Neural Nets & Deep Learning

Size: px
Start display at page:

Download "Neural Nets & Deep Learning"

Transcription

1 Neural Nets & Deep Learning

2 The Inspiration Inputs Outputs Our brains are pretty amazing, what if we could do something similar with computers? Image Source: _med.jpeg

3 The Perceptron Idea dates from the 1950s Let i be our input features, try to predict a binary class Output = σ(i1w1 + i2w2 + i3w3 + i4w4) σ is some function that scales the sum to between 0 and 1. If output < 0.5 we say class poison, otherwise we predict class edible Color i1 Size of Cap i2 w1 w2 σ Height i3 Found in clusters? i4 Poisonous or Edible w3 w4 Image Source: -function-explained-plain-english-hsu/

4 Perceptron: Loss We have a model, how do we find weights that gives the best results? We need to define a measure of how bad our starting weights are (cost/loss) Must be smooth A small change in the weights = A small change in the loss This rules out accuracy on our training data, will change in discrete jumps Use the decimal output to represent a confidence of a class Can tweak for regression Bad Good Image Source: _happysad-800x480.jpg

5 Perceptron: Training with Gradient Descent Once we have our loss, we perform gradient descent. See what happens if we tweak our weights in different directions, If we get an improvement in our loss, keep going! Take slope at point and move in negative direction Once we stop improving, we re done! Image Source:

6 Image Source: d440fa32fc9e5300c894 Perceptron: The Problem So we have a model and a way to train it, how do we do? Not great : ( You might have noticed that what we re doing is essentially linear regression except squishing the output at the end Can only divide regions linearly Similar to how regression can only fit linear relations

7 Feed Forward Neural Net: The Solution What if we have multiple layers? h1 = i1w1,1 + i2w2,1 + i3w3,1 o = σ(h1wh1 + h2wh2 + h3wh3) Good idea, but still has the linear-ness problem Multiple linear combinations stacked is still a linear combination Inputs i1 h1 i2 h2 i3 h3 σ Output

8 Feed Forward Neural Net: The Solution Another idea: What if we squish the hidden layer as well as the output? h1 = σ(i1w1,1 + i2w2,1 + i3w3,1 ) Similar to what we did with log space! o = σ(h1wh1 + h2wh2 + h3wh3) No longer can only fit around linear boundaries! Note: Gradient descent is now a bit harder, but essentially the same idea New algorithm called backprop Inputs i1 σ1 i2 σ2 i3 σ3 σo Output

9 People came up with backprop & FFNNs in the 70s / 80s, but they were very, very slow (and hard to interpret) What changed?

10 GPUs

11 Feed Forward Neural Net: The Solution High-end 3D video games require lots of processing power But most of this processing is simple adds and multiplies CPUs are good at doing a lot of different operations pretty fast GPUs do simple operations SUPER fast (and in parallel) Multiply and add That sounds familiar. Neural Nets are now super fast!

12 Types of Neural Nets

13 Image Source: Applying NNs to Images Feed forward works for You have some features Predict an output What about images? Naive way: Take each pixel value and feed it in as a different feature (in a 100x100 image that s 10,000 features!) Is there a better way?

14 Convolutional Neural Nets (CNNs) Pass the same small neural net over different parts of the image Called a filter or kernel Learn the weights of this neural net These filters start picking up on higher level features Vertical line, horizontal line, etc. Stack enough of these and you get really good results! 99.9% on digit recognition! Image Source: es g002.png

15 Applying NNs to Series How do we work with series of things of non-fixed length? A sentence Stock prices A person s medical history One option is CNNs, same idea but in 1 dimension instead of 2 Fast but not the best, especially for language Doesn t capture long-term information, only the size of the filter

16 Image Source: deploy/html/images/technologies g002.png Recurrent Neural Nets (RNNs) Idea: Take a FFNN and have it output two things An answer you can use A state that it passed onto feed back into itself as a new input State contains info we want to keep around for the future Work really well for language, but is slow! French Word State English Word

17 Representing Words - Stock prices are easy, just numbers - What about words? - Could create a class for each word, apple is 55, food is 72 - These numbers are arbitrary, apple and pear are similar but could have totally different numerical ids - Idea: Create an embedding - Try to summarize a word with a point in space Similar words are near each other in the space - How do we create these embeddings?

18 Image Source:

19 Word2Vec Apple Words that are similar are used in similar contexts Make a neural net that given a word, predict the words around it Take the values that show up in the hidden layer and use that to represent the word I am going to eat a pear today I love eatings apples Both words are near eat and I [22.5, 45.2, ] List of 50 numbers Problems Hypothesis is kind of flawed, I am happy and I am sad Bias in language! Hidden Layer of 50 neurons 20% near eat 20% near I 60% other stuff

20 Reinforcement Learning How do we teach neural nets to play games? Create a neural network that given the current game board, predict a move Pretty much random at first If we make some moves and end up winning/scoring a point/surviving, reward it with our loss function! If we lose/get scored on/die don t reward those actions Slowly get better over time! Image Source: ver.original.width-440_q7hc1rg.jpg

21 Generative Adversarial Networks - Take the problem of colorizing black and white photos - Create two neural nets - One will generate color images from black and white ones One will try to discriminate between the generated color images and real color images - Slowly the generator will get better at creating forgeries - When you re done training, you have a program that can colorize images! Figure from pix2pix Isola et al

22 Other Tricks - A lot of deep learning research right now is trying random things and seeing what gives good results - Some tricks that people have come up with - Use a different activation for the middle instead of the standard σ (ReLU, ELU, etc.) Normalize input to layers (BatchNorm) Use fancy optimizers that do a lot of math (AdamOptimizer) To prevent overfitting, disable neurons randomly during training (Dropout) - Handicaps your model during training, but really helps! - Especially when you run through training data multiple times Image Source: HEJHD4z893g.png

23 Creating a Neural Net Model 1. Get your data, clean it, decide what your input/output is 2. Define your model What type/ tricks, how many layers This is hard! 3. Define your loss function What am I using to measure my performance? 4. Decide how you re going to train How long, with what optimizer, on one computer or many, etc.

24 Pros & Cons - Pros - Are really, REALLY powerful/accurate Very easy to make larger/smaller, lots of hyperparameters Work well in vastly different fields, same central ideas - Cons - - Are blackboxes, things go in, answers come out but often unclear why - Especially troubling when it gets things wrong - Application to medicine Still very simple, lack large-scale understanding Classic ML dangers: overfitting, bias, etc. People are working on fixing these things! Image Source: 0SYqipwn2DpAw.png

25 Yann LeCun - Giving a talk in List 4PM Father of Convolutional Neural Nets Director of research at Facebook Talk Title: How Could Machines Learn as Efficiently as Animals and Humans? - Check it out!

26 Demos: YOLO

27 Demos: Style Transfer

28 Demo: Image Translation with CycleGAN

29 Demo: Image Translation with CycleGAN

30 Demo: Celebrity Generator

31 Demo: Rock Paper Scissors - Play rock paper scissors with your camera

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017

Neural Networks. Single-layer neural network. CSE 446: Machine Learning Emily Fox University of Washington March 10, /10/2017 3/0/207 Neural Networks Emily Fox University of Washington March 0, 207 Slides adapted from Ali Farhadi (via Carlos Guestrin and Luke Zettlemoyer) Single-layer neural network 3/0/207 Perceptron as a neural

More information

Machine Learning 13. week

Machine Learning 13. week Machine Learning 13. week Deep Learning Convolutional Neural Network Recurrent Neural Network 1 Why Deep Learning is so Popular? 1. Increase in the amount of data Thanks to the Internet, huge amount of

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule.

Feature Extractors. CS 188: Artificial Intelligence Fall Some (Vague) Biology. The Binary Perceptron. Binary Decision Rule. CS 188: Artificial Intelligence Fall 2008 Lecture 24: Perceptrons II 11/24/2008 Dan Klein UC Berkeley Feature Extractors A feature extractor maps inputs to feature vectors Dear Sir. First, I must solicit

More information

Lecture #11: The Perceptron

Lecture #11: The Perceptron Lecture #11: The Perceptron Mat Kallada STAT2450 - Introduction to Data Mining Outline for Today Welcome back! Assignment 3 The Perceptron Learning Method Perceptron Learning Rule Assignment 3 Will be

More information

Perceptron: This is convolution!

Perceptron: This is convolution! Perceptron: This is convolution! v v v Shared weights v Filter = local perceptron. Also called kernel. By pooling responses at different locations, we gain robustness to the exact spatial location of image

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Simple Model Selection Cross Validation Regularization Neural Networks

Simple Model Selection Cross Validation Regularization Neural Networks Neural Nets: Many possible refs e.g., Mitchell Chapter 4 Simple Model Selection Cross Validation Regularization Neural Networks Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University February

More information

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Neural Nets. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Neural Nets Paula Matuszek Fall 2016 Neural Nets, the very short version 2 A neural net consists of layers of nodes, or neurons, each of which has an activation

More information

CS 523: Multimedia Systems

CS 523: Multimedia Systems CS 523: Multimedia Systems Angus Forbes creativecoding.evl.uic.edu/courses/cs523 Today - Convolutional Neural Networks - Work on Project 1 http://playground.tensorflow.org/ Convolutional Neural Networks

More information

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu

Natural Language Processing CS 6320 Lecture 6 Neural Language Models. Instructor: Sanda Harabagiu Natural Language Processing CS 6320 Lecture 6 Neural Language Models Instructor: Sanda Harabagiu In this lecture We shall cover: Deep Neural Models for Natural Language Processing Introduce Feed Forward

More information

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016

CS 4510/9010 Applied Machine Learning. Deep Learning. Paula Matuszek Fall copyright Paula Matuszek 2016 CS 4510/9010 Applied Machine Learning 1 Deep Learning Paula Matuszek Fall 2016 Beyond Simple Neural Nets 2 In the last few ideas we have seen some surprisingly rapid progress in some areas of AI Image

More information

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro

CMU Lecture 18: Deep learning and Vision: Convolutional neural networks. Teacher: Gianni A. Di Caro CMU 15-781 Lecture 18: Deep learning and Vision: Convolutional neural networks Teacher: Gianni A. Di Caro DEEP, SHALLOW, CONNECTED, SPARSE? Fully connected multi-layer feed-forward perceptrons: More powerful

More information

CS 4510/9010 Applied Machine Learning

CS 4510/9010 Applied Machine Learning CS 4510/9010 Applied Machine Learning Neural Nets Paula Matuszek Spring, 2015 1 Neural Nets, the very short version A neural net consists of layers of nodes, or neurons, each of which has an activation

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

The Mathematics Behind Neural Networks

The Mathematics Behind Neural Networks The Mathematics Behind Neural Networks Pattern Recognition and Machine Learning by Christopher M. Bishop Student: Shivam Agrawal Mentor: Nathaniel Monson Courtesy of xkcd.com The Black Box Training the

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

ImageNet Classification with Deep Convolutional Neural Networks

ImageNet Classification with Deep Convolutional Neural Networks ImageNet Classification with Deep Convolutional Neural Networks Alex Krizhevsky Ilya Sutskever Geoffrey Hinton University of Toronto Canada Paper with same name to appear in NIPS 2012 Main idea Architecture

More information

Know your data - many types of networks

Know your data - many types of networks Architectures Know your data - many types of networks Fixed length representation Variable length representation Online video sequences, or samples of different sizes Images Specific architectures for

More information

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes

CS 6501: Deep Learning for Computer Graphics. Training Neural Networks II. Connelly Barnes CS 6501: Deep Learning for Computer Graphics Training Neural Networks II Connelly Barnes Overview Preprocessing Initialization Vanishing/exploding gradients problem Batch normalization Dropout Additional

More information

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday.

Announcements. CS 188: Artificial Intelligence Spring Generative vs. Discriminative. Classification: Feature Vectors. Project 4: due Friday. CS 188: Artificial Intelligence Spring 2011 Lecture 21: Perceptrons 4/13/2010 Announcements Project 4: due Friday. Final Contest: up and running! Project 5 out! Pieter Abbeel UC Berkeley Many slides adapted

More information

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R.

Neural Network Learning. Today s Lecture. Continuation of Neural Networks. Artificial Neural Networks. Lecture 24: Learning 3. Victor R. Lecture 24: Learning 3 Victor R. Lesser CMPSCI 683 Fall 2010 Today s Lecture Continuation of Neural Networks Artificial Neural Networks Compose of nodes/units connected by links Each link has a numeric

More information

COMP 551 Applied Machine Learning Lecture 14: Neural Networks

COMP 551 Applied Machine Learning Lecture 14: Neural Networks COMP 551 Applied Machine Learning Lecture 14: Neural Networks Instructor: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/comp551 Unless otherwise noted, all material posted for this course

More information

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research

Deep Learning with R. Francesca Lazzeri Data Scientist II - Microsoft, AI Research with R Francesca Lazzeri - @frlazzeri Data Scientist II - Microsoft, AI Research Agenda with R What is Demo Better understanding of R DL tools Fundamental concepts in Forward Propagation Algorithm Activation

More information

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation

Assignment # 5. Farrukh Jabeen Due Date: November 2, Neural Networks: Backpropation Farrukh Jabeen Due Date: November 2, 2009. Neural Networks: Backpropation Assignment # 5 The "Backpropagation" method is one of the most popular methods of "learning" by a neural network. Read the class

More information

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan

Lecture 17: Neural Networks and Deep Learning. Instructor: Saravanan Thirumuruganathan Lecture 17: Neural Networks and Deep Learning Instructor: Saravanan Thirumuruganathan Outline Perceptron Neural Networks Deep Learning Convolutional Neural Networks Recurrent Neural Networks Auto Encoders

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Deep Learning & Neural Networks

Deep Learning & Neural Networks Deep Learning & Neural Networks Machine Learning CSE4546 Sham Kakade University of Washington November 29, 2016 Sham Kakade 1 Announcements: HW4 posted Poster Session Thurs, Dec 8 Today: Review: EM Neural

More information

C-Brain: A Deep Learning Accelerator

C-Brain: A Deep Learning Accelerator C-Brain: A Deep Learning Accelerator that Tames the Diversity of CNNs through Adaptive Data-level Parallelization Lili Song, Ying Wang, Yinhe Han, Xin Zhao, Bosheng Liu, Xiaowei Li State Key Laboratory

More information

INTRODUCTION TO DEEP LEARNING

INTRODUCTION TO DEEP LEARNING INTRODUCTION TO DEEP LEARNING CONTENTS Introduction to deep learning Contents 1. Examples 2. Machine learning 3. Neural networks 4. Deep learning 5. Convolutional neural networks 6. Conclusion 7. Additional

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Image Data: Classification via Neural Networks Instructor: Yizhou Sun yzsun@ccs.neu.edu November 19, 2015 Methods to Learn Classification Clustering Frequent Pattern Mining

More information

Logical Rhythm - Class 3. August 27, 2018

Logical Rhythm - Class 3. August 27, 2018 Logical Rhythm - Class 3 August 27, 2018 In this Class Neural Networks (Intro To Deep Learning) Decision Trees Ensemble Methods(Random Forest) Hyperparameter Optimisation and Bias Variance Tradeoff Biological

More information

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides

Deep Learning in Visual Recognition. Thanks Da Zhang for the slides Deep Learning in Visual Recognition Thanks Da Zhang for the slides Deep Learning is Everywhere 2 Roadmap Introduction Convolutional Neural Network Application Image Classification Object Detection Object

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2018 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2018 Last Time: Multi-Dimensional Scaling Multi-dimensional scaling (MDS): Non-parametric visualization: directly optimize the z i locations.

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Convolutional Neural Networks

Convolutional Neural Networks Lecturer: Barnabas Poczos Introduction to Machine Learning (Lecture Notes) Convolutional Neural Networks Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

More information

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty)

Supervised Learning (contd) Linear Separation. Mausam (based on slides by UW-AI faculty) Supervised Learning (contd) Linear Separation Mausam (based on slides by UW-AI faculty) Images as Vectors Binary handwritten characters Treat an image as a highdimensional vector (e.g., by reading pixel

More information

CS489/698: Intro to ML

CS489/698: Intro to ML CS489/698: Intro to ML Lecture 14: Training of Deep NNs Instructor: Sun Sun 1 Outline Activation functions Regularization Gradient-based optimization 2 Examples of activation functions 3 5/28/18 Sun Sun

More information

A Simple (?) Exercise: Predicting the Next Word

A Simple (?) Exercise: Predicting the Next Word CS11-747 Neural Networks for NLP A Simple (?) Exercise: Predicting the Next Word Graham Neubig Site https://phontron.com/class/nn4nlp2017/ Are These Sentences OK? Jane went to the store. store to Jane

More information

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning,

Index. Umberto Michelucci 2018 U. Michelucci, Applied Deep Learning, A Acquisition function, 298, 301 Adam optimizer, 175 178 Anaconda navigator conda command, 3 Create button, 5 download and install, 1 installing packages, 8 Jupyter Notebook, 11 13 left navigation pane,

More information

Convolutional Networks for Text

Convolutional Networks for Text CS11-747 Neural Networks for NLP Convolutional Networks for Text Graham Neubig Site https://phontron.com/class/nn4nlp2017/ An Example Prediction Problem: Sentence Classification I hate this movie very

More information

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group 1D Input, 1D Output target input 2 2D Input, 1D Output: Data Distribution Complexity Imagine many dimensions (data occupies

More information

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart

Machine Learning. The Breadth of ML Neural Networks & Deep Learning. Marc Toussaint. Duy Nguyen-Tuong. University of Stuttgart Machine Learning The Breadth of ML Neural Networks & Deep Learning Marc Toussaint University of Stuttgart Duy Nguyen-Tuong Bosch Center for Artificial Intelligence Summer 2017 Neural Networks Consider

More information

CSE 573: Artificial Intelligence Autumn 2010

CSE 573: Artificial Intelligence Autumn 2010 CSE 573: Artificial Intelligence Autumn 2010 Lecture 16: Machine Learning Topics 12/7/2010 Luke Zettlemoyer Most slides over the course adapted from Dan Klein. 1 Announcements Syllabus revised Machine

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Deep Learning with Tensorflow AlexNet

Deep Learning with Tensorflow   AlexNet Machine Learning and Computer Vision Group Deep Learning with Tensorflow http://cvml.ist.ac.at/courses/dlwt_w17/ AlexNet Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton, "Imagenet classification

More information

CSE 446 Bias-Variance & Naïve Bayes

CSE 446 Bias-Variance & Naïve Bayes CSE 446 Bias-Variance & Naïve Bayes Administrative Homework 1 due next week on Friday Good to finish early Homework 2 is out on Monday Check the course calendar Start early (midterm is right before Homework

More information

Cost Functions in Machine Learning

Cost Functions in Machine Learning Cost Functions in Machine Learning Kevin Swingler Motivation Given some data that reflects measurements from the environment We want to build a model that reflects certain statistics about that data Something

More information

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal

Object Detection Lecture Introduction to deep learning (CNN) Idar Dyrdal Object Detection Lecture 10.3 - Introduction to deep learning (CNN) Idar Dyrdal Deep Learning Labels Computational models composed of multiple processing layers (non-linear transformations) Used to learn

More information

SGD: Stochastic Gradient Descent

SGD: Stochastic Gradient Descent Improving SGD Hantao Zhang Deep Learning with Python Reading: http://neuralnetworksanddeeplearning.com/index.html Chapter 2 SGD: Stochastic Gradient Descent Main Idea: Given a set of input/output examples

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

The exam is closed book, closed notes except your one-page cheat sheet.

The exam is closed book, closed notes except your one-page cheat sheet. CS 189 Fall 2015 Introduction to Machine Learning Final Please do not turn over the page before you are instructed to do so. You have 2 hours and 50 minutes. Please write your initials on the top-right

More information

Deep Neural Networks Optimization

Deep Neural Networks Optimization Deep Neural Networks Optimization Creative Commons (cc) by Akritasa http://arxiv.org/pdf/1406.2572.pdf Slides from Geoffrey Hinton CSC411/2515: Machine Learning and Data Mining, Winter 2018 Michael Guerzhoy

More information

Classification: Feature Vectors

Classification: Feature Vectors Classification: Feature Vectors Hello, Do you want free printr cartriges? Why pay more when you can get them ABSOLUTELY FREE! Just # free YOUR_NAME MISSPELLED FROM_FRIEND... : : : : 2 0 2 0 PIXEL 7,12

More information

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples.

Supervised Learning with Neural Networks. We now look at how an agent might learn to solve a general problem by seeing examples. Supervised Learning with Neural Networks We now look at how an agent might learn to solve a general problem by seeing examples. Aims: to present an outline of supervised learning as part of AI; to introduce

More information

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( )

Artificial Intelligence Introduction Handwriting Recognition Kadir Eren Unal ( ), Jakob Heyder ( ) Structure: 1. Introduction 2. Problem 3. Neural network approach a. Architecture b. Phases of CNN c. Results 4. HTM approach a. Architecture b. Setup c. Results 5. Conclusion 1.) Introduction Artificial

More information

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies

Deep Learning. Deep Learning. Practical Application Automatically Adding Sounds To Silent Movies http://blog.csdn.net/zouxy09/article/details/8775360 Automatic Colorization of Black and White Images Automatically Adding Sounds To Silent Movies Traditionally this was done by hand with human effort

More information

Using neural nets to recognize hand-written digits. Srikumar Ramalingam School of Computing University of Utah

Using neural nets to recognize hand-written digits. Srikumar Ramalingam School of Computing University of Utah Using neural nets to recognize hand-written digits Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the first chapter of the online book by Michael

More information

CS 354R: Computer Game Technology

CS 354R: Computer Game Technology CS 354R: Computer Game Technology AI Fuzzy Logic and Neural Nets Fall 2018 Fuzzy Logic Philosophical approach Decisions based on degree of truth Is not a method for reasoning under uncertainty that s probability

More information

All You Want To Know About CNNs. Yukun Zhu

All You Want To Know About CNNs. Yukun Zhu All You Want To Know About CNNs Yukun Zhu Deep Learning Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image from http://imgur.com/ Deep Learning Image

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu

Artificial Neural Networks. Introduction to Computational Neuroscience Ardi Tampuu Artificial Neural Networks Introduction to Computational Neuroscience Ardi Tampuu 7.0.206 Artificial neural network NB! Inspired by biology, not based on biology! Applications Automatic speech recognition

More information

5 Learning hypothesis classes (16 points)

5 Learning hypothesis classes (16 points) 5 Learning hypothesis classes (16 points) Consider a classification problem with two real valued inputs. For each of the following algorithms, specify all of the separators below that it could have generated

More information

The Perceptron. Simon Šuster, University of Groningen. Course Learning from data November 18, 2013

The Perceptron. Simon Šuster, University of Groningen. Course Learning from data November 18, 2013 The Perceptron Simon Šuster, University of Groningen Course Learning from data November 18, 2013 References Hal Daumé III: A Course in Machine Learning http://ciml.info Tom M. Mitchell: Machine Learning

More information

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron

Announcements. CS 188: Artificial Intelligence Spring Classification: Feature Vectors. Classification: Weights. Learning: Binary Perceptron CS 188: Artificial Intelligence Spring 2010 Lecture 24: Perceptrons and More! 4/20/2010 Announcements W7 due Thursday [that s your last written for the semester!] Project 5 out Thursday Contest running

More information

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44

Encoding RNNs, 48 End of sentence (EOS) token, 207 Exploding gradient, 131 Exponential function, 42 Exponential Linear Unit (ELU), 44 A Activation potential, 40 Annotated corpus add padding, 162 check versions, 158 create checkpoints, 164, 166 create input, 160 create train and validation datasets, 163 dropout, 163 DRUG-AE.rel file,

More information

Neural Networks (pp )

Neural Networks (pp ) Notation: Means pencil-and-paper QUIZ Means coding QUIZ Neural Networks (pp. 106-121) The first artificial neural network (ANN) was the (single-layer) perceptron, a simplified model of a biological neuron.

More information

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python:

Code Mania Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: Code Mania 2019 Artificial Intelligence: a. Module - 1: Introduction to Artificial intelligence and Python: 1. Introduction to Artificial Intelligence 2. Introduction to python programming and Environment

More information

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper

Deep Convolutional Neural Networks. Nov. 20th, 2015 Bruce Draper Deep Convolutional Neural Networks Nov. 20th, 2015 Bruce Draper Background: Fully-connected single layer neural networks Feed-forward classification Trained through back-propagation Example Computer Vision

More information

For Monday. Read chapter 18, sections Homework:

For Monday. Read chapter 18, sections Homework: For Monday Read chapter 18, sections 10-12 The material in section 8 and 9 is interesting, but we won t take time to cover it this semester Homework: Chapter 18, exercise 25 a-b Program 4 Model Neuron

More information

Machine Learning. MGS Lecture 3: Deep Learning

Machine Learning. MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ Machine Learning MGS Lecture 3: Deep Learning Dr Michel F. Valstar http://cs.nott.ac.uk/~mfv/ WHAT IS DEEP LEARNING? Shallow network: Only one hidden layer

More information

Linear Regression and K-Nearest Neighbors 3/28/18

Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression and K-Nearest Neighbors 3/28/18 Linear Regression Hypothesis Space Supervised learning For every input in the data set, we know the output Regression Outputs are continuous A number,

More information

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016

CS 2750: Machine Learning. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 CS 2750: Machine Learning Neural Networks Prof. Adriana Kovashka University of Pittsburgh April 13, 2016 Plan for today Neural network definition and examples Training neural networks (backprop) Convolutional

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech

Convolutional Neural Networks. Computer Vision Jia-Bin Huang, Virginia Tech Convolutional Neural Networks Computer Vision Jia-Bin Huang, Virginia Tech Today s class Overview Convolutional Neural Network (CNN) Training CNN Understanding and Visualizing CNN Image Categorization:

More information

CS5670: Computer Vision

CS5670: Computer Vision CS5670: Computer Vision Noah Snavely Lecture 33: Recognition Basics Slides from Andrej Karpathy and Fei-Fei Li http://vision.stanford.edu/teaching/cs231n/ Announcements Quiz moved to Tuesday Project 4

More information

! References: ! Computer eyesight gets a lot more accurate, NY Times. ! Stanford CS 231n. ! Christopher Olah s blog. ! Take ECS 174!

! References: ! Computer eyesight gets a lot more accurate, NY Times. ! Stanford CS 231n. ! Christopher Olah s blog. ! Take ECS 174! Exams ECS 189 WEB PROGRAMMING! If you are satisfied with your scores on the two midterms, you can skip the final! As soon as your Photobooth and midterm are graded, I can give you your course grade (so

More information

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center

Machine Learning With Python. Bin Chen Nov. 7, 2017 Research Computing Center Machine Learning With Python Bin Chen Nov. 7, 2017 Research Computing Center Outline Introduction to Machine Learning (ML) Introduction to Neural Network (NN) Introduction to Deep Learning NN Introduction

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2016 Assignment 5: Due Friday. Assignment 6: Due next Friday. Final: Admin December 12 (8:30am HEBB 100) Covers Assignments 1-6. Final from

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2017 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2017 Assignment 3: 2 late days to hand in tonight. Admin Assignment 4: Due Friday of next week. Last Time: MAP Estimation MAP

More information

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research

Convolutional Sequence to Sequence Learning. Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Convolutional Sequence to Sequence Learning Denis Yarats with Jonas Gehring, Michael Auli, David Grangier, Yann Dauphin Facebook AI Research Sequence generation Need to model a conditional distribution

More information

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna,

Convolutional Neural Networks: Applications and a short timeline. 7th Deep Learning Meetup Kornel Kis Vienna, Convolutional Neural Networks: Applications and a short timeline 7th Deep Learning Meetup Kornel Kis Vienna, 1.12.2016. Introduction Currently a master student Master thesis at BME SmartLab Started deep

More information

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD.

Deep Learning Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD. Deep Learning 861.061 Basic Lecture - Complex Systems & Artificial Intelligence 2017/18 (VO) Asan Agibetov, PhD asan.agibetov@meduniwien.ac.at Medical University of Vienna Center for Medical Statistics,

More information

Practice Exam Sample Solutions

Practice Exam Sample Solutions CS 675 Computer Vision Instructor: Marc Pomplun Practice Exam Sample Solutions Note that in the actual exam, no calculators, no books, and no notes allowed. Question 1: out of points Question 2: out of

More information

Keras: Handwritten Digit Recognition using MNIST Dataset

Keras: Handwritten Digit Recognition using MNIST Dataset Keras: Handwritten Digit Recognition using MNIST Dataset IIT PATNA January 31, 2018 1 / 30 OUTLINE 1 Keras: Introduction 2 Installing Keras 3 Keras: Building, Testing, Improving A Simple Network 2 / 30

More information

Back propagation Algorithm:

Back propagation Algorithm: Network Neural: A neural network is a class of computing system. They are created from very simple processing nodes formed into a network. They are inspired by the way that biological systems such as the

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 7: Universal Approximation Theorem, More Hidden Units, Multi-Class Classifiers, Softmax, and Regularization Peter Belhumeur Computer Science Columbia University

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning Ian Goodfellow

Practical Methodology. Lecture slides for Chapter 11 of Deep Learning  Ian Goodfellow Practical Methodology Lecture slides for Chapter 11 of Deep Learning www.deeplearningbook.org Ian Goodfellow 2016-09-26 What drives success in ML? Arcane knowledge of dozens of obscure algorithms? Mountains

More information

Convolutional Neural Networks

Convolutional Neural Networks NPFL114, Lecture 4 Convolutional Neural Networks Milan Straka March 25, 2019 Charles University in Prague Faculty of Mathematics and Physics Institute of Formal and Applied Linguistics unless otherwise

More information

11. Neural Network Regularization

11. Neural Network Regularization 11. Neural Network Regularization CS 519 Deep Learning, Winter 2016 Fuxin Li With materials from Andrej Karpathy, Zsolt Kira Preventing overfitting Approach 1: Get more data! Always best if possible! If

More information

Capsule Networks. Eric Mintun

Capsule Networks. Eric Mintun Capsule Networks Eric Mintun Motivation An improvement* to regular Convolutional Neural Networks. Two goals: Replace max-pooling operation with something more intuitive. Keep more info about an activated

More information

CSE 559A: Computer Vision

CSE 559A: Computer Vision CSE 559A: Computer Vision Fall 2018: T-R: 11:30-1pm @ Lopata 101 Instructor: Ayan Chakrabarti (ayan@wustl.edu). Course Staff: Zhihao Xia, Charlie Wu, Han Liu http://www.cse.wustl.edu/~ayan/courses/cse559a/

More information

Alternatives to Direct Supervision

Alternatives to Direct Supervision CreativeAI: Deep Learning for Graphics Alternatives to Direct Supervision Niloy Mitra Iasonas Kokkinos Paul Guerrero Nils Thuerey Tobias Ritschel UCL UCL UCL TUM UCL Timetable Theory and Basics State of

More information

Network Traffic Measurements and Analysis

Network Traffic Measurements and Analysis DEIB - Politecnico di Milano Fall, 2017 Sources Hastie, Tibshirani, Friedman: The Elements of Statistical Learning James, Witten, Hastie, Tibshirani: An Introduction to Statistical Learning Andrew Ng:

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information