Robust Human Body Shape and Pose Tracking

Size: px
Start display at page:

Download "Robust Human Body Shape and Pose Tracking"

Transcription

1 Robust Human Body Shape and Pose Tracking Chun-Hao Huang 1 Edmond Boyer 2 Slobodan Ilic 1 1 Technische Universität München 2 INRIA Grenoble Rhône-Alpes

2 Marker-based motion capture (mocap.) Adventages: precision, reliability little data ( couple of kb/frame for 50 cameras, 5 people) real-time processing, visualization & retargeting. Disadvantages: Attaching, removing, re-attaching markers is tedious. Markers can interfere with the movement. Giant Studios (L.A. Noire set ) Markers prevent the simultaneous acquisition of shape and motion. 2

3 Marker-less mocap. Multiple camera setup is usually required. Accquisition of both motion and shape. 3D dome (CMU) Grimage ( INRIA ) 3

4 Motivation Methods that assume a skeleton usually produce skinning artifacts, require 2 nd stage shape refinement. Degree of freedom (DoF): N J 6 (< 10 2 ) [Vlasic et al. ToG`08] Skeleton-based Purely-surface-based methods handle non-rigid surface deformation better, but do not provide the pose. DoF: N P 6 ( 10 3 ) [Cagniart et al. ECCV`10] Surface-based 4

5 Contribution bone differential coordinate probablistic surface deformation [Straka et al. ECCV`12] [Cagniart et al. ECCV`10] A learning-based outlier rejection scheme. 5

6 Preprocessing step: model Decompose the reference mesh into patches [Cagniart et al. CVPR`10] Shape parameter N, P k k k 1 Θ R c M 0 Pose parameter J N J x j j 1 Rig the skeleton inside the mesh. Each vertex belongs to one body part. [Baran et al. TOG`07] 6

7 Preprocessing step: input data For each time stamp t, visual hull is reconstruced from silhouettes, which serves as our observations 7

8 Pipeline input data t partitioned t filtered t SVM classification filtering M t 1 model Minimizing E(Θ, E(Θ) J) M t 8

9 Pipeline input data t M t 1 model Minimizing E(Θ, E(Θ) J) [Cagniart et al. ECCV`10] M t 9

10 SVM-based body part classification input data partitioned t t SVM classification A multi-class linear SVM is trained on M t 1 t and tested on M t 1 model Feature: 3D coordinate of vertices. Class label: rigid body part label. Good compromise between accuracy and training time. 10

11 Filtering point cloud partitioned t filtered t Bone T b : patches on the bone often move rigidly together. filtering sub-sample the observations. Joint T g : patches on the joint have nonrigid deformation. keep all the observations. Outlier T 0 : abandon all the observations. 11

12 Benefit of SVM classification outlier removal 1 wo outlier removal with outlier removal 0 12

13 Energy minimization filtered t M t 1 model Minimizing E(Θ, J) M t 13

14 Energy function M t 1 E Θ, J filtered t Θ, J Θ Θ Θ, J E E E E data rigid bone E data (Θ) : how well the surface explains the observations. E rigid (Θ) : smooth the motion of neighboring patches. E bone (Θ, J) : keep the relationship between the mesh and the skeleton. 14

15 Data term E data (Θ): how well the surface explains the observations. A probablisitic Iterative Closest Point (ICP) approach. Each observation has a soft assignment to every patch, updated in each iteration. Let observation i correspond to vertex v i k in P k with a soft assigment w i k. E data NT NP1 2 k wi i k vi i1 k1 Θ y x 15

16 A probablistic point of view [Cagniart et al. ECCV`10] Can be interpreted as EM algorithm. The likelihood: Gaussian mixture model E-step: update the soft assignment. P( z k y, Θ) k i i i i N 1 l1 M-step: minimize sum of negative log likelihood (energy). E P P( y z k, Θ) data P( y z l, Θ) i N P i 1 P( y Θ) P( y z k, Θ) i k i i k 1 NT NP1 2 k wi i k vi i1 k1 Θ y x ln( ) 16

17 Rigidity energy [Cagniart et al. CVPR`10] E rigid (Θ) : smooth the motion of neighboring patches P k k x v d l x v P l E rigid N P Θ x x k 1 PN vp P l k k l k v d l v 2 For each patch, the real location and the predicted location should be consistent. Θ is implicitly encoded in x v k and x v l 17

18 Bone-binding energy β coordinate : A relative displacement from patch to bone γ > 1 γ k 0.5 β k c k γ 0 X j(k) Δ k β k = Δ k c k X j_child(k) Δ k = γ k X j(k) + 1 γ k X j_child(k) γ k is computed such that β k is perpendicular to the bone. 18

19 Bone-binding energy E bone (Θ, J) : keep β consistent after transformation. bone N P, E Θ J w β T Θ β k 1 0 k k k k k 2 T k Θ k Δ k 0 N P k 1 w 0 k k k k k Δ T Θ Δ d 2 Δ k d For each patch, Δ k predicted from the patch and Δ k from the bone should be consistent. w k is weighed according to γ k 19

20 Energy function E data (Θ) : how well the surface explains the observations. E E rigid (Θ) : smooth the motion of neighboring patches. E data rigid N N P T N P Θ x x k 1 PN vp P l k k l E bone (Θ, J) : keep the relationship between mesh and joints. 1 Θ w y x i1 k1 k k i i v k v 2 l v 2 regularization terms or deformation prior bone N P, E Θ J w Δ T Θ Δ k 1 0 k k k k k 2 20

21 Minimizing the energy Θ, J Θ Θ Θ, J E E E E d data r rigid b bone λ d =10, λ r =1, and λ b =1 Each term is quadratic in terms of variables. Standard Gauss-Newton optimization is thus feasible. 3-4s per frame (including SVM training time). 21

22 Quantitative results Pose: 70.86mm error in Walking sequence from HumanEvaII benchmark. (error < 80mm typically corresponds to a correct pose [Sigal et al. IJCV`12]). Shape: reprojection error (%) Sequence our surface-based [4] inverse kinematic Handstand 1 [1] Wheel [1] Skirt [1] Dance [1] Crane [2] Handstand 2 [2] Bouncing [2] Free [3] Gall et al. CVPR`09 2. Vlasic et al. ToG`08 3. Starck et al. CGA`07 4.Cagniart et al. ECCV`10 22

23 Qualitative results [Starck et al. 2007] [Vlasic et al. 2008] [Gall et al. 2009] 23

24 Conclusion and future work A method that jointly recovers the pose and the shape of human body has been proposed. We introduce a novel SVM-based classification scheme that filters target point clouds and thus helps better correspondence search. Future directions include alleviating the requirement of background substraction, and exploiting more photometric information. More experiment results in the poster session. 24

25 Thank you! Questions? 25

Robust Human Body Shape and Pose Tracking

Robust Human Body Shape and Pose Tracking Robust Human Body Shape and Pose Tracking Chun-Hao Huang, Edmond Boyer, Slobodan Ilic To cite this version: Chun-Hao Huang, Edmond Boyer, Slobodan Ilic. Robust Human Body Shape and Pose Tracking. 3DV -

More information

Probabilistic Deformable Surface Tracking from Multiple Videos

Probabilistic Deformable Surface Tracking from Multiple Videos Probabilistic Deformable Surface Tracking from Multiple Videos Cedric Cagniart 1,EdmondBoyer 2, and Slobodan Ilic 1 1 Technische Universität München 2 Grenoble Universités - INRIA Rhône-Alpes {cagniart,slobodan.ilic}@in.tum.de,

More information

Free-Form Mesh Tracking: a Patch-Based Approach

Free-Form Mesh Tracking: a Patch-Based Approach Free-Form Mesh Tracking: a Patch-Based Approach Cedric Cagniart 1, Edmond Boyer 2, Slobodan Ilic 1 1 Department of Computer Science, Technical University of Munich 2 Grenoble Universités, INRIA Rhône-Alpes

More information

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes

Video based Animation Synthesis with the Essential Graph. Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Video based Animation Synthesis with the Essential Graph Adnane Boukhayma, Edmond Boyer MORPHEO INRIA Grenoble Rhône-Alpes Goal Given a set of 4D models, how to generate realistic motion from user specified

More information

3D Imaging from Video and Planar Radiography

3D Imaging from Video and Planar Radiography 3D Imaging from Video and Planar Radiography Julien Pansiot and Edmond Boyer Morpheo, Inria Grenoble Rhône-Alpes, France International Conference on Medical Image Computing and Computer Assisted Intervention

More information

Real-time 3D reconstruction: applications to collision detection and surgical workflow monitoring

Real-time 3D reconstruction: applications to collision detection and surgical workflow monitoring Real-time 3D reconstruction: applications to collision detection and surgical workflow monitoring Nassir Navab! Alexander Ladikos, Nicolas Padoy, Diana Mateus and Cedric Cagniart! Presented by Nicolas

More information

Dynamic Geometry Processing

Dynamic Geometry Processing Dynamic Geometry Processing EG 2012 Tutorial Will Chang, Hao Li, Niloy Mitra, Mark Pauly, Michael Wand Tutorial: Dynamic Geometry Processing 1 Articulated Global Registration Introduction and Overview

More information

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama

Introduction to Computer Graphics. Animation (1) May 19, 2016 Kenshi Takayama Introduction to Computer Graphics Animation (1) May 19, 2016 Kenshi Takayama Skeleton-based animation Simple Intuitive Low comp. cost https://www.youtube.com/watch?v=dsonab58qva 2 Representing a pose using

More information

Cage-based Motion Recovery using Manifold Learning

Cage-based Motion Recovery using Manifold Learning Cage-based Motion Recovery using Manifold Learning Estelle Duveau Simon Courtemanche Lionel Reveret Edmond Boyer LJK, INRIA Grenoble Rhône-Alpes, France Abstract We present a flexible model-based approach

More information

Progressive Shape Models

Progressive Shape Models Progressive Shape Models Antoine Letouzey, Edmond Boyer To cite this version: Antoine Letouzey, Edmond Boyer. Progressive Shape Models. CVPR - Computer Vision and Patern Recognition - 2012, Jun 2012, Providence,

More information

SCAPE: Shape Completion and Animation of People

SCAPE: Shape Completion and Animation of People SCAPE: Shape Completion and Animation of People By Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, James Davis From SIGGRAPH 2005 Presentation for CS468 by Emilio Antúnez

More information

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala

Animations. Hakan Bilen University of Edinburgh. Computer Graphics Fall Some slides are courtesy of Steve Marschner and Kavita Bala Animations Hakan Bilen University of Edinburgh Computer Graphics Fall 2017 Some slides are courtesy of Steve Marschner and Kavita Bala Animation Artistic process What are animators trying to do? What tools

More information

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation

Human body animation. Computer Animation. Human Body Animation. Skeletal Animation Computer Animation Aitor Rovira March 2010 Human body animation Based on slides by Marco Gillies Human Body Animation Skeletal Animation Skeletal Animation (FK, IK) Motion Capture Motion Editing (retargeting,

More information

Iterative Mesh Deformation for Dense Surface Tracking

Iterative Mesh Deformation for Dense Surface Tracking Iterative Mesh Deformation for Dense Surface Tracking Cedric Cagniart CAMP TU Munich & Deutsche Telekom Laboratories cedric.cagniart@in.tum.de Edmond Boyer INRIA Alpes Grenoble edmond.boyer@inrialpes.fr

More information

Inverse Kinematics II and Motion Capture

Inverse Kinematics II and Motion Capture Mathematical Foundations of Computer Graphics and Vision Inverse Kinematics II and Motion Capture Luca Ballan Institute of Visual Computing Comparison 0 1 A B 2 C 3 Fake exponential map Real exponential

More information

Rapid Skin: Estimating the 3D Human Pose and Shape in Real-Time

Rapid Skin: Estimating the 3D Human Pose and Shape in Real-Time Rapid Skin: Estimating the 3D Human Pose and Shape in Real-Time Matthias Straka, Stefan Hauswiesner, Matthias Rüther, and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology,

More information

Robust Non-rigid Motion Tracking and Surface Reconstruction Using L 0 Regularization

Robust Non-rigid Motion Tracking and Surface Reconstruction Using L 0 Regularization Robust Non-rigid Motion Tracking and Surface Reconstruction Using L 0 Regularization Kaiwen Guo 1,2, Feng Xu 1,3, Yangang Wang 4, Yebin Liu 1,2, Qionghai Dai 1,2 1 Tsinghua National Laboratory for Information

More information

ACQUIRING 3D models of deforming objects in real-life is

ACQUIRING 3D models of deforming objects in real-life is IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1 Robust Non-rigid Motion Tracking and Surface Reconstruction Using L 0 Regularization Kaiwen Guo, Feng Xu, Yangang Wang, Yebin Liu, Member, IEEE

More information

Animation. CS 465 Lecture 22

Animation. CS 465 Lecture 22 Animation CS 465 Lecture 22 Animation Industry production process leading up to animation What animation is How animation works (very generally) Artistic process of animation Further topics in how it works

More information

CSE452 Computer Graphics

CSE452 Computer Graphics CSE452 Computer Graphics Lecture 19: From Morphing To Animation Capturing and Animating Skin Deformation in Human Motion, Park and Hodgins, SIGGRAPH 2006 CSE452 Lecture 19: From Morphing to Animation 1

More information

Motion Capture Using Joint Skeleton Tracking and Surface Estimation

Motion Capture Using Joint Skeleton Tracking and Surface Estimation Motion Capture Using Joint Skeleton Tracking and Surface Estimation Juergen Gall 1,2, Carsten Stoll 2, Edilson de Aguiar 2, Christian Theobalt 3, Bodo Rosenhahn 4, and Hans-Peter Seidel 2 1 BIWI, ETH Zurich

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1

CS 523: Computer Graphics, Spring Shape Modeling. Skeletal deformation. Andrew Nealen, Rutgers, /12/2011 1 CS 523: Computer Graphics, Spring 2011 Shape Modeling Skeletal deformation 4/12/2011 1 Believable character animation Computers games and movies Skeleton: intuitive, low-dimensional subspace Clip courtesy

More information

Grasp Recognition using a 3D Articulated Model and Infrared Images

Grasp Recognition using a 3D Articulated Model and Infrared Images Grasp Recognition using a 3D Articulated Model and Infrared Images Koichi Ogawara Institute of Industrial Science, Univ. of Tokyo, Tokyo, Japan Jun Takamatsu Institute of Industrial Science, Univ. of Tokyo,

More information

Articulated Pose Estimation with Flexible Mixtures-of-Parts

Articulated Pose Estimation with Flexible Mixtures-of-Parts Articulated Pose Estimation with Flexible Mixtures-of-Parts PRESENTATION: JESSE DAVIS CS 3710 VISUAL RECOGNITION Outline Modeling Special Cases Inferences Learning Experiments Problem and Relevance Problem:

More information

CS 775: Advanced Computer Graphics. Lecture 17 : Motion Capture

CS 775: Advanced Computer Graphics. Lecture 17 : Motion Capture CS 775: Advanced Computer Graphics Lecture 17 : History Study of human motion Leonardo da Vinci (1452 1519) History Study of human motion Edward J. Muybridge, 1830 1904 http://en.wikipedia.org/wiki/eadweard_muybridge

More information

Skeletal deformation

Skeletal deformation CS 523: Computer Graphics, Spring 2009 Shape Modeling Skeletal deformation 4/22/2009 1 Believable character animation Computers games and movies Skeleton: intuitive, low dimensional subspace Clip courtesy

More information

10 - ARAP and Linear Blend Skinning

10 - ARAP and Linear Blend Skinning 10 - ARAP and Linear Blend Skinning Acknowledgements: Olga Sorkine-Hornung As Rigid As Possible Demo Libigl demo 405 As-Rigid-As-Possible Deformation Preserve shape of cells covering the surface Ask each

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Cedric Cagniart Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 Problem Statement Given several calibrated views of an object... can we automatically

More information

Tracking Articulated Bodies using Generalized Expectation Maximization

Tracking Articulated Bodies using Generalized Expectation Maximization Tracking Articulated Bodies using Generalized Expectation Maximization A. Fossati CVLab EPFL, Switzerland andrea.fossati@epfl.ch E. Arnaud Université Joseph Fourier INRIA Rhone-Alpes, France elise.arnaud@inrialpes.fr

More information

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University

Kinematics. CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics CS 448D: Character Animation Prof. Vladlen Koltun Stanford University Kinematics Kinematics: The science of pure motion, considered without reference to the matter of objects moved, or to the

More information

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO

PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO Stefan Krauß, Juliane Hüttl SE, SoSe 2011, HU-Berlin PERFORMANCE CAPTURE FROM SPARSE MULTI-VIEW VIDEO 1 Uses of Motion/Performance Capture movies games, virtual environments biomechanics, sports science,

More information

Part I: HumanEva-I dataset and evaluation metrics

Part I: HumanEva-I dataset and evaluation metrics Part I: HumanEva-I dataset and evaluation metrics Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ http://vision.cs.brown.edu/humaneva/ Motivation

More information

CS 775: Advanced Computer Graphics. Lecture 8 : Motion Capture

CS 775: Advanced Computer Graphics. Lecture 8 : Motion Capture CS 775: Advanced Computer Graphics Lecture 8 : History Study of human motion Leonardo da Vinci (1452 1519) History Study of human motion Edward J. Muybridge, 1830 1904 http://en.wikipedia.org/wiki/eadweard_muybridge

More information

Repeatable Local Coordinate Frames for 3D Human Motion Tracking: from Rigid to Non-Rigid

Repeatable Local Coordinate Frames for 3D Human Motion Tracking: from Rigid to Non-Rigid Repeatable Local Coordinate Frames for 3D Human Motion Tracking: from Rigid to Non-Rigid Chun-Hao Huang 1 Federico Tombari 1,2 Nassir Navab 1,3 1 Technische Universität München, 2 Università di Bologna,

More information

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion

Optimal motion trajectories. Physically based motion transformation. Realistic character animation with control. Highly dynamic motion Realistic character animation with control Optimal motion trajectories Physically based motion transformation, Popovi! and Witkin Synthesis of complex dynamic character motion from simple animation, Liu

More information

Game Programming. Bing-Yu Chen National Taiwan University

Game Programming. Bing-Yu Chen National Taiwan University Game Programming Bing-Yu Chen National Taiwan University Character Motion Hierarchical Modeling Character Animation Motion Editing 1 Hierarchical Modeling Connected primitives 2 3D Example: A robot arm

More information

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides

Rigging / Skinning. based on Taku Komura, Jehee Lee and Charles B.Own's slides Rigging / Skinning based on Taku Komura, Jehee Lee and Charles B.Own's slides Skeletal Animation Victoria 2 CSE 872 Dr. Charles B. Owen Advanced Computer Graphics Skinning http://www.youtube.com/watch?

More information

Predicting 3D People from 2D Pictures

Predicting 3D People from 2D Pictures Predicting 3D People from 2D Pictures Leonid Sigal Michael J. Black Department of Computer Science Brown University http://www.cs.brown.edu/people/ls/ CIAR Summer School August 15-20, 2006 Leonid Sigal

More information

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel

Example-Based Skeleton Extraction. Scott Schaefer Can Yuksel Example-Based Skeleton Extraction Scott Schaefer Can Yuksel Example-Based Deformation Examples Previous Work Mesh-based Inverse Kinematics [Sumner et al. 2005], [Der et al. 2006] Example-based deformation

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC

Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics. Velocity Interpolation. Handing Free Surface with MAC Homework 2 Questions? Animation, Motion Capture, & Inverse Kinematics Velocity Interpolation Original image from Foster & Metaxas, 1996 In 2D: For each axis, find the 4 closest face velocity samples: Self-intersecting

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi 1, Francois de Sorbier 1 and Hideo Saito 1 1 Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,

More information

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation

Announcements: Quiz. Animation, Motion Capture, & Inverse Kinematics. Last Time? Today: How do we Animate? Keyframing. Procedural Animation Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics On Friday (3/1), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Computational Design. Stelian Coros

Computational Design. Stelian Coros Computational Design Stelian Coros Schedule for presentations February 3 5 10 12 17 19 24 26 March 3 5 10 12 17 19 24 26 30 April 2 7 9 14 16 21 23 28 30 Send me: ASAP: 3 choices for dates + approximate

More information

Real-Time Human Pose Recognition in Parts from Single Depth Images

Real-Time Human Pose Recognition in Parts from Single Depth Images Real-Time Human Pose Recognition in Parts from Single Depth Images Jamie Shotton, Andrew Fitzgibbon, Mat Cook, Toby Sharp, Mark Finocchio, Richard Moore, Alex Kipman, Andrew Blake CVPR 2011 PRESENTER:

More information

Style-based Inverse Kinematics

Style-based Inverse Kinematics Style-based Inverse Kinematics Keith Grochow, Steven L. Martin, Aaron Hertzmann, Zoran Popovic SIGGRAPH 04 Presentation by Peter Hess 1 Inverse Kinematics (1) Goal: Compute a human body pose from a set

More information

Markerless Motion Capture with Multi-view Structured Light

Markerless Motion Capture with Multi-view Structured Light Markerless Motion Capture with Multi-view Structured Light Ricardo R. Garcia, Avideh Zakhor; UC Berkeley; Berkeley, CA (a) (c) Figure 1: Using captured partial scans of (a) front and (b) back to generate

More information

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala

Animation. CS 4620 Lecture 33. Cornell CS4620 Fall Kavita Bala Animation CS 4620 Lecture 33 Cornell CS4620 Fall 2015 1 Announcements Grading A5 (and A6) on Monday after TG 4621: one-on-one sessions with TA this Friday w/ prior instructor Steve Marschner 2 Quaternions

More information

Surface Registration. Gianpaolo Palma

Surface Registration. Gianpaolo Palma Surface Registration Gianpaolo Palma The problem 3D scanning generates multiple range images Each contain 3D points for different parts of the model in the local coordinates of the scanner Find a rigid

More information

HUMAN motion capture has been under investigation for many

HUMAN motion capture has been under investigation for many IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL., NO., JANUARY 2015 1 Markerless Motion Capture with Multi-view Structured Light Ricardo R. Garcia, Student Member, IEEE, and Avideh Zakhor,

More information

Markerless human motion capture through visual hull and articulated ICP

Markerless human motion capture through visual hull and articulated ICP Markerless human motion capture through visual hull and articulated ICP Lars Mündermann lmuender@stanford.edu Stefano Corazza Stanford, CA 93405 stefanoc@stanford.edu Thomas. P. Andriacchi Bone and Joint

More information

Animation of 3D surfaces

Animation of 3D surfaces Animation of 3D surfaces 2013-14 Motivations When character animation is controlled by skeleton set of hierarchical joints joints oriented by rotations the character shape still needs to be visible: visible

More information

Data-driven Approaches to Simulation (Motion Capture)

Data-driven Approaches to Simulation (Motion Capture) 1 Data-driven Approaches to Simulation (Motion Capture) Ting-Chun Sun tingchun.sun@usc.edu Preface The lecture slides [1] are made by Jessica Hodgins [2], who is a professor in Computer Science Department

More information

An Efficient Volumetric Framework for Shape Tracking

An Efficient Volumetric Framework for Shape Tracking An Efficient Volumetric Framework for Shape Tracking Benjamin Allain Jean-Sébastien Franco Inria Grenoble Rhône-Alpes - LJK Grenoble Universities, France firstname.lastname@inria.fr Edmond Boyer Abstract

More information

Character animation Christian Miller CS Fall 2011

Character animation Christian Miller CS Fall 2011 Character animation Christian Miller CS 354 - Fall 2011 Exam 2 grades Avg = 74.4, std. dev. = 14.4, min = 42, max = 99 Characters Everything is important in an animation But people are especially sensitive

More information

Supplemental Material: Detailed, accurate, human shape estimation from clothed 3D scan sequences

Supplemental Material: Detailed, accurate, human shape estimation from clothed 3D scan sequences Supplemental Material: Detailed, accurate, human shape estimation from clothed 3D scan sequences Chao Zhang 1,2, Sergi Pujades 1, Michael Black 1, and Gerard Pons-Moll 1 1 MPI for Intelligent Systems,

More information

Model-based Motion Capture for Crash Test Video Analysis

Model-based Motion Capture for Crash Test Video Analysis Model-based Motion Capture for Crash Test Video Analysis Juergen Gall 1, Bodo Rosenhahn 1, Stefan Gehrig 2, and Hans-Peter Seidel 1 1 Max-Planck-Institute for Computer Science, Campus E1 4, 66123 Saarbrücken,

More information

Multiview Stereo COSC450. Lecture 8

Multiview Stereo COSC450. Lecture 8 Multiview Stereo COSC450 Lecture 8 Stereo Vision So Far Stereo and epipolar geometry Fundamental matrix captures geometry 8-point algorithm Essential matrix with calibrated cameras 5-point algorithm Intersect

More information

Animation by Adaptation Tales of Motion Use and Re-Use

Animation by Adaptation Tales of Motion Use and Re-Use Animation by Adaptation Tales of Motion Use and Re-Use Michael Gleicher And the UW Graphics Gang Department of Computer Sciences University of Wisconsin Madison http://www.cs.wisc.edu/graphics Tales of

More information

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009

Learning and Inferring Depth from Monocular Images. Jiyan Pan April 1, 2009 Learning and Inferring Depth from Monocular Images Jiyan Pan April 1, 2009 Traditional ways of inferring depth Binocular disparity Structure from motion Defocus Given a single monocular image, how to infer

More information

Online Interactive 4D Character Animation

Online Interactive 4D Character Animation Online Interactive 4D Character Animation Marco Volino, Peng Huang and Adrian Hilton Web3D 2015 Outline 4D Performance Capture - 3D Reconstruction, Alignment, Texture Maps Animation - Parametric Motion

More information

Skeleton-Based Shape Deformation using Simplex Transformations

Skeleton-Based Shape Deformation using Simplex Transformations Computer Graphics International 2006 Skeleton-Based Shape Deformation using Simplex Transformations Han-Bing Yan, Shi-Min Hu and Ralph Martin Outline Motivation Introduction Mesh segmentation using skeleton

More information

Chapter 5 Human Performance Capture Using Multiple Handheld Kinects

Chapter 5 Human Performance Capture Using Multiple Handheld Kinects Chapter 5 Human Performance Capture Using Multiple Handheld Kinects Yebin Liu, Genzhi Ye, Yangang Wang, Qionghai Dai and Christian Theobalt Abstract Capturing real performances of human actors has been

More information

Deformation Transfer for Triangle Meshes

Deformation Transfer for Triangle Meshes Deformation Transfer for Triangle Meshes a Paper (SIGGRAPH 2004) by Robert W. Sumner & Jovan Popovic presented by Roni Oeschger Deformation Transfer Source deformed Target deformed 1 Outline of my presentation

More information

Character Animation COS 426

Character Animation COS 426 Character Animation COS 426 Syllabus I. Image processing II. Modeling III. Rendering IV. Animation Image Processing (Rusty Coleman, CS426, Fall99) Rendering (Michael Bostock, CS426, Fall99) Modeling (Dennis

More information

Cage-based Tracking for Performance Animation

Cage-based Tracking for Performance Animation Cage-based Tracking for Performance Animation Yann Savoye, Jean-Sébastien Franco To cite this version: Yann Savoye, Jean-Sébastien Franco. Cage-based Tracking for Performance Animation. ACCV 10 :the Tenth

More information

Skinning Mesh Animations

Skinning Mesh Animations Doug L. James, Christopher D. Twigg Carnegie Mellon University presented by Johannes Schmid 1 Outline Introduction & Motivation Overview & Details Results Discussion 2 Introduction Mesh sequence: 3 General

More information

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model

Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Dynamic 3D Shape From Multi-viewpoint Images Using Deformable Mesh Model Shohei Nobuhara Takashi Matsuyama Graduate School of Informatics, Kyoto University Sakyo, Kyoto, 606-8501, Japan {nob, tm}@vision.kuee.kyoto-u.ac.jp

More information

Image Processing and Computer Vision

Image Processing and Computer Vision 1 / 1 Image Processing and Computer Vision Detecting primitives and rigid objects in Images Martin de La Gorce martin.de-la-gorce@enpc.fr February 2015 Detecting lines 2 / 1 How can we detect simple primitive

More information

Learning 6D Object Pose Estimation and Tracking

Learning 6D Object Pose Estimation and Tracking Learning 6D Object Pose Estimation and Tracking Carsten Rother presented by: Alexander Krull 21/12/2015 6D Pose Estimation Input: RGBD-image Known 3D model Output: 6D rigid body transform of object 21/12/2015

More information

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz

Animation, Motion Capture, & Inverse Kinematics. Announcements: Quiz Animation, Motion Capture, & Inverse Kinematics Announcements: Quiz On Tuesday (3/10), in class One 8.5x11 sheet of notes allowed Sample quiz (from a previous year) on website Focus on reading comprehension

More information

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France

Monocular Human Motion Capture with a Mixture of Regressors. Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France Monocular Human Motion Capture with a Mixture of Regressors Ankur Agarwal and Bill Triggs GRAVIR-INRIA-CNRS, Grenoble, France IEEE Workshop on Vision for Human-Computer Interaction, 21 June 2005 Visual

More information

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths

CS 231. Inverse Kinematics Intro to Motion Capture. 3D characters. Representation. 1) Skeleton Origin (root) Joint centers/ bones lengths CS Inverse Kinematics Intro to Motion Capture Representation D characters ) Skeleton Origin (root) Joint centers/ bones lengths ) Keyframes Pos/Rot Root (x) Joint Angles (q) Kinematics study of static

More information

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation

Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation Pose Space Deformation A unified Approach to Shape Interpolation and Skeleton-Driven Deformation J.P. Lewis Matt Cordner Nickson Fong Presented by 1 Talk Outline Character Animation Overview Problem Statement

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi, Francois de Sorbier and Hideo Saito Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,

More information

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne

Hartley - Zisserman reading club. Part I: Hartley and Zisserman Appendix 6: Part II: Zhengyou Zhang: Presented by Daniel Fontijne Hartley - Zisserman reading club Part I: Hartley and Zisserman Appendix 6: Iterative estimation methods Part II: Zhengyou Zhang: A Flexible New Technique for Camera Calibration Presented by Daniel Fontijne

More information

Introduction to Mobile Robotics

Introduction to Mobile Robotics Introduction to Mobile Robotics Clustering Wolfram Burgard Cyrill Stachniss Giorgio Grisetti Maren Bennewitz Christian Plagemann Clustering (1) Common technique for statistical data analysis (machine learning,

More information

Advanced Graphics and Animation

Advanced Graphics and Animation Advanced Graphics and Animation Character Marco Gillies and Dan Jones Goldsmiths Aims and objectives By the end of the lecture you will be able to describe How 3D characters are animated Skeletal animation

More information

Learning Articulated Skeletons From Motion

Learning Articulated Skeletons From Motion Learning Articulated Skeletons From Motion Danny Tarlow University of Toronto, Machine Learning with David Ross and Richard Zemel (and Brendan Frey) August 6, 2007 Point Light Displays It's easy for humans

More information

CS 231. Basics of Computer Animation

CS 231. Basics of Computer Animation CS 231 Basics of Computer Animation Animation Techniques Keyframing Motion capture Physics models Keyframe animation Highest degree of control, also difficult Interpolation affects end result Timing must

More information

CMSC 425: Lecture 10 Skeletal Animation and Skinning

CMSC 425: Lecture 10 Skeletal Animation and Skinning CMSC 425: Lecture 10 Skeletal Animation and Skinning Reading: Chapt 11 of Gregory, Game Engine Architecture. Recap: Last time we introduced the principal elements of skeletal models and discussed forward

More information

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV-5/W10

International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIV-5/W10 BUNDLE ADJUSTMENT FOR MARKERLESS BODY TRACKING IN MONOCULAR VIDEO SEQUENCES Ali Shahrokni, Vincent Lepetit, Pascal Fua Computer Vision Lab, Swiss Federal Institute of Technology (EPFL) ali.shahrokni,vincent.lepetit,pascal.fua@epfl.ch

More information

Multiple Model Estimation : The EM Algorithm & Applications

Multiple Model Estimation : The EM Algorithm & Applications Multiple Model Estimation : The EM Algorithm & Applications Princeton University COS 429 Lecture Dec. 4, 2008 Harpreet S. Sawhney hsawhney@sarnoff.com Plan IBR / Rendering applications of motion / pose

More information

Nonrigid Registration using Free-Form Deformations

Nonrigid Registration using Free-Form Deformations Nonrigid Registration using Free-Form Deformations Hongchang Peng April 20th Paper Presented: Rueckert et al., TMI 1999: Nonrigid registration using freeform deformations: Application to breast MR images

More information

Scanning Real World Objects without Worries 3D Reconstruction

Scanning Real World Objects without Worries 3D Reconstruction Scanning Real World Objects without Worries 3D Reconstruction 1. Overview Feng Li 308262 Kuan Tian 308263 This document is written for the 3D reconstruction part in the course Scanning real world objects

More information

Multi-Frame Scene-Flow Estimation Using a Patch Model and Smooth Motion Prior

Multi-Frame Scene-Flow Estimation Using a Patch Model and Smooth Motion Prior POPHAM, BHALERAO, WILSON: MULTI-FRAME SCENE-FLOW ESTIMATION 1 Multi-Frame Scene-Flow Estimation Using a Patch Model and Smooth Motion Prior Thomas Popham tpopham@dcs.warwick.ac.uk Abhir Bhalerao abhir@dcs.warwick.ac.uk

More information

Tracking human joint motion for turntable-based static model reconstruction

Tracking human joint motion for turntable-based static model reconstruction joint angles Tracking human joint motion for turntable-based static model reconstruction Neil Birkbeck Dana Cobzas Martin Jagersand University of Alberta Edmonton, Alberta, CA {birkbeck,dana,jag}@cs.ualberta.ca

More information

Geometric Registration for Deformable Shapes 1.1 Introduction

Geometric Registration for Deformable Shapes 1.1 Introduction Geometric Registration for Deformable Shapes 1.1 Introduction Overview Data Sources and Applications Problem Statement Overview Presenters Will Chang University of California at San Diego, USA Hao Li ETH

More information

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration

Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Three-Dimensional Sensors Lecture 6: Point-Cloud Registration Radu Horaud INRIA Grenoble Rhone-Alpes, France Radu.Horaud@inria.fr http://perception.inrialpes.fr/ Point-Cloud Registration Methods Fuse data

More information

3D Human Motion Analysis and Manifolds

3D Human Motion Analysis and Manifolds D E P A R T M E N T O F C O M P U T E R S C I E N C E U N I V E R S I T Y O F C O P E N H A G E N 3D Human Motion Analysis and Manifolds Kim Steenstrup Pedersen DIKU Image group and E-Science center Motivation

More information

Animation Lecture 10 Slide Fall 2003

Animation Lecture 10 Slide Fall 2003 Animation Lecture 10 Slide 1 6.837 Fall 2003 Conventional Animation Draw each frame of the animation great control tedious Reduce burden with cel animation layer keyframe inbetween cel panoramas (Disney

More information

3D Face Modeling. Lacey Best- Rowden, Joseph Roth Feb. 18, MSU

3D Face Modeling. Lacey Best- Rowden, Joseph Roth Feb. 18, MSU 3D Face Modeling Lacey Best- Rowden, Joseph Roth Feb. 18, MSU Outline ApplicaDon / Benefits 3D ReconstrucDon Techniques o Range Scanners o Single Image! 3DMM o MulDple Image! Shape from stereo! Photometric

More information

Patch-based Non-rigid 3D Reconstruction from a Single Depth Stream

Patch-based Non-rigid 3D Reconstruction from a Single Depth Stream Patch-based Non-rigid 3D Reconstruction from a Single Depth Stream Carmel Kozlov Miroslava Slavcheva Slobodan Ilic Technische Universität München Siemens Corporate Technology Abstract We propose an approach

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

Clothed and Naked Human Shapes Estimation from a Single Image

Clothed and Naked Human Shapes Estimation from a Single Image Clothed and Naked Human Shapes Estimation from a Single Image Yu Guo, Xiaowu Chen, Bin Zhou, and Qinping Zhao State Key Laboratory of Virtual Reality Technology and Systems School of Computer Science and

More information

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS

Gesture Recognition: Hand Pose Estimation. Adrian Spurr Ubiquitous Computing Seminar FS Gesture Recognition: Hand Pose Estimation Adrian Spurr Ubiquitous Computing Seminar FS2014 27.05.2014 1 What is hand pose estimation? Input Computer-usable form 2 Augmented Reality Gaming Robot Control

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching

Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Geometric Registration for Deformable Shapes 3.3 Advanced Global Matching Correlated Correspondences [ASP*04] A Complete Registration System [HAW*08] In this session Advanced Global Matching Some practical

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information