a specially designated node called the Root, and zero or more non empty sub trees T1,

More information

Algorithm Design (8) Graph Algorithms 1/2

Algorithm Design (8) Graph Algorithms 1/2 Graph Algorithm Design (8) Graph Algorithms / Graph:, : A finite set of vertices (or nodes) : A finite set of edges (or arcs or branches) each of which connect two vertices Takashi Chikayama School of

More information

Graph Algorithms Using Depth First Search

Graph Algorithms Using Depth First Search Graph Algorithms Using Depth First Search Analysis of Algorithms Week 8, Lecture 1 Prepared by John Reif, Ph.D. Distinguished Professor of Computer Science Duke University Graph Algorithms Using Depth

More information

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1

Undirected Graphs. DSA - lecture 6 - T.U.Cluj-Napoca - M. Joldos 1 Undirected Graphs Terminology. Free Trees. Representations. Minimum Spanning Trees (algorithms: Prim, Kruskal). Graph Traversals (dfs, bfs). Articulation points & Biconnected Components. Graph Matching

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 3 Definitions an undirected graph G = (V, E)

More information

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions

11/22/2016. Chapter 9 Graph Algorithms. Introduction. Definitions. Definitions. Definitions. Definitions Introduction Chapter 9 Graph Algorithms graph theory useful in practice represent many real-life problems can be slow if not careful with data structures 2 Definitions an undirected graph G = (V, E) is

More information

Graph. Vertex. edge. Directed Graph. Undirected Graph

Graph. Vertex. edge. Directed Graph. Undirected Graph Module : Graphs Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Graph Graph is a data structure that is a collection

More information

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F))

8. Write an example for expression tree. [A/M 10] (A+B)*((C-D)/(E^F)) DHANALAKSHMI COLLEGE OF ENGINEERING DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING EC6301 OBJECT ORIENTED PROGRAMMING AND DATA STRUCTURES UNIT IV NONLINEAR DATA STRUCTURES Part A 1. Define Tree [N/D 08]

More information

Search means finding a path or traversal between a start node and one of a set of goal nodes. Search is a study of states and their transitions.

Search means finding a path or traversal between a start node and one of a set of goal nodes. Search is a study of states and their transitions. UNIT 3 BASIC TRAVERSAL AND SEARCH TECHNIQUES Search means finding a path or traversal between a start node and one of a set of goal nodes. Search is a study of states and their transitions. Search involves

More information

Graph and Digraph Glossary

Graph and Digraph Glossary 1 of 15 31.1.2004 14:45 Graph and Digraph Glossary A B C D E F G H I-J K L M N O P-Q R S T U V W-Z Acyclic Graph A graph is acyclic if it contains no cycles. Adjacency Matrix A 0-1 square matrix whose

More information

Outline. Graphs. Divide and Conquer.

Outline. Graphs. Divide and Conquer. GRAPHS COMP 321 McGill University These slides are mainly compiled from the following resources. - Professor Jaehyun Park slides CS 97SI - Top-coder tutorials. - Programming Challenges books. Outline Graphs.

More information

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1

Chapter 14. Graphs Pearson Addison-Wesley. All rights reserved 14 A-1 Chapter 14 Graphs 2011 Pearson Addison-Wesley. All rights reserved 14 A-1 Terminology G = {V, E} A graph G consists of two sets A set V of vertices, or nodes A set E of edges A subgraph Consists of a subset

More information

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10

CS 220: Discrete Structures and their Applications. graphs zybooks chapter 10 CS 220: Discrete Structures and their Applications graphs zybooks chapter 10 directed graphs A collection of vertices and directed edges What can this represent? undirected graphs A collection of vertices

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Chapter 9 Graph Algorithms 2 Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures 3 Definitions an undirected graph G = (V, E) is a

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207.

MAT 7003 : Mathematical Foundations. (for Software Engineering) J Paul Gibson, A207. MAT 7003 : Mathematical Foundations (for Software Engineering) J Paul Gibson, A207 paul.gibson@it-sudparis.eu http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/ Graphs and Trees http://www-public.it-sudparis.eu/~gibson/teaching/mat7003/l2-graphsandtrees.pdf

More information

Index. stack-based, 400 A* algorithm, 325

Index. stack-based, 400 A* algorithm, 325 Index Abstract transitive closure, 174-175, 217-221 Active vertex, 411 Acyclic graph. See Digraph; Directed acyclic graph (DAG) Acyclic network, 313-321, 334-335 maxflow, 427-429 Adjacency-lists representation,

More information

Lecture 3: Graphs and flows

Lecture 3: Graphs and flows Chapter 3 Lecture 3: Graphs and flows Graphs: a useful combinatorial structure. Definitions: graph, directed and undirected graph, edge as ordered pair, path, cycle, connected graph, strongly connected

More information

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017

Trees Rooted Trees Spanning trees and Shortest Paths. 12. Graphs and Trees 2. Aaron Tan November 2017 12. Graphs and Trees 2 Aaron Tan 6 10 November 2017 1 10.5 Trees 2 Definition Definition Definition: Tree A graph is said to be circuit-free if, and only if, it has no circuits. A graph is called a tree

More information

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV

DS UNIT 4. Matoshri College of Engineering and Research Center Nasik Department of Computer Engineering Discrete Structutre UNIT - IV Sr.No. Question Option A Option B Option C Option D 1 2 3 4 5 6 Class : S.E.Comp Which one of the following is the example of non linear data structure Let A be an adjacency matrix of a graph G. The ij

More information

Info 2950, Lecture 16

Info 2950, Lecture 16 Info 2950, Lecture 16 28 Mar 2017 Prob Set 5: due Fri night 31 Mar Breadth first search (BFS) and Depth First Search (DFS) Must have an ordering on the vertices of the graph. In most examples here, the

More information

Graphs: basic concepts and algorithms

Graphs: basic concepts and algorithms : basic concepts and algorithms Topics covered by this lecture: - Reminder Trees Trees (in-order,post-order,pre-order) s (BFS, DFS) Denitions: Reminder Directed graph (digraph): G = (V, E), V - vertex

More information

Foundations of Discrete Mathematics

Foundations of Discrete Mathematics Foundations of Discrete Mathematics Chapter 12 By Dr. Dalia M. Gil, Ph.D. Trees Tree are useful in computer science, where they are employed in a wide range of algorithms. They are used to construct efficient

More information

Minimum Spanning Trees Ch 23 Traversing graphs

Minimum Spanning Trees Ch 23 Traversing graphs Next: Graph Algorithms Graphs Ch 22 Graph representations adjacency list adjacency matrix Minimum Spanning Trees Ch 23 Traversing graphs Breadth-First Search Depth-First Search 11/30/17 CSE 3101 1 Graphs

More information

CSC Intro to Intelligent Robotics, Spring Graphs

CSC Intro to Intelligent Robotics, Spring Graphs CSC 445 - Intro to Intelligent Robotics, Spring 2018 Graphs Graphs Definition: A graph G = (V, E) consists of a nonempty set V of vertices (or nodes) and a set E of edges. Each edge has either one or two

More information

CS302 - Data Structures using C++

CS302 - Data Structures using C++ CS302 - Data Structures using C++ Topic: Graphs - Introduction Kostas Alexis Terminology In the context of our course, graphs represent relations among data items G = {V,E} A graph is a set of vertices

More information

Unweighted Graphs & Algorithms

Unweighted Graphs & Algorithms Unweighted Graphs & Algorithms Zachary Friggstad Programming Club Meeting References Chapter 4: Graph (Section 4.2) Chapter 22: Elementary Graph Algorithms Graphs Features: vertices/nodes/dots and edges/links/lines

More information

Graph Theory CS/Math231 Discrete Mathematics Spring2015

Graph Theory CS/Math231 Discrete Mathematics Spring2015 1 Graphs Definition 1 A directed graph (or digraph) G is a pair (V, E), where V is a finite set and E is a binary relation on V. The set V is called the vertex set of G, and its elements are called vertices

More information

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam

CS 441 Discrete Mathematics for CS Lecture 26. Graphs. CS 441 Discrete mathematics for CS. Final exam CS 441 Discrete Mathematics for CS Lecture 26 Graphs Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Final exam Saturday, April 26, 2014 at 10:00-11:50am The same classroom as lectures The exam

More information

Reference Sheet for CO142.2 Discrete Mathematics II

Reference Sheet for CO142.2 Discrete Mathematics II Reference Sheet for CO14. Discrete Mathematics II Spring 017 1 Graphs Defintions 1. Graph: set of N nodes and A arcs such that each a A is associated with an unordered pair of nodes.. Simple graph: no

More information

DESIGN AND ANALYSIS OF ALGORITHMS

DESIGN AND ANALYSIS OF ALGORITHMS NPTEL MOOC,JAN-FEB 0 Week, Module DESIGN AND ANALYSIS OF ALGORITHMS Depth first search (DFS) MADHAVAN MUKUND, CHENNAI MATHEMATICAL INSTITUTE http://www.cmi.ac.in/~madhavan Depth first search Start from

More information

Algorithms Sequential and Parallel: A Unified Approach; R. Miller and L. Boxer 3rd Graph Algorithms

Algorithms Sequential and Parallel: A Unified Approach; R. Miller and L. Boxer 3rd Graph Algorithms Algorithms Sequential and Parallel: A Unified Approach; R. Miller and L. Boxer rd Edition @ 0 www.thestudycampus.com Graph Algorithms Terminology Representations Fundamental Algorithms Computing the Transitive

More information

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees

Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees Lecture 10. Elementary Graph Algorithm Minimum Spanning Trees T. H. Cormen, C. E. Leiserson and R. L. Rivest Introduction to Algorithms, 3rd Edition, MIT Press, 2009 Sungkyunkwan University Hyunseung Choo

More information

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY

BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY BACKGROUND: A BRIEF INTRODUCTION TO GRAPH THEORY General definitions; Representations; Graph Traversals; Topological sort; Graphs definitions & representations Graph theory is a fundamental tool in sparse

More information

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs

Graphs and Network Flows ISE 411. Lecture 7. Dr. Ted Ralphs Graphs and Network Flows ISE 411 Lecture 7 Dr. Ted Ralphs ISE 411 Lecture 7 1 References for Today s Lecture Required reading Chapter 20 References AMO Chapter 13 CLRS Chapter 23 ISE 411 Lecture 7 2 Minimum

More information

CS4800: Algorithms & Data Jonathan Ullman

CS4800: Algorithms & Data Jonathan Ullman CS4800: Algorithms & Data Jonathan Ullman Lecture 11: Graphs Graph Traversals: BFS Feb 16, 2018 What s Next What s Next Graph Algorithms: Graphs: Key Definitions, Properties, Representations Exploring

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

Module 5 Graph Algorithms

Module 5 Graph Algorithms Module 5 Graph lgorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 97 E-mail: natarajan.meghanathan@jsums.edu 5. Graph Traversal lgorithms Depth First

More information

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices.

Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Traversal Techniques for Graphs Graph traversal is a generalization of tree traversal except we have to keep track of the visited vertices. Applications: Strongly connected components, topological sorting,

More information

CS521 \ Notes for the Final Exam

CS521 \ Notes for the Final Exam CS521 \ Notes for final exam 1 Ariel Stolerman Asymptotic Notations: CS521 \ Notes for the Final Exam Notation Definition Limit Big-O ( ) Small-o ( ) Big- ( ) Small- ( ) Big- ( ) Notes: ( ) ( ) ( ) ( )

More information

( ) ( ) C. " 1 n. ( ) $ f n. ( ) B. " log( n! ) ( ) and that you already know ( ) ( ) " % g( n) ( ) " #&

( ) ( ) C.  1 n. ( ) $ f n. ( ) B.  log( n! ) ( ) and that you already know ( ) ( )  % g( n) ( )  #& CSE 0 Name Test Summer 008 Last 4 Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time for the following code is in which set? for (i=0; i

More information

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu.

E.G.S. PILLAY ENGINEERING COLLEGE (An Autonomous Institution, Affiliated to Anna University, Chennai) Nagore Post, Nagapattinam , Tamilnadu. 17CA 104DATA STRUCTURES Academic Year : 018-019 Programme : MCA Year / Semester : I / I Question Bank Course Coordinator: Mrs. C.Mallika Course Objectives The student should be able to 1. To understand

More information

Algorithms: Lecture 10. Chalmers University of Technology

Algorithms: Lecture 10. Chalmers University of Technology Algorithms: Lecture 10 Chalmers University of Technology Today s Topics Basic Definitions Path, Cycle, Tree, Connectivity, etc. Graph Traversal Depth First Search Breadth First Search Testing Bipartatiness

More information

Lecture 9 Graph Traversal

Lecture 9 Graph Traversal Lecture 9 Graph Traversal Euiseong Seo (euiseong@skku.edu) SWE00: Principles in Programming Spring 0 Euiseong Seo (euiseong@skku.edu) Need for Graphs One of unifying themes of computer science Closely

More information

Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path

Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path Homework 5: Graphs, Minimum Spanning Trees, and Dijkstra Shortest-Path 1. (4 points) A graph is Hamiltonian if there is a cycle in the graph visiting each vertex exactly once. Give an example of an Eulerian

More information

Graph Algorithms. Definition

Graph Algorithms. Definition Graph Algorithms Many problems in CS can be modeled as graph problems. Algorithms for solving graph problems are fundamental to the field of algorithm design. Definition A graph G = (V, E) consists of

More information

MAL 376: Graph Algorithms I Semester Lecture 1: July 24

MAL 376: Graph Algorithms I Semester Lecture 1: July 24 MAL 376: Graph Algorithms I Semester 2014-2015 Lecture 1: July 24 Course Coordinator: Prof. B. S. Panda Scribes: Raghuvansh, Himanshu, Mohit, Abhishek Disclaimer: These notes have not been subjected to

More information

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs

CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs CS/COE 1501 cs.pitt.edu/~bill/1501/ Graphs 5 3 2 4 1 0 2 Graphs A graph G = (V, E) Where V is a set of vertices E is a set of edges connecting vertex pairs Example: V = {0, 1, 2, 3, 4, 5} E = {(0, 1),

More information

Data Structures and Algorithms. Chapter 7. Graphs

Data Structures and Algorithms. Chapter 7. Graphs 1 Data Structures and Algorithms Chapter 7 Werner Nutt 2 Acknowledgments The course follows the book Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples

More information

Graph Search Methods. Graph Search Methods

Graph Search Methods. Graph Search Methods Graph Search Methods A vertex u is reachable from vertex v iff there is a path from v to u. 0 Graph Search Methods A search method starts at a given vertex v and visits/labels/marks every vertex that is

More information

Graph Algorithms. Textbook reading. Chapter 3 Chapter 4. CSci 3110 Graph Algorithms 1/41

Graph Algorithms. Textbook reading. Chapter 3 Chapter 4. CSci 3110 Graph Algorithms 1/41 CSci 3110 Graph Algorithms 1/41 Graph Algorithms Textbook reading Chapter 3 Chapter 4 CSci 3110 Graph Algorithms 2/41 Overview Design principle: Learn the structure of a graph by systematic exploration

More information

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, )

Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 3.. NIL. 2. error new key is greater than current key 6. CASCADING-CUT(, ) Decreasing a key FIB-HEAP-DECREASE-KEY(,, ) 1. if >. 2. error new key is greater than current key 3.. 4.. 5. if NIL and.

More information

Searching in Graphs (cut points)

Searching in Graphs (cut points) 0 November, 0 Breath First Search (BFS) in Graphs In BFS algorithm we visit the verices level by level. The BFS algorithm creates a tree with root s. Once a node v is discovered by BFS algorithm we put

More information

ROOT A node which doesn t have a parent. In the above tree. The Root is A. LEAF A node which doesn t have children is called leaf or Terminal node.

ROOT A node which doesn t have a parent. In the above tree. The Root is A. LEAF A node which doesn t have children is called leaf or Terminal node. UNIT III : DYNAMIC STORAGE MANAGEMENT Trees: Binary tree, Terminology, Representation, Traversals, Applications. Graph: Terminology, Representation, Traversals Applications - spanning trees, shortest path.

More information

22 Elementary Graph Algorithms. There are two standard ways to represent a

22 Elementary Graph Algorithms. There are two standard ways to represent a VI Graph Algorithms Elementary Graph Algorithms Minimum Spanning Trees Single-Source Shortest Paths All-Pairs Shortest Paths 22 Elementary Graph Algorithms There are two standard ways to represent a graph

More information

Chapter 6. GRAPHS. Figure 6.1 : The bridges of Koenigsberg

Chapter 6. GRAPHS. Figure 6.1 : The bridges of Koenigsberg Chap : Graphs (Page ) Chapter. GRAPHS. THE GRAPH ABSTRACT DATA TYPE. ELEMENTARY GRAPH OPERATIONS. MINIMUM COST SPANNING TREES. SHORTEST PATHS AND TRANSITIVE CLOSURE. ACTIVITY NETWORKS Chap : Graphs (Page

More information

Math 776 Graph Theory Lecture Note 1 Basic concepts

Math 776 Graph Theory Lecture Note 1 Basic concepts Math 776 Graph Theory Lecture Note 1 Basic concepts Lectured by Lincoln Lu Transcribed by Lincoln Lu Graph theory was founded by the great Swiss mathematician Leonhard Euler (1707-178) after he solved

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

W4231: Analysis of Algorithms

W4231: Analysis of Algorithms W4231: Analysis of Algorithms 10/21/1999 Definitions for graphs Breadth First Search and Depth First Search Topological Sort. Graphs AgraphG is given by a set of vertices V and a set of edges E. Normally

More information

Graph Theory. Part of Texas Counties.

Graph Theory. Part of Texas Counties. Graph Theory Part of Texas Counties. We would like to visit each of the above counties, crossing each county only once, starting from Harris county. Is this possible? This problem can be modeled as a graph.

More information

Applications of BDF and DFS

Applications of BDF and DFS January 14, 2016 1 Deciding whether a graph is bipartite using BFS. 2 Finding connected components of a graph (both BFS and DFS) works. 3 Deciding whether a digraph is strongly connected. 4 Finding cut

More information

Basic Graph Definitions

Basic Graph Definitions CMSC 341 Graphs Basic Graph Definitions A graph G = (V,E) consists of a finite set of vertices, V, and a finite set of edges, E. Each edge is a pair (v,w) where v, w V. V and E are sets, so each vertex

More information

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29

Lecture 13. Reading: Weiss, Ch. 9, Ch 8 CSE 100, UCSD: LEC 13. Page 1 of 29 Lecture 13 Connectedness in graphs Spanning trees in graphs Finding a minimal spanning tree Time costs of graph problems and NP-completeness Finding a minimal spanning tree: Prim s and Kruskal s algorithms

More information

Graph Representation

Graph Representation Graph Representation Adjacency list representation of G = (V, E) An array of V lists, one for each vertex in V Each list Adj[u] contains all the vertices v such that there is an edge between u and v Adj[u]

More information

COMP 251 Winter 2017 Online quizzes with answers

COMP 251 Winter 2017 Online quizzes with answers COMP 251 Winter 2017 Online quizzes with answers Open Addressing (2) Which of the following assertions are true about open address tables? A. You cannot store more records than the total number of slots

More information

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II

DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI. Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II DHANALAKSHMI COLLEGE OF ENGINEERING, CHENNAI Department of Computer Science and Engineering CS6301 PROGRAMMING DATA STRUCTURES II Anna University 2 & 16 Mark Questions & Answers Year / Semester: II / III

More information

( ) n 3. n 2 ( ) D. Ο

( ) n 3. n 2 ( ) D. Ο CSE 0 Name Test Summer 0 Last Digits of Mav ID # Multiple Choice. Write your answer to the LEFT of each problem. points each. The time to multiply two n n matrices is: A. Θ( n) B. Θ( max( m,n, p) ) C.

More information

Lecture 6 Basic Graph Algorithms

Lecture 6 Basic Graph Algorithms CS 491 CAP Intro to Competitive Algorithmic Programming Lecture 6 Basic Graph Algorithms Uttam Thakore University of Illinois at Urbana-Champaign September 30, 2015 Updates ICPC Regionals teams will be

More information

Graph: representation and traversal

Graph: representation and traversal Graph: representation and traversal CISC4080, Computer Algorithms CIS, Fordham Univ. Instructor: X. Zhang! Acknowledgement The set of slides have use materials from the following resources Slides for textbook

More information

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS

LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS Department of Computer Science University of Babylon LECTURE NOTES OF ALGORITHMS: DESIGN TECHNIQUES AND ANALYSIS By Faculty of Science for Women( SCIW), University of Babylon, Iraq Samaher@uobabylon.edu.iq

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Trees Algorhyme by Radia Perlman

Trees Algorhyme by Radia Perlman Algorhyme by Radia Perlman I think that I shall never see A graph more lovely than a tree. A tree whose crucial property Is loop-free connectivity. A tree which must be sure to span. So packets can reach

More information

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019

CS 341: Algorithms. Douglas R. Stinson. David R. Cheriton School of Computer Science University of Waterloo. February 26, 2019 CS 341: Algorithms Douglas R. Stinson David R. Cheriton School of Computer Science University of Waterloo February 26, 2019 D.R. Stinson (SCS) CS 341 February 26, 2019 1 / 296 1 Course Information 2 Introduction

More information

Problem Score Maximum MC 34 (25/17) = 50 Total 100

Problem Score Maximum MC 34 (25/17) = 50 Total 100 Stony Brook University Midterm 2 CSE 373 Analysis of Algorithms November 22, 2016 Midterm Exam Name: ID #: Signature: Circle one: GRAD / UNDERGRAD INSTRUCTIONS: This is a closed book, closed mouth exam.

More information

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting...

4.1.2 Merge Sort Sorting Lower Bound Counting Sort Sorting in Practice Solving Problems by Sorting... Contents 1 Introduction... 1 1.1 What is Competitive Programming?... 1 1.1.1 Programming Contests.... 2 1.1.2 Tips for Practicing.... 3 1.2 About This Book... 3 1.3 CSES Problem Set... 5 1.4 Other Resources...

More information

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College

Graphs. Part I: Basic algorithms. Laura Toma Algorithms (csci2200), Bowdoin College Laura Toma Algorithms (csci2200), Bowdoin College Undirected graphs Concepts: connectivity, connected components paths (undirected) cycles Basic problems, given undirected graph G: is G connected how many

More information

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms?

GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? GRAPHS (Undirected) Graph: Set of objects with pairwise connections. Why study graph algorithms? Interesting and broadly useful abstraction. Challenging branch of computer science and discrete math. Hundreds

More information

Directed Graphs (II) Hwansoo Han

Directed Graphs (II) Hwansoo Han Directed Graphs (II) Hwansoo Han Traversals of Directed Graphs To solve many problems dealing with digraphs, we need to visit vertexes and arcs in a systematic way Depth-first search (DFS) A generalization

More information

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees

12/5/17. trees. CS 220: Discrete Structures and their Applications. Trees Chapter 11 in zybooks. rooted trees. rooted trees trees CS 220: Discrete Structures and their Applications A tree is an undirected graph that is connected and has no cycles. Trees Chapter 11 in zybooks rooted trees Rooted trees. Given a tree T, choose

More information

Brute Force: Selection Sort

Brute Force: Selection Sort Brute Force: Intro Brute force means straightforward approach Usually based directly on problem s specs Force refers to computational power Usually not as efficient as elegant solutions Advantages: Applicable

More information

Homework Assignment #3 Graph

Homework Assignment #3 Graph CISC 4080 Computer Algorithms Spring, 2019 Homework Assignment #3 Graph Some of the problems are adapted from problems in the book Introduction to Algorithms by Cormen, Leiserson and Rivest, and some are

More information

Discrete mathematics II. - Graphs

Discrete mathematics II. - Graphs Emil Vatai April 25, 2018 Basic definitions Definition of an undirected graph Definition (Undirected graph) An undirected graph or (just) a graph is a triplet G = (ϕ, E, V ), where V is the set of vertices,

More information

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science.

This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. Lecture 9 Graphs This course is intended for 3rd and/or 4th year undergraduate majors in Computer Science. You need to be familiar with the design and use of basic data structures such as Lists, Stacks,

More information

Algorithm Analysis Graph algorithm. Chung-Ang University, Jaesung Lee

Algorithm Analysis Graph algorithm. Chung-Ang University, Jaesung Lee Algorithm Analysis Graph algorithm Chung-Ang University, Jaesung Lee Basic definitions Graph = (, ) where is a set of vertices and is a set of edges Directed graph = where consists of ordered pairs

More information

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May

R10 SET - 1. Code No: R II B. Tech I Semester, Supplementary Examinations, May www.jwjobs.net R10 SET - 1 II B. Tech I Semester, Supplementary Examinations, May - 2012 (Com. to CSE, IT, ECC ) Time: 3 hours Max Marks: 75 *******-****** 1. a) Which of the given options provides the

More information

Data Structure. IBPS SO (IT- Officer) Exam 2017

Data Structure. IBPS SO (IT- Officer) Exam 2017 Data Structure IBPS SO (IT- Officer) Exam 2017 Data Structure: In computer science, a data structure is a way of storing and organizing data in a computer s memory so that it can be used efficiently. Data

More information

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο

( ) D. Θ ( ) ( ) Ο f ( n) ( ) Ω. C. T n C. Θ. B. n logn Ο CSE 0 Name Test Fall 0 Multiple Choice. Write your answer to the LEFT of each problem. points each. The expected time for insertion sort for n keys is in which set? (All n! input permutations are equally

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 31 Advanced Data Structures and Algorithms Graphs July 18, 17 Tong Wang UMass Boston CS 31 July 18, 17 1 / 4 Graph Definitions Graph a mathematical construction that describes objects and relations

More information

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise.

MATH 363 Final Wednesday, April 28. Final exam. You may use lemmas and theorems that were proven in class and on assignments unless stated otherwise. Final exam This is a closed book exam. No calculators are allowed. Unless stated otherwise, justify all your steps. You may use lemmas and theorems that were proven in class and on assignments unless stated

More information

Introduction to Optimization

Introduction to Optimization Introduction to Optimization Greedy Algorithms October 28, 2016 École Centrale Paris, Châtenay-Malabry, France Dimo Brockhoff Inria Saclay Ile-de-France 2 Course Overview Date Fri, 7.10.2016 Fri, 28.10.2016

More information

Graphs and Genetics. Outline. Computational Biology IST. Ana Teresa Freitas 2015/2016. Slides source: AED (MEEC/IST); Jones and Pevzner (book)

Graphs and Genetics. Outline. Computational Biology IST. Ana Teresa Freitas 2015/2016. Slides source: AED (MEEC/IST); Jones and Pevzner (book) raphs and enetics Computational Biology IST Ana Teresa Freitas / Slides source: AED (MEEC/IST); Jones and Pevzner (book) Outline l Motivacion l Introduction to raph Theory l Eulerian & Hamiltonian Cycle

More information

Graphs & Digraphs Tuesday, November 06, 2007

Graphs & Digraphs Tuesday, November 06, 2007 Graphs & Digraphs Tuesday, November 06, 2007 10:34 PM 16.1 Directed Graphs (digraphs) like a tree but w/ no root node & no guarantee of paths between nodes consists of: nodes/vertices - a set of elements

More information