Chapter 8 Visualization and Optimization

Size: px
Start display at page:

Download "Chapter 8 Visualization and Optimization"

Transcription

1 Chapter 8 Visualization and Optimization Recommended reference books: [1] Edited by R. S. Gallagher: Computer Visualization, Graphics Techniques for Scientific and Engineering Analysis by CRC, 1994 [2] Edited by L. Rosenblum and et al: Scientific Visualization, Advances and Challenges by Academic Press, 1994 [3] D. Pieere: Optimization Theory with Applications, by Dover Publications, INC, 1986 [4] G.Winter and et al: Genetic Algorithm in Engineering and Computer Science, by John Wiley & Sons, Computer Visualization Introduction Computer graphics visualization of behavior is a young field witch has grown to have a major impact on the practice of engineering design and analysis. Visualization is defined in the dictionary as a mental image. In the field of computer graphics and engineering design the term has a much more specific meaning: The technical specialty of visualization concerns itself with the display of behavior, and particularly, with making complex states of behavior comprehensible to the human eyes Scientific Visualization Computer graphics visualization techniques have formed a natural marriage with computer simulations of behavior in understanding the physical phenomena of engineering problems. A. Computer Aided Engineering: a. Computational methods for analysis Such as FEM, FDM, MOM and BEM. Digital numerical analysis techniques generally shared the common feature of producing numerical results at point in space, representable by polygonal, polyhedral or higher-order geometry. The need to see and understand this data, combine with its readily accessible geometric form, made numerical methods an ideal early application for the engineering field of computer graphics. b. Computer graphics and visualization Newer 3-D visualization techniques allowing the display of volumetric, multivariate and time-dependent behavior have joined earlier display techniques in numerical 1

2 analysis applications. In addition to the visualization algorithms themselves, this trend has been driven by increasing computing capabilities, which allow for more complex analyses. Today, the move towards further real-time 3-D graphics display capabilities is helping visualization become part of a more interactive approach to analysis. B. The Process of Analysis and Visualization Many engineering design and analysis applications share common components of modeling, analysis, and the visualization of results. The first and the last of these are often described in engineering practice as pre-processing and post-processing, respectively, as functions which take place before and after analysis. Fig. 8.1 describes the traditional sequential design process. Fig. 8.1 The traditional sequential design process. There has been an increasing trend toward combing these functions within an interactive analysis laboratory, outline in Fig In such an environment, the analysis itself may govern geometric changes, and the results can be visualized as the analysis proceeds. Within this framework, one can still describe the individual components of this analysis cycle as modeling, analysis and visualization activities. Fig. 8 Outline of combing three functions within an interactive analysis laboratory. 2

3 Steps involved in modeling include operations such as: Geometric Modeling. An analysis project often begins with construction of a geometric model describing the problem. Analysis Modeling. This geometric model is used to create the date needed to perform an analysis. Generation of Initial Conditions. The same analysis model can conceivably be used to solve for a number of states of behavior: different loads, initial states, or boundary conditions, for example. There has been a clear trend over time towards interactive, graphically oriented methods for specifying this transient analysis data, and towards modifying this data directly within the analysis process itself. Once a model has been created and its conditions specified, an analysis can be performed. Upon completion of this analysis, or increasingly at intermediate stages of analysis, results are available to be visualized in the post-processing step. While the specific kinds of visualization techniques used in post-processing vary as widely as analysis applications themselves, some of its more common operations including the follows: Result Rendering. Techniques such as contour displays, isosurfaces, tensor field streamlines and many others are employed to create images representing the behavior of a scalar vector, tensor or multivariate state of behavior. Model Transformation. The more complex the models, the more important it becomes to be able to interactively modify the view of the model, as well as other display attributes such as perspective, distance, and the position of the observer. Animation. A great deal of actual behavior involves motion, or variations over time. In result visualization, animation involves two principal issues: the display of behavior over time; and navigating or walking through a model in 3-D space. Result Field Manipulation. Beyond the animation of a fixed, known result quantity, newer user interface and display techniques make it possible to interactively explore the nature of a result field. Such techniques include probing 3-D locations within a model to display field data at a given point, interactive display of isovalues and result value levels, volume clipping and slicing, and the rapid comparison of multiple states of behavior. Modeling, analysis and visualization form an analogy to the physical process of engineering design. Its early development closely followed the existing practice of product design, modeling, testing, and changing. With greater interactive computer resources, it is now becoming easier to go beyond the conceptual limitations of physical design, and simultaneously design, test, and modify objects by computing simulation. 3

4 C. The Impact of Visualization in Engineering Design Some of the ways visualization techniques have affected engineering practice today include: Decreased Physical Testing. Analysis and visualization generally provide a simulation of something in real life. This testing on the computer translates to much less physical testing, often at substantial cost savings. Greater Integration of Design and Analysis. The better one can visualize analysis results, the easier it is to modify a design to correct flaws shown by the analysis. There has been a gradual evolution in engineering practice towards doing what if studies at an earlier stage of the design process. Increased Analysis Complexity and Sophistication. Digital numerical analysis has always been limited by the ability to visualize its results. Color graphics displays have had a direct impact on problem size and complexity, and newer 3-D visualization techniques in particular have made it possible to examine complex phenomena which are not readily seen on the exterior visible surfaces of an analysis model. Design Optimization. By using analysis results to parametric attributes of a model, such as length or shape values, and analysis can be used to automatically guide design changes. This has helped analysis evolve from a tool for evaluating static designs to a means of optimizing the design itself. Visualization tools play a key role in this process, allowing engineers to evaluate automated design changes and analysis results. Productivity and Accuracy, Improved visualization tools help relieve a perceptional bottleneck in the man-time spent in the analysis cycle, allowing a faster and more through design process. In addition, more accurate control of the result data seen by the engineer can lead to better design decisions. Beyond the technical advantages produced by computer graphic visualization techniques, there is a clear economic benefit in design productivity Computer Graphics for Visualization Computer graphics has developed into a reasonably complex subject, it will be impossible in this lecture to reference every topic. The basic concepts like 3D Computer- Generated Images, Modeling, Projection, Rendering and Animation will be introduced in this section. A. What is Computer Graphics? 4

5 The simple answer is: Computer Graphics is making pictures with computer. In fact, we could use the aggregate content of theses, papers, and communications in journal and conferences to define the area. This will help, but, as with any definition, there will be grey areas, with work at the boundary between computer graphics and computer vision, image processing, human factors, various engineering disciplines especially electrical engineering, and even mathematics. A. Why Computer Graphics? It is endless to list all the areas of application of computer graphics, as indicated above, but if we make a short list of applications where computer graphics plays an important role, it could read as follows: Data Plotting Cartography Mechanical CAD Electronic CAD Architectural CAD Business Graphics Flight and Driving Simulation Film Animation (2-D and 3-D) Video Animation (2-D and 3-D) Document Generation Video Games Display of Mathematical Objects Process Control Office Information Systems Free Hand Drawing and Painting Now we can decide why computer graphics has value in these applications. Reasons found or generally given include the following: Pictures could not be made otherwise Pictures can be made faster Pictures can be made cheaper by computer Pictures look different by computer Pictures look better by computer Internet computing e-commerce Internet based collaborative work and visualization C. The Graphic Process Models 5

6 Transformations Display Visibility Pixel driven rendering Ray-Tracing Voxel-Based Rendering Interactive & Collaborative Visualization A. Interactive Visualization B. Collaborative Visualization Conclusion and Future Trends Computer graphics visualization techniques for analysis have quickly become an active area of research and development. Beyond its most obvious aspects of the display of behavior, engineering analysis visualization involves issues such as interaction with a 3- D model, operations on result data and optimization of design variables. Overall, visualisation techniques have become part of a large trend in the engineering design field, leading towards a computing environment where design is an interactive process which encourages the exploration of design alternatives. 8.2 Optimization in Engineering Design and Optimisation Techniques Design is one of the principal activities of the practicing engineer. It refers to the development of an entity (an object, a system, a procedure, etc.) to perform a specified function. Among the goals of design is optimisation of the entity. To achieve that goal, we must have some way of deciding what makes one solution better than another. Such a measure or standard of comparison is known as a criterion. The process is further complicated by the existence of requirements that must be met if the design is to be acceptable. These requirements are the constraints of the problem Design Process 1. Define the problem. 2. Decide what output data are required to specify a solution to the problem. 3. Decide what input data are required to formulate the problem. 4. Develop models that can be used to obtain the required output from the input data. 5. Use the models to obtain a solution for a given set of input data. 6. Evaluate the solution in terms of the constraints and criteria. 7. Repeat as many parts of the process as necessary to obtain a satisfactory solution. 6

7 Case study: A problem description. Modeling the problem Optimization Methods Optimization of a design often involves steps 5, 6 and 7 of the design process. It typically requires us to determine a solution for a given set of input data, and to iterate to an optimum based on evaluations of previous solutions. We remark here that there are a variety of methods for the unconstrained global optimization problem. Some of them involve searches that require evaluation of only the criterion function. The more classical approach requires a solution of the system of equation that is obtained by setting the partial derivatives of the criterion function to zero. The root-solving methods would be useful with this approach. The presence of constraints rules out the direct zero-derivative approach because the optimum solution of the constrained problem does not generally coincide with a stationary point of the criterion function. Instead, we often find an optimum value with nonzero derivatives at a point on one or more of the constraint boundaries. Various Optimization Methods: Exhaustive searching Searching on constraint boundaries Lagrange multipliers Genetic algorithms Hamiltonian algorithms And other methods Numerical Methods for Optimisation Numerical Methods for Constrained Optimization - Any relationship that must be satisfied is a constraint. - Constraints are classified either as equality constraints or as inequality constraints. - Constraints limit the set of solutions from which an optimal solution is to be found. Numerical Methods for Unconstrained Optimization - Mainly for non-linear problems 7

8 8

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou

COMPUTER GRAPHICS. Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou COMPUTER GRAPHICS Computer Multimedia Systems Department Prepared By Dr Jamal Zraqou Introduction What is Computer Graphics? Applications Graphics packages What is Computer Graphics? Creation, Manipulation

More information

Clipping. CSC 7443: Scientific Information Visualization

Clipping. CSC 7443: Scientific Information Visualization Clipping Clipping to See Inside Obscuring critical information contained in a volume data Contour displays show only exterior visible surfaces Isosurfaces can hide other isosurfaces Other displays can

More information

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation

Module 1 Lecture Notes 2. Optimization Problem and Model Formulation Optimization Methods: Introduction and Basic concepts 1 Module 1 Lecture Notes 2 Optimization Problem and Model Formulation Introduction In the previous lecture we studied the evolution of optimization

More information

ACGV 2008, Lecture 1 Tuesday January 22, 2008

ACGV 2008, Lecture 1 Tuesday January 22, 2008 Advanced Computer Graphics and Visualization Spring 2008 Ch 1: Introduction Ch 4: The Visualization Pipeline Ch 5: Basic Data Representation Organization, Spring 2008 Stefan Seipel Filip Malmberg Mats

More information

Visualisation : Lecture 1. So what is visualisation? Visualisation

Visualisation : Lecture 1. So what is visualisation? Visualisation So what is visualisation? UG4 / M.Sc. Course 2006 toby.breckon@ed.ac.uk Computer Vision Lab. Institute for Perception, Action & Behaviour Introducing 1 Application of interactive 3D computer graphics to

More information

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing

Prof. Fanny Ficuciello Robotics for Bioengineering Visual Servoing Visual servoing vision allows a robotic system to obtain geometrical and qualitative information on the surrounding environment high level control motion planning (look-and-move visual grasping) low level

More information

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization

Volume visualization. Volume visualization. Volume visualization methods. Sources of volume visualization. Sources of volume visualization Volume visualization Volume visualization Volumes are special cases of scalar data: regular 3D grids of scalars, typically interpreted as density values. Each data value is assumed to describe a cubic

More information

Visualization? Information Visualization. Information Visualization? Ceci n est pas une visualization! So why two disciplines? So why two disciplines?

Visualization? Information Visualization. Information Visualization? Ceci n est pas une visualization! So why two disciplines? So why two disciplines? Visualization? New Oxford Dictionary of English, 1999 Information Visualization Matt Cooper visualize - verb [with obj.] 1. form a mental image of; imagine: it is not easy to visualize the future. 2. make

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Computer Graphics Introduction. Taku Komura

Computer Graphics Introduction. Taku Komura Computer Graphics Introduction Taku Komura What s this course all about? We will cover Graphics programming and algorithms Graphics data structures Applied geometry, modeling and rendering Not covering

More information

Supporting Simulations to Guide Engineering Design

Supporting Simulations to Guide Engineering Design Supporting Simulations to Guide Engineering Design Mark S. Shephard Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12810 Mark W. Beall, Bruce E. Webster Simmetrix, Inc.,

More information

Welcome to CS 4/57101 Computer Graphics

Welcome to CS 4/57101 Computer Graphics Welcome to CS 4/57101 Computer Graphics Goal: The goal of this course is to provide an introduction to the theory and practice of computer graphics. The course will assume a good background in programming

More information

COMP30019 Graphics and Interaction Rendering pipeline & object modelling

COMP30019 Graphics and Interaction Rendering pipeline & object modelling COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling

Lecture outline. COMP30019 Graphics and Interaction Rendering pipeline & object modelling. Introduction to modelling Lecture outline COMP30019 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Introduction to Modelling Polygonal geometry The rendering

More information

Insight VisREU Site. Agenda. Introduction to Scientific Visualization Using 6/16/2015. The purpose of visualization is insight, not pictures.

Insight VisREU Site. Agenda. Introduction to Scientific Visualization Using 6/16/2015. The purpose of visualization is insight, not pictures. 2015 VisREU Site Introduction to Scientific Visualization Using Vetria L. Byrd, Director Advanced Visualization VisREU Site Coordinator REU Site Sponsored by NSF ACI Award 1359223 Introduction to SciVis(High

More information

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING

APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING APPLIED OPTIMIZATION WITH MATLAB PROGRAMMING Second Edition P. Venkataraman Rochester Institute of Technology WILEY JOHN WILEY & SONS, INC. CONTENTS PREFACE xiii 1 Introduction 1 1.1. Optimization Fundamentals

More information

Sketch Input of Engineering Solid Models

Sketch Input of Engineering Solid Models Sketch Input of Engineering Solid Models 2. Wireframe drawings Pedro Company Peter Varley REGEO 1/ 47 Divide-and-conquer helps in isolating those open problems which prevent SBM tools from being used We

More information

Ray Tracing I. History

Ray Tracing I. History History Ray Tracing came from the Physics of lens making. The process was that of drawing lines or rays through a glass shape to determine it s lens properties. It is also related to early perspective

More information

CAD - How Computer Can Aid Design?

CAD - How Computer Can Aid Design? CAD - How Computer Can Aid Design? Automating Drawing Generation Creating an Accurate 3D Model to Better Represent the Design and Allowing Easy Design Improvements Evaluating How Good is the Design and

More information

Using Geometric Constraints to Capture. design intent

Using Geometric Constraints to Capture. design intent Journal for Geometry and Graphics Volume 3 (1999), No. 1, 39 45 Using Geometric Constraints to Capture Design Intent Holly K. Ault Mechanical Engineering Department, Worcester Polytechnic Institute 100

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

IMECE FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING

IMECE FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING Proceedings of IMECE2005 2005 ASME International Mechanical Engineering Congress and Exposition November 5-11, 2005, Orlando, Florida USA IMECE2005-79945 FUNCTIONAL INTERFACE-BASED ASSEMBLY MODELING James

More information

CIS 581 Interactive Computer Graphics

CIS 581 Interactive Computer Graphics CIS 581 Interactive Computer Graphics Instructor: Han-Wei Shen (hwshen@cse.ohio-state.edu) Credit: 4 Class: MWF 2:30 pm 3:18 pm DL 264 Office hours: TuTr 11 am - 12pm DL 789 Web: http://www.cse.ohio-state.edu/~hwshen/581

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

Geodatabase over Taita Hills, Kenya

Geodatabase over Taita Hills, Kenya Geodatabase over Taita Hills, Kenya Anna Broberg & Antero Keskinen Abstract This article introduces the basics of geographical information systems (GIS) and explains how the Taita Hills project can benefit

More information

Complex Features on a Surface. CITS4241 Visualisation Lectures 22 & 23. Texture mapping techniques. Texture mapping techniques

Complex Features on a Surface. CITS4241 Visualisation Lectures 22 & 23. Texture mapping techniques. Texture mapping techniques Complex Features on a Surface CITS4241 Visualisation Lectures 22 & 23 Texture Mapping Rendering all surfaces as blocks of colour Not very realistic result! Even with shading Many objects have detailed

More information

Volume Illumination & Vector Field Visualisation

Volume Illumination & Vector Field Visualisation Volume Illumination & Vector Field Visualisation Visualisation Lecture 11 Institute for Perception, Action & Behaviour School of Informatics Volume Illumination & Vector Vis. 1 Previously : Volume Rendering

More information

Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects

Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects Architecture Engineering Training courses : Course BIM Architecture Diploma Revit Architecture 3D Max Vasari Navis Works Photoshop For Architects BIM ARCHITECTURAL DIPLOMA ( Design and visualization ):

More information

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A

ME COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A ME6501 - COMPUTER AIDED DESIGN COMPUTER AIDED DESIGN 2 MARKS Q&A Unit I 1. What is CAD? Computer aided design (CAD) is the technology concerned with the use of computer systems to assist the creation,

More information

Leveraging 2D Data in 3D Modeling

Leveraging 2D Data in 3D Modeling Leveraging D Data in 3D Modeling Leveraging D Data in 3D Modeling As more and more companies switch to 3D modeling the question of utilizing existing D data and referenced D data from collaborative sources

More information

: What is Finite Element Analysis (FEA)?

: What is Finite Element Analysis (FEA)? Q: What is Finite Element Analysis (FEA)? A1: It is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach

More information

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics

Volume Rendering. Computer Animation and Visualisation Lecture 9. Taku Komura. Institute for Perception, Action & Behaviour School of Informatics Volume Rendering Computer Animation and Visualisation Lecture 9 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Volume Data Usually, a data uniformly distributed

More information

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves

0. Introduction: What is Computer Graphics? 1. Basics of scan conversion (line drawing) 2. Representing 2D curves CSC 418/2504: Computer Graphics Course web site (includes course information sheet): http://www.dgp.toronto.edu/~elf Instructor: Eugene Fiume Office: BA 5266 Phone: 416 978 5472 (not a reliable way) Email:

More information

Scalar Visualization

Scalar Visualization Scalar Visualization Visualizing scalar data Popular scalar visualization techniques Color mapping Contouring Height plots outline Recap of Chap 4: Visualization Pipeline 1. Data Importing 2. Data Filtering

More information

A Novel Approach to Planar Mechanism Synthesis Using HEEDS

A Novel Approach to Planar Mechanism Synthesis Using HEEDS AB-2033 Rev. 04.10 A Novel Approach to Planar Mechanism Synthesis Using HEEDS John Oliva and Erik Goodman Michigan State University Introduction The problem of mechanism synthesis (or design) is deceptively

More information

VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES

VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES NTERNATIONAL DESIGN CONFERENCE - DESIGN 2002 Dubrovnik, May 14-17, 2002. VIRTUAL PROTOTYPING SIMULATION FOR THE DESIGN OF TWO-WHEELED VEHICLES S. Barone, A. Curcio and F. Pierucci Keywords: CAD, Multi-Body

More information

Real life Problem. Review

Real life Problem. Review Linear Programming The Modelling Cycle in Decision Maths Accept solution Real life Problem Yes No Review Make simplifying assumptions Compare the solution with reality is it realistic? Interpret the solution

More information

COMPUTER GRAPHICS COURSE. Rendering Pipelines

COMPUTER GRAPHICS COURSE. Rendering Pipelines COMPUTER GRAPHICS COURSE Rendering Pipelines Georgios Papaioannou - 2014 A Rendering Pipeline Rendering or Graphics Pipeline is the sequence of steps that we use to create the final image Many graphics/rendering

More information

Chapter 1. Introduction

Chapter 1. Introduction Introduction 1 Chapter 1. Introduction We live in a three-dimensional world. Inevitably, any application that analyzes or visualizes this world relies on three-dimensional data. Inherent characteristics

More information

Ray Tracing I. Internet Raytracing Competition

Ray Tracing I. Internet Raytracing Competition History Ray Tracing came from the Physics of lens making. The process was that of drawing lines or rays through a glass shape to determine it s lens properties. It is also related to early perspective

More information

Introduction to Computer Graphics

Introduction to Computer Graphics Introduction to 1.1 What is computer graphics? it would be difficult to overstate the importance of computer and communication technologies in our lives. Activities as wide-ranging as film making, publishing,

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK M.E: CAD/CAM I SEMESTER ED5151 COMPUTER APPLICATIONS IN DESIGN Regulation 2017 Academic

More information

Interactive 3D Visualization Of Optimization For Water Distribution Systems

Interactive 3D Visualization Of Optimization For Water Distribution Systems City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Interactive 3D Visualization Of Optimization For Water Distribution Systems Matthew Barrie Johns

More information

Constrained Diffusion Limited Aggregation in 3 Dimensions

Constrained Diffusion Limited Aggregation in 3 Dimensions Constrained Diffusion Limited Aggregation in 3 Dimensions Paul Bourke Swinburne University of Technology P. O. Box 218, Hawthorn Melbourne, Vic 3122, Australia. Email: pdb@swin.edu.au Abstract Diffusion

More information

Lecture notes: Object modeling

Lecture notes: Object modeling Lecture notes: Object modeling One of the classic problems in computer vision is to construct a model of an object from an image of the object. An object model has the following general principles: Compact

More information

AN HIERARCHICAL APPROACH TO HULL FORM DESIGN

AN HIERARCHICAL APPROACH TO HULL FORM DESIGN AN HIERARCHICAL APPROACH TO HULL FORM DESIGN Marcus Bole and B S Lee Department of Naval Architecture and Marine Engineering, Universities of Glasgow and Strathclyde, Glasgow, UK 1 ABSTRACT As ship design

More information

Previously... contour or image rendering in 2D

Previously... contour or image rendering in 2D Volume Rendering Visualisation Lecture 10 Taku Komura Institute for Perception, Action & Behaviour School of Informatics Volume Rendering 1 Previously... contour or image rendering in 2D 2D Contour line

More information

Lecturer Athanasios Nikolaidis

Lecturer Athanasios Nikolaidis Lecturer Athanasios Nikolaidis Computer Graphics: Graphics primitives 2D viewing and clipping 2D and 3D transformations Curves and surfaces Rendering and ray tracing Illumination models Shading models

More information

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. State University of New York. EngiNet WARNING CS 560

Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science. State University of New York. EngiNet WARNING CS 560 Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations

03 Vector Graphics. Multimedia Systems. 2D and 3D Graphics, Transformations Multimedia Systems 03 Vector Graphics 2D and 3D Graphics, Transformations Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures

More information

3D Modeling in Teaching and Learning Geometry

3D Modeling in Teaching and Learning Geometry 3D Modeling in Teaching and Learning Geometry Petra Surynková Charles University in Prague, Faculty of Mathematics and Physics, Sokolovská 83, 186 75 Praha 8, Czech Republic This article addresses the

More information

MODERN DESCRIPTIVE GEOMETRY SUPPORTED BY 3D COMPUTER MODELLING

MODERN DESCRIPTIVE GEOMETRY SUPPORTED BY 3D COMPUTER MODELLING International Conference on Mathematics Textbook Research and Development 2014 () 29-31 July 2014, University of Southampton, UK MODERN DESCRIPTIVE GEOMETRY SUPPORTED BY 3D COMPUTER MODELLING Petra Surynková

More information

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION

STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION STRUCTURAL & MULTIDISCIPLINARY OPTIMIZATION Pierre DUYSINX Patricia TOSSINGS Department of Aerospace and Mechanical Engineering Academic year 2018-2019 1 Course objectives To become familiar with the introduction

More information

Scope and Sequence for the Maryland Voluntary State Curriculum for Mathematics

Scope and Sequence for the Maryland Voluntary State Curriculum for Mathematics Scope and Sequence for the Maryland Voluntary State Curriculum for Mathematics The following chart provides an overview of where within Prentice Hall Course 1 Mathematics each of the Objectives of the

More information

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich

Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich Introduction to Computational Fluid Dynamics Mech 122 D. Fabris, K. Lynch, D. Rich 1 Computational Fluid dynamics Computational fluid dynamics (CFD) is the analysis of systems involving fluid flow, heat

More information

11.1 Optimization Approaches

11.1 Optimization Approaches 328 11.1 Optimization Approaches There are four techniques to employ optimization of optical structures with optical performance constraints: Level 1 is characterized by manual iteration to improve the

More information

Lecture 2: Introduction

Lecture 2: Introduction Lecture 2: Introduction v2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Multiple Advanced Techniques Allow HFSS to Excel at a Wide Variety of Applications Platform Integration and RCS

More information

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse

Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse Tutorial Outline Ohio Tutorials are designed specifically for the Ohio Learning Standards to prepare students for the Ohio State Tests and end-ofcourse exams. Math Tutorials offer targeted instruction,

More information

Introduction to C omputational F luid Dynamics. D. Murrin

Introduction to C omputational F luid Dynamics. D. Murrin Introduction to C omputational F luid Dynamics D. Murrin Computational fluid dynamics (CFD) is the science of predicting fluid flow, heat transfer, mass transfer, chemical reactions, and related phenomena

More information

Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~

Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~ Cs602-computer graphics MCQS MIDTERM EXAMINATION SOLVED BY ~ LIBRIANSMINE ~ Question # 1 of 10 ( Start time: 08:04:29 PM ) Total Marks: 1 Sutherland-Hodgeman clipping algorithm clips any polygon against

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

Engineering designs today are frequently

Engineering designs today are frequently Basic CAD Engineering designs today are frequently constructed as mathematical solid models instead of solely as 2D drawings. A solid model is one that represents a shape as a 3D object having mass properties.

More information

Lecture overview. Visualisatie BMT. Goal. Summary (1) Summary (3) Summary (2) Goal Summary Study material

Lecture overview. Visualisatie BMT. Goal. Summary (1) Summary (3) Summary (2) Goal Summary Study material Visualisatie BMT Introduction, visualization, visualization pipeline Arjan Kok a.j.f.kok@tue.nl Lecture overview Goal Summary Study material What is visualization Examples Visualization pipeline 1 2 Goal

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction ME 475: Computer-Aided Design of Structures 1-1 CHAPTER 1 Introduction 1.1 Analysis versus Design 1.2 Basic Steps in Analysis 1.3 What is the Finite Element Method? 1.4 Geometrical Representation, Discretization

More information

AN APPROACH FOR GRAPHICAL USER INTERFACE DEVELOPMENT FOR STEREOSCOPIC VISUALIZATION SYSTEM

AN APPROACH FOR GRAPHICAL USER INTERFACE DEVELOPMENT FOR STEREOSCOPIC VISUALIZATION SYSTEM AN APPROACH FOR GRAPHICAL USER INTERFACE DEVELOPMENT FOR STEREOSCOPIC VISUALIZATION SYSTEM Rositsa R. Radoeva St. Cyril and St. Methodius University of Veliko Tarnovo, ABSTRACT Human-computer interaction

More information

numbers by multi-digit whole numbers by using strategies based on place value, the properties of operations and the relationship between

numbers by multi-digit whole numbers by using strategies based on place value, the properties of operations and the relationship between Enrichment Math Grade 5 Mrs. Kathy Pisano August- September Topic Resources Unit 1: Whole Number Computation and Application Skills Assessment Common Core Standards Content (Understandings) *Divide multidigit

More information

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. CMPT 467/767 Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data CMPT 467/767 Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification

More information

LEARNING HERITAGE RESTORATION, LEARNING MATHEMATICS. Santiago Sanchez-Beitia, Javier Barrallo

LEARNING HERITAGE RESTORATION, LEARNING MATHEMATICS. Santiago Sanchez-Beitia, Javier Barrallo LEARNING HERITAGE RESTORATION, LEARNING MATHEMATICS Santiago Sanchez-Beitia, Javier Barrallo The University of the Basque Country Plaza de Onati, 2. 20009 San Sebastian. SPAIN Introduction On one occasion,

More information

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba

Geometric Modeling Lecture Series. Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Geometric Modeling 25.353 Lecture Series Prof. G. Wang Department of Mechanical and Industrial Engineering University of Manitoba Introduction Geometric modeling is as important to CAD as governing equilibrium

More information

PTC Newsletter January 14th, 2002

PTC  Newsletter January 14th, 2002 PTC Email Newsletter January 14th, 2002 PTC Product Focus: Pro/MECHANICA (Structure) Tip of the Week: Creating and using Rigid Connections Upcoming Events and Training Class Schedules PTC Product Focus:

More information

Dgp _ lecture 2. Curves

Dgp _ lecture 2. Curves Dgp _ lecture 2 Curves Questions? This lecture will be asking questions about curves, their Relationship to surfaces, and how they are used and controlled. Topics of discussion will be: Free form Curves

More information

CIS 581 Interactive Computer Graphics (slides based on Dr. Han-Wei Shen s slides) Requirements. Reference Books. Textbook

CIS 581 Interactive Computer Graphics (slides based on Dr. Han-Wei Shen s slides) Requirements. Reference Books. Textbook CIS 581 Interactive Computer Graphics (slides based on Dr. Han-Wei Shen s slides) Instructor: Rick Parent (parent@cse.osu.edu) Credit: 4 Class: MWF 10:30 11:18 pm DL357 Office hours: MW 11:30 12:18 DL

More information

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller

Scalar Data. Visualization Torsten Möller. Weiskopf/Machiraju/Möller Scalar Data Visualization Torsten Möller Weiskopf/Machiraju/Möller Overview Basic strategies Function plots and height fields Isolines Color coding Volume visualization (overview) Classification Segmentation

More information

What is Visualization? Introduction to Visualization. Why is Visualization Useful? Visualization Terminology. Visualization Terminology

What is Visualization? Introduction to Visualization. Why is Visualization Useful? Visualization Terminology. Visualization Terminology What is Visualization? Introduction to Visualization Transformation of data or information into pictures Note this does not imply the use of computers Classical visualization used hand-drawn figures and

More information

ITT Technical Institute. DT2630 3D Modeling and Visualization Onsite and Online Course SYLLABUS

ITT Technical Institute. DT2630 3D Modeling and Visualization Onsite and Online Course SYLLABUS ITT Technical Institute DT2630 3D Modeling and Visualization Onsite and Online Course SYLLABUS Credit hours: 4.5 Contact/Instructional hours: 56 (34 Theory Hours, 22 Lab Hours) Prerequisite(s) and/or Corequisite(s):

More information

PARALLEL VISUALIZATION OF LARGE-SCALE FINITE ELEMENT SOLUTIONS USING PC CLUSTER IN THE CABIN

PARALLEL VISUALIZATION OF LARGE-SCALE FINITE ELEMENT SOLUTIONS USING PC CLUSTER IN THE CABIN Annual Report of ADVENTURE Project ADV-99-1 (1999) PARALLEL VISUALIZATION OF LARGE-SCALE FINITE ELEMENT SOLUTIONS Izuru. SHIRAI *1, Shinobu. YOSHIMURA *1, and Genki. YAGAWA *2 *1 School of Frontier Science,

More information

INTERACTIVE ENVIRONMENT FOR INTUITIVE UNDERSTANDING OF 4D DATA. M. Murata and S. Hashimoto Humanoid Robotics Institute, Waseda University, Japan

INTERACTIVE ENVIRONMENT FOR INTUITIVE UNDERSTANDING OF 4D DATA. M. Murata and S. Hashimoto Humanoid Robotics Institute, Waseda University, Japan 1 INTRODUCTION INTERACTIVE ENVIRONMENT FOR INTUITIVE UNDERSTANDING OF 4D DATA M. Murata and S. Hashimoto Humanoid Robotics Institute, Waseda University, Japan Abstract: We present a new virtual reality

More information

Surface Rendering. Surface Rendering

Surface Rendering. Surface Rendering Surface Rendering Surface Rendering Introduce Mapping Methods - Texture Mapping - Environmental Mapping - Bump Mapping Go over strategies for - Forward vs backward mapping 2 1 The Limits of Geometric Modeling

More information

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION

RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION RAPID PROTOTYPING FOR SLING DESIGN OPTIMIZATION Zaimović-Uzunović, N. * ; Lemeš, S. ** ; Ćurić, D. *** ; Topčić, A. **** * University of Zenica, Fakultetska 1, 72000 Zenica, Bosnia and Herzegovina, nzaimovic@mf.unze.ba

More information

Project Name. The Eclipse Integrated Computational Environment. Jay Jay Billings, ORNL Parent Project. None selected yet.

Project Name. The Eclipse Integrated Computational Environment. Jay Jay Billings, ORNL Parent Project. None selected yet. Project Name The Eclipse Integrated Computational Environment Jay Jay Billings, ORNL 20140219 Parent Project None selected yet. Background The science and engineering community relies heavily on modeling

More information

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I

Computer Graphics Disciplines. Grading. Textbooks. Course Overview. Assignment Policies. Computer Graphics Goals I CSCI 480 Computer Graphics Lecture 1 Course Overview January 10, 2011 Jernej Barbic University of Southern California Administrative Issues Modeling Animation Rendering OpenGL Programming Course Information

More information

Contours & Implicit Modelling 4

Contours & Implicit Modelling 4 Brief Recap Contouring & Implicit Modelling Contouring Implicit Functions Visualisation Lecture 8 lecture 6 Marching Cubes lecture 3 visualisation of a Quadric toby.breckon@ed.ac.uk Computer Vision Lab.

More information

Applications of Explicit Early-Z Culling

Applications of Explicit Early-Z Culling Applications of Explicit Early-Z Culling Jason L. Mitchell ATI Research Pedro V. Sander ATI Research Introduction In past years, in the SIGGRAPH Real-Time Shading course, we have covered the details of

More information

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia

Lagrange multipliers. Contents. Introduction. From Wikipedia, the free encyclopedia Lagrange multipliers From Wikipedia, the free encyclopedia In mathematical optimization problems, Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the local extrema of a

More information

Volume Illumination and Segmentation

Volume Illumination and Segmentation Volume Illumination and Segmentation Computer Animation and Visualisation Lecture 13 Institute for Perception, Action & Behaviour School of Informatics Overview Volume illumination Segmentation Volume

More information

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26]

Visualization. Images are used to aid in understanding of data. Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Visualization Images are used to aid in understanding of data Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [chapter 26] Tumor SCI, Utah Scientific Visualization Visualize large

More information

Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling

Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling Autodesk Conceptual Design Curriculum 2011 Student Workbook Unit 2: Parametric Exploration Lesson 1: Parametric Modeling Overview: Parametric Modeling In this lesson, you learn the basic principles of

More information

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity

Contents Metal Forming and Machining Processes Review of Stress, Linear Strain and Elastic Stress-Strain Relations 3 Classical Theory of Plasticity Contents 1 Metal Forming and Machining Processes... 1 1.1 Introduction.. 1 1.2 Metal Forming...... 2 1.2.1 Bulk Metal Forming.... 2 1.2.2 Sheet Metal Forming Processes... 17 1.3 Machining.. 23 1.3.1 Turning......

More information

3D graphics, raster and colors CS312 Fall 2010

3D graphics, raster and colors CS312 Fall 2010 Computer Graphics 3D graphics, raster and colors CS312 Fall 2010 Shift in CG Application Markets 1989-2000 2000 1989 3D Graphics Object description 3D graphics model Visualization 2D projection that simulates

More information

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra

demonstrate an understanding of the exponent rules of multiplication and division, and apply them to simplify expressions Number Sense and Algebra MPM 1D - Grade Nine Academic Mathematics This guide has been organized in alignment with the 2005 Ontario Mathematics Curriculum. Each of the specific curriculum expectations are cross-referenced to the

More information

CSC Computer Graphics

CSC Computer Graphics // CSC. Computer Graphics Lecture Kasun@dscs.sjp.ac.lk Department of Computer Science University of Sri Jayewardanepura Polygon Filling Scan-Line Polygon Fill Algorithm Span Flood-Fill Algorithm Inside-outside

More information

What is computer vision?

What is computer vision? What is computer vision? Computer vision (image understanding) is a discipline that studies how to reconstruct, interpret and understand a 3D scene from its 2D images in terms of the properties of the

More information

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes

11/1/13. Visualization. Scientific Visualization. Types of Data. Height Field. Contour Curves. Meshes CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 2.11] Jernej Barbic University of Southern California Scientific Visualization

More information

Visualization. CSCI 420 Computer Graphics Lecture 26

Visualization. CSCI 420 Computer Graphics Lecture 26 CSCI 420 Computer Graphics Lecture 26 Visualization Height Fields and Contours Scalar Fields Volume Rendering Vector Fields [Angel Ch. 11] Jernej Barbic University of Southern California 1 Scientific Visualization

More information

Mathematical Modelling Lecture 7 Linear Programming

Mathematical Modelling Lecture 7 Linear Programming Lecture 7 Linear Programming phil.hasnip@york.ac.uk Overview of Course Model construction dimensional analysis Experimental input fitting Finding a best answer optimisation Tools for constructing and manipulating

More information

CSCD18: Computer Graphics. Instructor: Leonid Sigal

CSCD18: Computer Graphics. Instructor: Leonid Sigal CSCD18: Computer Graphics Instructor: Leonid Sigal CSCD18: Computer Graphics Instructor: Leonid Sigal (call me Leon) lsigal@utsc.utoronto.ca www.cs.toronto.edu/~ls/ Office: SW626 Office Hour: M, 12-1pm?

More information

Engineering 1000 Chapter 6: Abstraction and Modeling

Engineering 1000 Chapter 6: Abstraction and Modeling Engineering 1000 Chapter 6: Abstraction and Modeling Outline Why is abstraction useful? What are models? how are models different from theory and simulation? Examples from microelectronics Types of model

More information

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees

Lecture 25 of 41. Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees Spatial Sorting: Binary Space Partitioning Quadtrees & Octrees William H. Hsu Department of Computing and Information Sciences, KSU KSOL course pages: http://bit.ly/hgvxlh / http://bit.ly/evizre Public

More information

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s

ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM. Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s ADAPTIVE APPROACH IN NONLINEAR CURVE DESIGN PROBLEM Simo Virtanen Rakenteiden Mekaniikka, Vol. 30 Nro 1, 1997, s. 14-24 ABSTRACT In recent years considerable interest has been shown in the development

More information

Isophote-Based Interpolation

Isophote-Based Interpolation Isophote-Based Interpolation Bryan S. Morse and Duane Schwartzwald Department of Computer Science, Brigham Young University 3361 TMCB, Provo, UT 84602 {morse,duane}@cs.byu.edu Abstract Standard methods

More information