Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Size: px
Start display at page:

Download "Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama"

Transcription

1 Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama

2 Skeleton-based animation Simple Intuitive Low comp. cost 2

3 Representing a pose using skeleton Tree structure consisting of bones & joints Each bone holds relative rotation angle w.r.t. parent joint Whole body pose determined by the set of joint angles (Forward Kinematics) Deeply related to robotics 3

4 Inverse Kinematics Find joint angles s.t. an end effector comes at a given goal position Typical workflow: Quickly create pose using IK, fine adjustment using FK 4

5 Simple method to solve IK: Cyclic Coordinate Descent Change joint angles one by one S.t. the end effector comes as close as possible to the goal position Ordering is important! Leaf root Easy to implement Basic assignment More advanced Jacobi method (directional constraint) Minimizing elastic energy [Jacobson 12] 5

6 IK minimizing elastic energy Fast Automatic Skinning Transformations [Jacobson SIGGRAPH12] 6

7 Ways to obtain/measure motion data 7

8 Optical motion capture Put markers on the actor, record video from many viewpoints (~48) from Wikipedia 8

9 Mocap using inexpensive depth camera 9

10 Mocap designed for outdoor scene Motion Capture from Body-Mounted Cameras [Shiratori SIGGRAPH11] 10

11 Motion database 6 categories, 2605 in total Free for research purposes Interpolation, recombination, analysis, search, etc. 11

12 frame Recombining motions Allow transition from one motion to another if poses are similar in certain frame frame Pose similarity matrix Motion Graphs [Kovar SIGGRAPH02] Motion Patches: Building Blocks for Virtual Environments Annotated with Motion Data [Lee SIGGRAPH06] 12

13 Generating motion through simulation For creatures unsuitable for mocap Too dangerous, nonexistent,... Natural motion respecting body shape Can interact with dynamic environment Generalizing Locomotion Style to New Animals With Inverse Optimal Regression [Wampler SIGGRAPH14] 13

14 Creating poses using special devices Tangible and Modular Input Device for Character Articulation [Jacobson SIGGRAPH14] Rig Animation with a Tangible and Modular Input Device [Glauser SIGGRAPH16] 14

15 Many topics about character motion Interaction between multiple persons Grasping motion Crowd simulation Path planning Character motion synthesis by topology coordinates [Ho EG09] Aggregate Dynamics for Dense Crowd Simulation [Narain SIGGRAPHAsia09] Synthesis of Detailed Hand Manipulations Using Contact Sampling [Ye SIGGRAPH12] Space-Time Planning with Parameterized Locomotion Controllers.[Levine TOG11] 15

16 Skinning 16

17 17

18 18

19 19

20 20

21 v i = blend w i,1, T 1, w i,2, T 2, v i Input Vertex positions v i i = 1,, n Transformation per bone T j j = 1,, m Weight from each bone to each vertex w i,j i = 1,, n j = 1,, m Output Vertex positions after deformation v i i = 1,, n Main focus How to define weights w i,j How to blend transformations 21

22 Simple way to define weights: painting 22

23 Automatic weight computation Define weight w j as a smooth scalar field that takes 1 on the j-th bone and 0 on the other bones Minimize 1 st -order derivative Ω w j 2 da [Baran 07] Approximate solution only on surface easy & fast Minimize 2 nd -order derivative Ω Δw j 2 da [Jacobson 11] Introduce inequality constraints 0 w j 1 Quadratic Programming over the volume high-quality Automatic rigging and animation of 3d characters [Baran SIGGRAPH07] Bounded Biharmonic Weights for Real-Time Deformation [Jacobson SIGGRAPH11] Pinocchio demo 23

24 Simple way to blend transformations: Linear Blend Skinning Represent rigid transformation T j as a 3 4 matrix consisting of rotation matrix R j R 3 3 and translation vector t j R 3 Simple and fast v i = j w i,j R j t j v i 1 Implemented using vertex shader: send v i & w i,j to GPU at initialization, send T j to GPU at each frame Standard method 24

25 Artifact of LBS: candy wrapper effect Twist one bone Initial shape & two bones Deformation using LBS Linear combination of rigid transformation is not a rigid transformation! Points around joint concentrate when twisted 25

26 Alternative to LBS: Dual Quaternion Skinning Initial shape & two bones Deformation using LBS Deformation using DQS Idea Quaternion (four numbers) 3D rotation Dual quaternion (two quaternions) 3D rigid motion (rotation + translation) 26

27 Dual number & dual quaternion Dual number Introduce dual unit ε & its arithmetic rule ε 2 = 0 (cf. imaginary unit i) Dual number is sum of primal & dual components: Dual conjugate: a = a 0 + εa ε = a 0 εa ε a a 0 + εa ε a 0, a ε R Dual quaternion Quaternion whose elements are dual numbers Can be written using two quaternions q q 0 + εq ε Dual conjugate: q = q 0 + εq ε = q 0 εq ε Quaternion conjugate: q = q 0 + εq ε = q 0 + εq ε Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 27

28 Arithmetic rules for dual number/quaternion For dual number a = a 0 + εa ε : 1 Reciprocal = 1 ε a ε a a 0 a2 0 Square root a = a 0 + ε a ε 2 a 0 Trigonometric sin a = sin a 0 + εa ε cos a 0 cos a = cos a 0 εa ε sin a 0 For dual quaternion q = q 0 + εq ε : Norm q = q q = q 0 + ε q 0,q ε q 0 Inverse q 1 = q q 2 Unit dual quaternion satisfies q = 1 q 0 = 1 & q 0, q ε = 0 Easily derived by combining usual arithmetic rules with new rule ε 2 = 0 From Taylor expansion Dot product as 4D vectors Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 28

29 Rigid transformation using dual quaternion Unit dual quaternion representing rigid motion of translation t = t x, t y, t z and rotation q 0 (unit quaternion) : q = q 0 + ε 2 tq 0 Note: 3D vector is considered as quaternion with zero real part Rigid transformation of 3D position v = v x, v y, v z using unit dual quaternion q : v : 3D position after transformation q 1 + εv q = 1 + εv Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 29

30 Rigid transformation using dual quaternion q = q 0 + ε 2 tq 0 q 1 + εv q = q 0 + ε tq εv q 0 + ε q 2 0 t = q 0 + ε tq 2 0 q 0 + εvq 0 + ε q 2 0 t = q 0 q 0 + ε tq 2 0q 0 + εq 0 vq 0 + ε q 2 0q 0 t = 1 + ε t + q 0 vq t q 0 = q0 0 + t q 0 2 = 1 = q 0 t 3D position v rotated by quaternion q 0 Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 30

31 Rigid transformation as screw motion Conventional notion: rotation + translation Screw motion Axis direction Any rigid motion is uniquely described as screw motion (Up to antipodality) Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 31

32 Screw motion & dual quaternion Unit dual quaternion q can be written as: q = cos θ 2 + s sin θ 2 θ = θ 0 + εθ ε s = s 0 + εs ε θ 0, θ ε : real number s 0, s ε : unit 3D vector Geometric meaning s 0 : direction of rotation axis θ 0 : amount of rotation θ ε : amount of translation parallel to s 0 s ε : when rotation axis passes through r, it satisfies s ε = r s 0 Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 32

33 Interpolating two rigid transformations Linear interpolation + normalization (nlerp) nlerp q 1, q 2, t 1 t q 1+t q 2 1 t q 1 +t q 2 Note: q & q represent same transformation with opposite path If 4D dot product of non-dual components of q 1 & q 2 is negative, use q 2 in the interpolation 33

34 Blending rigid motions using dual quaternion blend w 1, q 1, w 2, q 2, w 1 q 1 + w 2 q 2 + w 1 q 1 + w 2 q 2 + Akin to blending rotations using quaternion Same input format as LBS & low computational cost Standard feature in many commercial CG packages Geometric Skinning with Approximate Dual Quaternion Blending [Kavan TOG08] 34

35 Artifact of DQS: bulging effect Produces ball-like shape around the joint when bended LBS DQS Elasticity-Inspired Deformers for Character Articulation [Kavan SIGGRAPHAsia12] Bulging-free dual quaternion skinning [Kim CASA14] 35

36 Overcoming DQS s drawback LBS DQS [Kavan12] LBS DQS [Kavan12] Decompose transformation into bend & twist, interpolate them separately [Kavan12] After deforming using DQS, offset vertices along normals [Kim14] Elasticity-Inspired Deformers for Character Articulation [Kavan SIGGRAPHAsia12] Bulging-free dual quaternion skinning [Kim CASA14] 36

37 Limitation of DQS: Cannot represent rotation by more than 360 Differential Blending for Sketch-based Expressive Posing [Oztireli SCA13] 37

38 Skinning for avoiding self-intersections Make use of implicit functions Implicit Skinning; Real-Time Skin Deformation with Contact Modeling [Vaillant SIGGRAPH13] 38

39 Other deformation mechanisms than skinning Unified point/cage/skeleton handles [Jacobson 11] BlendShape Bounded Biharmonic Weights for Real-Time Deformation [Jacobson SIGGRAPH11] 39

40 References

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

CS 775: Advanced Computer Graphics. Lecture 4: Skinning

CS 775: Advanced Computer Graphics. Lecture 4: Skinning CS 775: Advanced Computer Graphics Lecture 4: http://www.okino.com/conv/skinning.htm Binding Binding Always done in a standard rest or bind pose. Binding Always done in a standard rest or bind pose. Associate

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

10 - ARAP and Linear Blend Skinning

10 - ARAP and Linear Blend Skinning 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung As Rigid As Possible Demo Libigl demo 405 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each

More information

05 Mesh Animation. Steve Marschner CS5625 Spring 2016

05 Mesh Animation. Steve Marschner CS5625 Spring 2016 05 Mesh Animation Steve Marschner CS5625 Spring 2016 Basic surface deformation methods Blend shapes: make a mesh by combining several meshes Mesh skinning: deform a mesh based on an underlying skeleton

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Advanced Graphics and Animation

Advanced Graphics and Animation Advanced Graphics and Animation Character Marco Gillies and Dan Jones Goldsmiths Aims and objectives By the end of the lecture you will be able to describe How 3D characters are animated Skeletal animation

More information

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation

Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation Applications of Dual Quaternions in Three Dimensional Transformation and Interpolation November 11, 2013 Matthew Smith mrs126@uclive.ac.nz Department of Computer Science and Software Engineering University

More information

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation

COMP 175 COMPUTER GRAPHICS. Lecture 10: Animation. COMP 175: Computer Graphics March 12, Erik Anderson 08 Animation Lecture 10: Animation COMP 175: Computer Graphics March 12, 2018 1/37 Recap on Camera and the GL Matrix Stack } Go over the GL Matrix Stack 2/37 Topics in Animation } Physics (dynamics, simulation, mechanics)

More information

CS354 Computer Graphics Character Animation and Skinning

CS354 Computer Graphics Character Animation and Skinning Slide Credit: Don Fussell CS354 Computer Graphics Character Animation and Skinning Qixing Huang April 9th 2018 Instance Transformation Start with a prototype object (a symbol) Each appearance of the object

More information

Inverse Kinematics II and Motion Capture

Inverse Kinematics II and Motion Capture Mathematical Foundations of Computer Graphics and Vision Inverse Kinematics II and Motion Capture Luca Ballan Institute of Visual Computing Comparison 0 1 A B 2 C 3 Fake exponential map Real exponential

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

Animation. Motion over time

Animation. Motion over time Animation Animation Motion over time Animation Motion over time Usually focus on character animation but environment is often also animated trees, water, fire, explosions, Animation Motion over time Usually

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG

COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION. Rémi Ronfard, Animation, M2R MOSIG COMPUTER ANIMATION 3 KEYFRAME ANIMATION, RIGGING, SKINNING AND CHARACTER ANIMATION Rémi Ronfard, Animation, M2R MOSIG 2 Outline Principles of animation Keyframe interpolation Rigging, skinning and walking

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

计算机图形学. Computer Graphics 刘利刚.

计算机图形学. Computer Graphics 刘利刚. 计算机图形学 Computer Graphics 刘利刚 lgliu@ustc.edu.cn http://staff.ustc.edu.cn/~lgliu Computer Animation Skinning and Enveloping The slide are from Durand from MIT. Before getting started One more word about

More information

SM2231 :: 3D Animation I :: Basic. Rigging

SM2231 :: 3D Animation I :: Basic. Rigging SM2231 :: 3D Animation I :: Basic Rigging Object arrangements Hierarchical Hierarchical Separate parts arranged in a hierarchy can be animated without a skeleton Flat Flat Flat hierarchy is usually preferred,

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Kinematics & Motion Capture

Kinematics & Motion Capture Lecture 27: Kinematics & Motion Capture Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Forward Kinematics (Slides with James O Brien) Forward Kinematics Articulated skeleton Topology

More information

A skeleton/cage hybrid paradigm for digital animation

A skeleton/cage hybrid paradigm for digital animation A skeleton/cage hybrid paradigm for digital animation Fabrizio Corda 1 1 Università degli studi di Cagliari Abstract. Digital animators require simple tools and techniques that allow them to create computer

More information

Animation of 3D surfaces.

Animation of 3D surfaces. Animation of 3D surfaces Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible =

More information

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object.

This week. CENG 732 Computer Animation. Warping an Object. Warping an Object. 2D Grid Deformation. Warping an Object. CENG 732 Computer Animation Spring 2006-2007 Week 4 Shape Deformation Animating Articulated Structures: Forward Kinematics/Inverse Kinematics This week Shape Deformation FFD: Free Form Deformation Hierarchical

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

Motion Capture. Motion Capture in Movies. Motion Capture in Games

Motion Capture. Motion Capture in Movies. Motion Capture in Games Motion Capture Motion Capture in Movies 2 Motion Capture in Games 3 4 Magnetic Capture Systems Tethered Sensitive to metal Low frequency (60Hz) Mechanical Capture Systems Any environment Measures joint

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time

animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

animation computer graphics animation 2009 fabio pellacini 1

animation computer graphics animation 2009 fabio pellacini 1 animation computer graphics animation 2009 fabio pellacini 1 animation shape specification as a function of time computer graphics animation 2009 fabio pellacini 2 animation representation many ways to

More information

12.1 Quaternions and Rotations

12.1 Quaternions and Rotations Fall 2015 CSCI 420 Computer Graphics 12.1 Quaternions and Rotations Hao Li http://cs420.hao-li.com 1 Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera

More information

Chapter 5.2 Character Animation

Chapter 5.2 Character Animation Chapter 5.2 Character Animation Overview Fundamental Concepts Animation Storage Playing Animations Blending Animations Motion Extraction Mesh Deformation Inverse Kinematics Attachments & Collision Detection

More information

Kinematical Animation.

Kinematical Animation. Kinematical Animation 3D animation in CG Goal : capture visual attention Motion of characters Believable Expressive Realism? Controllability Limits of purely physical simulation : - little interactivity

More information

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo

12 - Spatial And Skeletal Deformations. CSCI-GA Computer Graphics - Fall 16 - Daniele Panozzo 12 - Spatial And Skeletal Deformations Space Deformations Space Deformation Displacement function defined on the ambient space Evaluate the function on the points of the shape embedded in the space Twist

More information

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation

Animation. Keyframe animation. CS4620/5620: Lecture 30. Rigid motion: the simplest deformation. Controlling shape for animation Keyframe animation CS4620/5620: Lecture 30 Animation Keyframing is the technique used for pose-to-pose animation User creates key poses just enough to indicate what the motion is supposed to be Interpolate

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeleton Origin (root) Joint centers/ bones lengths ) Keyframes Pos/Rot Root (x) Joint Angles (q) Kinematics study of static

More information

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 32. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 32 Cornell CS4620 Fall 2015 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 420 Computer Graphics Lecture 20 and Rotations Rotations Motion Capture [Angel Ch. 3.14] Rotations Very important in computer animation and robotics Joint angles, rigid body orientations, camera parameters

More information

Articulated Characters

Articulated Characters Articulated Characters Skeleton A skeleton is a framework of rigid body bones connected by articulated joints Used as an (invisible?) armature to position and orient geometry (usually surface triangles)

More information

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics

Computer Animation Fundamentals. Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Computer Animation Fundamentals Animation Methods Keyframing Interpolation Kinematics Inverse Kinematics Lecture 21 6.837 Fall 2001 Conventional Animation Draw each frame of the animation great control

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 480 Computer Graphics Lecture 20 and Rotations April 6, 2011 Jernej Barbic Rotations Motion Capture [Ch. 4.12] University of Southern California http://www-bcf.usc.edu/~jbarbic/cs480-s11/ 1 Rotations

More information

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1

Animation. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 4/23/07 1 Animation Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 4/23/07 1 Today s Topics Interpolation Forward and inverse kinematics Rigid body simulation Fluids Particle systems Behavioral

More information

Motion Capture & Simulation

Motion Capture & Simulation Motion Capture & Simulation Motion Capture Character Reconstructions Joint Angles Need 3 points to compute a rigid body coordinate frame 1 st point gives 3D translation, 2 nd point gives 2 angles, 3 rd

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Overview: Motion data processing In this course Motion editing

More information

Robust Human Body Shape and Pose Tracking

Robust Human Body Shape and Pose Tracking Robust Human Body Shape and Pose Tracking Chun-Hao Huang 1 Edmond Boyer 2 Slobodan Ilic 1 1 Technische Universität München 2 INRIA Grenoble Rhône-Alpes Marker-based motion capture (mocap.) Adventages:

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

Stretchable and Twistable Bones for Skeletal Shape Deformation

Stretchable and Twistable Bones for Skeletal Shape Deformation Stretchable and Twistable Bones for Skeletal Shape Deformation Alec Jacobson Olga Sorkine New York University & ETH Zurich Original LBS DQS STBS Figure 1: Left to right: the Beast model is rigged to a

More information

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics

CS 775: Advanced Computer Graphics. Lecture 3 : Kinematics CS 775: Advanced Computer Graphics Lecture 3 : Kinematics Traditional Cell Animation, hand drawn, 2D Lead Animator for keyframes http://animation.about.com/od/flashanimationtutorials/ss/flash31detanim2.htm

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Kinematics: Intro. Kinematics is study of motion

Kinematics: Intro. Kinematics is study of motion Kinematics is study of motion Kinematics: Intro Concerned with mechanisms and how they transfer and transform motion Mechanisms can be machines, skeletons, etc. Important for CG since need to animate complex

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback

Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback Hoang-Lan Pham, Véronique Perdereau, Bruno Vilhena Adorno and Philippe Fraisse UPMC Univ Paris 6, UMR 7222, F-755,

More information

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018

Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Inverse Kinematics (part 1) CSE169: Computer Animation Instructor: Steve Rotenberg UCSD, Winter 2018 Welman, 1993 Inverse Kinematics and Geometric Constraints for Articulated Figure Manipulation, Chris

More information

Advanced Computer Graphics

Advanced Computer Graphics G22.2274 001, Fall 2009 Advanced Computer Graphics Project details and tools 1 Project Topics Computer Animation Geometric Modeling Computational Photography Image processing 2 Optimization All projects

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research

Applications. Systems. Motion capture pipeline. Biomechanical analysis. Graphics research Motion capture Applications Systems Motion capture pipeline Biomechanical analysis Graphics research Applications Computer animation Biomechanics Robotics Cinema Video games Anthropology What is captured?

More information

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17]

6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, :05-12pm Two hand-written sheet of notes (4 pages) allowed 1 SSD [ /17] 6.837 Introduction to Computer Graphics Final Exam Tuesday, December 20, 2011 9:05-12pm Two hand-written sheet of notes (4 pages) allowed NAME: 1 / 17 2 / 12 3 / 35 4 / 8 5 / 18 Total / 90 1 SSD [ /17]

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

CS 231. Inverse Kinematics Intro to Motion Capture

CS 231. Inverse Kinematics Intro to Motion Capture CS 231 Inverse Kinematics Intro to Motion Capture Representation 1) Skeleton Origin (root) Joint centers/ bones lengths 2) Keyframes Pos/Rot Root (x) Joint Angles (q) 3D characters Kinematics study of

More information

3D Production Pipeline

3D Production Pipeline Overview 3D Production Pipeline Story Character Design Art Direction Storyboarding Vocal Tracks 3D Animatics Modeling Animation Rendering Effects Compositing Basics : OpenGL, transformation Modeling :

More information

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Transformation. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Transformation Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Announcement Project

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

MODELING AND HIERARCHY

MODELING AND HIERARCHY MODELING AND HIERARCHY Introduction Models are abstractions of the world both of the real world in which we live and of virtual worlds that we create with computers. We are all familiar with mathematical

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials)

To Do. Advanced Computer Graphics. The Story So Far. Course Outline. Rendering (Creating, shading images from geometry, lighting, materials) Advanced Computer Graphics CSE 190 [Spring 2015], Lecture 16 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 3 milestone due May 29 Should already be well on way Contact us for difficulties

More information

Le s s on 02. Basic methods in Computer Animation

Le s s on 02. Basic methods in Computer Animation Le s s on 02 Basic methods in Computer Animation Lesson 02 Outline Key-framing and parameter interpolation Skeleton Animation Forward and inverse Kinematics Procedural techniques Motion capture Key-framing

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

SUMMARY. CS380: Introduction to Computer Graphics Track-/Arc-ball Chapter 8. Min H. Kim KAIST School of Computing 18/04/06.

SUMMARY. CS380: Introduction to Computer Graphics Track-/Arc-ball Chapter 8. Min H. Kim KAIST School of Computing 18/04/06. 8/4/6 CS38: Introduction to Computer Graphics Track-/Arc-ball Chapter 8 Min H. Kim KAIST School of Computing Quaternion SUMMARY 2 8/4/6 Unit norm quats. == rotations Squared norm is sum of 4 squares. Any

More information

Maya Lesson 8 Notes - Animated Adjustable Desk Lamp

Maya Lesson 8 Notes - Animated Adjustable Desk Lamp Maya Lesson 8 Notes - Animated Adjustable Desk Lamp To Model the Lamp: 1. Research: Google images - adjustable desk lamp. 2. Print several images of lamps for ideas to model. 3. Make a sketch of the lamp

More information

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE

Computer Animation. Algorithms and Techniques. z< MORGAN KAUFMANN PUBLISHERS. Rick Parent Ohio State University AN IMPRINT OF ELSEVIER SCIENCE Computer Animation Algorithms and Techniques Rick Parent Ohio State University z< MORGAN KAUFMANN PUBLISHERS AN IMPRINT OF ELSEVIER SCIENCE AMSTERDAM BOSTON LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO

More information

Introduction to Robotics

Introduction to Robotics Université de Strasbourg Introduction to Robotics Bernard BAYLE, 2013 http://eavr.u-strasbg.fr/ bernard Modelling of a SCARA-type robotic manipulator SCARA-type robotic manipulators: introduction SCARA-type

More information

Character Animation COS 426

Character Animation COS 426 Character Animation COS 426 Syllabus I. Image processing II. Modeling III. Rendering IV. Animation Image Processing (Rusty Coleman, CS426, Fall99) Rendering (Michael Bostock, CS426, Fall99) Modeling (Dennis

More information

Quaternions and Rotations

Quaternions and Rotations CSCI 520 Computer Animation and Simulation Quaternions and Rotations Jernej Barbic University of Southern California 1 Rotations Very important in computer animation and robotics Joint angles, rigid body

More information

Theory of Robotics and Mechatronics

Theory of Robotics and Mechatronics Theory of Robotics and Mechatronics Final Exam 19.12.2016 Question: 1 2 3 Total Points: 18 32 10 60 Score: Name: Legi-Nr: Department: Semester: Duration: 120 min 1 A4-sheet (double sided) of notes allowed

More information

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101

Why animate humans? Why is this hard? Aspects of the Problem. These lectures. Animation Apreciation 101 Animation by Example Lecture 1: Introduction, Human Representation Michael Gleicher University of Wisconsin- Madison www.cs.wisc.edu/~gleicher www.cs.wisc.edu/graphics Why animate humans? Movies Television

More information

Real-Time Universal Capture Facial Animation with GPU Skin Rendering

Real-Time Universal Capture Facial Animation with GPU Skin Rendering Real-Time Universal Capture Facial Animation with GPU Skin Rendering Meng Yang mengyang@seas.upenn.edu PROJECT ABSTRACT The project implements the real-time skin rendering algorithm presented in [1], and

More information

Motion Synthesis and Editing. Yisheng Chen

Motion Synthesis and Editing. Yisheng Chen Motion Synthesis and Editing Yisheng Chen Overview Data driven motion synthesis automatically generate motion from a motion capture database, offline or interactive User inputs Large, high-dimensional

More information

Motion Graphs for Character Animation

Motion Graphs for Character Animation Parag Chaudhuri Indian Institute of Technology Bombay Research Promotion Workshop on Introduction to Graph and Geometric Algorithms Thapar University Patiala October 30, 2010 Outline Introduction The Need

More information

Animation. CS 4620 Lecture 19. Cornell CS4620 Fall 2013 Lecture Steve Marschner (with previous instructors James/Bala)

Animation. CS 4620 Lecture 19. Cornell CS4620 Fall 2013 Lecture Steve Marschner (with previous instructors James/Bala) Animation CS 4620 Lecture 19 1 What is animation? Modeling = specifying shape using all the tools we ve seen: hierarchies, meshes, curved surfaces Animation = specifying shape as a function of time just

More information

Inertial Measurement Units II!

Inertial Measurement Units II! ! Inertial Measurement Units II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 10! stanford.edu/class/ee267/!! wikipedia! Polynesian Migration! Lecture Overview! short review of

More information

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Animation, Motion Capture, & Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Animation, Motion Capture, & Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based

More information

About this document. Introduction. Where does Life Forms fit? Prev Menu Next Back p. 2

About this document. Introduction. Where does Life Forms fit? Prev Menu Next Back p. 2 Prev Menu Next Back p. 2 About this document This document explains how to use Life Forms Studio with LightWave 5.5-6.5. It also contains short examples of how to use LightWave and Life Forms together.

More information

Animation II: Soft Object Animation. Watt and Watt Ch.17

Animation II: Soft Object Animation. Watt and Watt Ch.17 Animation II: Soft Object Animation Watt and Watt Ch.17 Soft Object Animation Animation I: skeletal animation forward kinematics x=f(φ) inverse kinematics φ=f -1 (x) Curves and Surfaces I&II: parametric

More information

Quaternions and Exponentials

Quaternions and Exponentials Quaternions and Exponentials Michael Kazhdan (601.457/657) HB A.6 FvDFH 21.1.3 Announcements OpenGL review II: Today at 9:00pm, Malone 228 This week's graphics reading seminar: Today 2:00-3:00pm, my office

More information

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps

Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Visualization and Analysis of Inverse Kinematics Algorithms Using Performance Metric Maps Oliver Cardwell, Ramakrishnan Mukundan Department of Computer Science and Software Engineering University of Canterbury

More information

Adding Hand Motion to the Motion Capture Based Character Animation

Adding Hand Motion to the Motion Capture Based Character Animation Adding Hand Motion to the Motion Capture Based Character Animation Ge Jin and James Hahn Computer Science Department, George Washington University, Washington DC 20052 {jinge, hahn}@gwu.edu Abstract. Most

More information

ME 115(a): Final Exam (Winter Quarter 2009/2010)

ME 115(a): Final Exam (Winter Quarter 2009/2010) ME 115(a): Final Exam (Winter Quarter 2009/2010) Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask a question, or go to

More information

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique

MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC. Alexandre Meyer Master Informatique 1 MOTION CAPTURE DATA PROCESSING - MOTION EDITING / RETARGETING - MOTION CONTROL / GRAPH - INVERSE KINEMATIC Alexandre Meyer Master Informatique Motion capture data processing From Data Capture to motion

More information

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation

Last Time? Inverse Kinematics. Today. Keyframing. Physically-Based Animation. Procedural Animation Last Time? Inverse Kinematics Navier-Stokes Equations Conservation of Momentum & Mass Incompressible Flow Today How do we animate? Keyframing Procedural Animation Physically-Based Animation Forward and

More information

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66

C O M P U T E R G R A P H I C S. Computer Animation. Guoying Zhao 1 / 66 Computer Animation Guoying Zhao 1 / 66 Basic Elements of Computer Graphics Modeling construct the 3D model of the scene Rendering Render the 3D model, compute the color of each pixel. The color is related

More information

Free-Form Deformation and Other Deformation Techniques

Free-Form Deformation and Other Deformation Techniques Free-Form Deformation and Other Deformation Techniques Deformation Deformation Basic Definition Deformation: A transformation/mapping of the positions of every particle in the original object to those

More information

Anti-commutative Dual Complex Numbers and 2D Rigid Transformation

Anti-commutative Dual Complex Numbers and 2D Rigid Transformation Anti-commutative Dual Complex Numbers and 2D Rigid Transformation Genki Matsuda, Shizuo Kaji, and Hiroyuki Ochiai Abstract We introduce a new presentation of the two dimensional rigid transformation which

More information

Lecture 22 of 41. Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics

Lecture 22 of 41. Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Lecture 22 of 41. Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics

Lecture 22 of 41. Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics Animation 2 of 3: Rotations, Quaternions Dynamics & Kinematics William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters

Computer Animation and Visualisation. Lecture 3. Motion capture and physically-based animation of characters Computer Animation and Visualisation Lecture 3. Motion capture and physically-based animation of characters Character Animation There are three methods Create them manually Use real human / animal motions

More information