STD:- VIII PHYSICS SPHERICAL MIRRORS

Size: px
Start display at page:

Download "STD:- VIII PHYSICS SPHERICAL MIRRORS"

Transcription

1 STD:- VIII PHYSICS SPHERICAL MIRRORS A spherical mirror is a mirror with a curved reflective surface, which may be either convex (bulging outward) or concave (bulging inward). There are two types of spherical mirrors. One is a CONCAVE MIRROR and the other is the CONVEX MIRROR. CONCAVE MIRROR A concave mirror is made by silvering the outer (or the bulging surface ) of the piece of a hollow sphere such that the reflection takes place from the inner surface. CONVEX MIRROR A convex mirror is made by silvering the inner surface of the piece of a hollow sphere such that the reflection takes place from the outer (or bulging) surface. 1

2 TERMS RELATED TO A SPHERICAL MIRROR 1. Centre of curvature (C): 2. Radius of curvature (R): The centre of the sphere of which the mirror forms a small part is called the centre of curvature. Any line that joins a point on the mirror with the centre of curvature is called the radius of curvature.the radial line is always perpendicular to the spherical mirror. 3.Pole (P): It is the centre of the reflecting surface of the spherical mirror. 4.Aperture (AB): It is the surface of the mirror from which reflection occurs. 5.Principal Axis: It is the line passing through the pole and the centre of curvature. 6.Focus or focal point (F): It is the point on the principal axis where the incident rays converge after reflection (as in the concave mirror ) or appear to diverge from, when produced backwards (as in the convex mirror). 7.Focal length (f): It is the distance between the pole and the focus of the spherical mirror. Relationship between focal length (f) and radius of curvature (R) : 2

3 Principal focus of a concave mirror Principal focus of a convex mirror A parallel beam of light after reflection from a concave surface converges at a point in front of the mirror.this point (F) is called the focus or the focal point of the mirror. A parallel beam of light after reflection from a convex surface diverges and rays do not meet.however, on producing backward, the rays appear to meet at a point behind the mirror.this point is called the focus or the focal point of the mirror. Thus, the principal focus of a concave mirror is a point in its principal axis to which all the light rays which are parallel to the principal axis converge after reflection from the concave mirror. Thus, the principal focus of a convex mirror is a point in its principal axis from which all the light rays initially parallel to the principal axis, appears to diverge after being reflected from the convex mirror. The focal point of a concave mirror is real as the incident rays actually meet after reflection. The focal point of a convex mirror is virtual. 3

4 RULES FOR REFLECTION There are certain rules for reflection by spherical mirrors. These are given below. RULE #1: - Ray of light parallel to the principal axis pass through the focus of the mirror. In case of convex mirror they appear to be diverging from the focus. RULE #2: - Ray of light passing through the focus become parallel to principal axis. 4

5 RULE #3: - Rays of light passing through the centre of curvature trace their path back after reflection. RULE #4: - Rays of light which are incident obliquely get reflected obliquely. RAY DIAGRAMS FOR FORMATION OF IMAGES IN A CONCAVE MIRROR 1.Position of object : At infinity 2.Position of object :Beyond C 5

6 Position of image : At F Position of image : Between F and C 3.Position of object : At C 4.Position of object : Between F and C Position of image : Beyond C Position of image : At C 5.Position of object : At F 6.Position of object : Between P and F 6

7 Position of image : At infinity Position of image : Behind the mirror Concave mirror: No. Object position Image position Size of the image Nature of the image 1. At infinity At F Highly diminished Real and inverted 2. Beyond C Between F and C Diminished Real and inverted 3. At C At C Same as that of the object Real and inverted 4. Between F and Beyond C Magnified Real and inverted C 5. At F At infinity Highly magnified Real and inverted 6. Between F and P Behind the mirror Magnified Virtual and upright RAY DIAGRAMS FOR FORMATION OF IMAGES IN A CONVEX MIRROR : 1.Position of object : At infinity 2.Position of object :At any position in front of the mirror Position of image : At F Position of image : Behind the mirror, between P and F 7

8 Convex mirror: No. Object position Image position Size of the image Nature of the image 1. At infinity At F Diminished to a point Virtual and upright 2. At any other position Between F and P Diminished Virtual and upright Uses of Mirrors: 1.Concave mirror: (i) Shaving mirror:used as a shaving mirror since it gives rise to an erect and enlarged image when the object is placed close enough,i.e., between the pole and the focus of the mirror. (ii)reflectors: Head lights of cars and search lights use concave mirrors to produce a strong parallel beam of light.in reflectors, the source of light is placed at the focus, which, after reflection forms a parallel beam. (iii)as a doctor s head mirror: If a parallel beam of light is incident on a concave mirror, it focuses the beam to a point.this fact enables the mirror to concentrate light beam on a small area to be examined like nose, throat,ear, teeth etc. (iv).in solar cooker: The parallel beam of the Sun s rays are converged and the energy that is focused at a point is sufficient to generate adequate heat for cooking. 2. Convex mirror : (i).as a rear view mirror : Convex mirror is used in vehicles to produce an erect and diminished image of the traffic approaching from behind. Although a plane mirror can also be used for the purpose, but a convex mirror provides a wider field of view than a plane mirror. (ii).in street lamps : A convex mirror is used in street lamp as a reflector so as to diverge the light over a larger area. DIFFERENCE BETWEEN A CONCAVE AND CONVEX MIRROR 8

9 CONCAVE MIRROR 1. A concave mirror is made by silvering the outer (or the bulging surface ) of the piece of a hollow sphere such that the reflection takes place from the inner surface. CONVEX MIRROR A convex mirror is made by silvering the inner surface of the piece of a hollow sphere such that the reflection takes place from the outer (or bulging) surface. 2. It is a converging mirror. 2. It is a diverging mirror. 3.The image formed is real except for the case when the object is between the focus and the pole. 4.The image can be magnified, of the same size or diminished depending upon the position of the object. 3. The image formed by it is always virtual. 4. the image formed is always diminished for all positions of the object in front of it. DIFFERENCE BETWEEN REAL AND VIRTUAL IMAGE REAL IMAGE 1.Real image is formed when two or more rays after reflection actually meet at a point. VIRTUAL IMAGE 1.Virtual image is formed when two or more rays after reflection do not actually meet but appear to meet at a point. 2. Real image can be obtained on a screen. 2. Virtual image cannot be obtained on a screen. 3.Real image is always inverted. 3.Virtual image is always erect. DISTINCTION BETWEEN A PLANE MIRROR, CONCAVE MIRROR AND CONVEX MIRROR: Case 1: If the image is upright, of same size and it does not change in size by moving the mirror, the mirror is plane. 9

10 Case 2: If the image is upright and diminished and it remains upright on moving the mirror away from the face, the mirror is convex. Case3: If the image is upright, magnified and becomes inverted on moving the mirror away from the face, the mirror is concave. 10

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION

CHAPTER- 10 LIGHT REFLECTION AND REFRACTION CHAPTER- 10 LIGHT REFLECTION AND REFRACTION LIGHT Light is a form of energy, which enable us to see the object. Its speed is 3 10 8 m/s in vacuum. Light always travel in straight line. Reflection: The

More information

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line.

LIGHT-REFLECTION AND REFRACTION. It is a form of energy which is needed to see things around us. It travels in a straight line. LIGHT-REFLECTION AND REFRACTION Class: 10 (Boys) Sub: PHYSICS NOTES-Reflection Light: It is a form of energy which is needed to see things around us. It travels in a straight line. Nature of Light: Light

More information

Geometry of image formation

Geometry of image formation Geometry of image formation discussing here... mirrors definition of mirror types of mirrors aspects of plane mirror aspects of curved mirrors what is mirror? glass sheet with silvery / metallic coating

More information

Reflection and Mirrors

Reflection and Mirrors Reflection and Mirrors 1 The Law of Reflection The angle of incidence equals the angle of reflection. 2 The Law of Reflection When light strikes a surface it is reflected. The light ray striking the surface

More information

Propagation and Reflection of Light

Propagation and Reflection of Light Al-Saudia Virtual Academy Online tuition Pakistan Online Tutor Pakistan Propagation and Reflection of Light Q1. Define reflection of light. State the laws of reflection. Ans: REFLECTION OF LIGHT: When

More information

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image

Ray Diagrams. Ray Diagrams Used for determining location, size, orientation, and type of image Ray Diagrams Reflection for concave mirror: Any incident ray traveling parallel to the principal axis on the way to the mirror will pass through the focal point upon reflection. Any incident ray passing

More information

When light strikes an object there are different ways it can be affected. Light can be

When light strikes an object there are different ways it can be affected. Light can be When light strikes an object there are different ways it can be affected. Light can be transmitted, reflected, refracted, and absorbed, It depends on the type of matter that it strikes. For example light

More information

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK:

LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: LIGHT CLASS X STUDY MATERIAL & QUESTION BANK: 1. REFLECTION OF LIGHT: The phenomenon of light coming back into the same medium after it strikes a smooth surface is called reflection. 2. LAWS OF REFLECTION:

More information

Lecture Notes (Reflection & Mirrors)

Lecture Notes (Reflection & Mirrors) Lecture Notes (Reflection & Mirrors) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

Spherical Mirrors Learning Outcomes

Spherical Mirrors Learning Outcomes 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors

Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

30/08/2016. Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors - Images

30/08/2016. Spherical Mirrors Learning Outcomes. Spherical Mirrors Learning Outcomes. Spherical Mirrors - Images 1 Spherical Mirrors Learning Outcomes Recognise and use key words relating to mirrors. Centre of curvature Focus / focal point, focal length Pole Principal axis Use ray tracing to demonstrate reflection.

More information

Locating Images is Curved Mirrors

Locating Images is Curved Mirrors Locating Images is Curved Mirrors Part 1: Intro and Concave Mirrors Types of Mirrors Concave (Converging) mirror - the centre of the mirror bulges away from you (eg. makeup mirror, car headlight, flashlight)

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Reflection and Image Formation by Mirrors

Reflection and Image Formation by Mirrors Purpose Theory a. To study the reflection of light Reflection and Image Formation by Mirrors b. To study the formation and characteristics of images formed by different types of mirrors. When light (wave)

More information

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light

Ray Optics. Physics 11. Sources of Light Rays: Self-Luminous Objects. The Ray Model of Light Physics 11 Ray Optics Ray Model of Light Reflection Plane Mirrors Spherical Mirrors Ray Tracing Images from a Concave Mirror Images from a Convex Mirror Slide 18-3 The Ray Model of Light Sources of Light

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich

LECTURE 17 MIRRORS AND THIN LENS EQUATION. Instructor: Kazumi Tolich LECTURE 17 MIRRORS AND THIN LENS EQUATION Instructor: Kazumi Tolich Lecture 17 2 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions

More information

Chapter 7: Geometrical Optics

Chapter 7: Geometrical Optics Chapter 7: Geometrical Optics 7. Reflection at a Spherical Surface L.O 7.. State laws of reflection Laws of reflection state: L.O The incident ray, the reflected ray and the normal all lie in the same

More information

Reflection & Mirrors

Reflection & Mirrors Reflection & Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media A ray of light is

More information

Physics 1C Lecture 26A. Beginning of Chapter 26

Physics 1C Lecture 26A. Beginning of Chapter 26 Physics 1C Lecture 26A Beginning of Chapter 26 Mirrors and Lenses! As we have noted before, light rays can be diverted by optical systems to fool your eye into thinking an object is somewhere that it is

More information

PHY 171 Lecture 6 (January 18, 2012)

PHY 171 Lecture 6 (January 18, 2012) PHY 171 Lecture 6 (January 18, 2012) Light Throughout most of the next 2 weeks, we will be concerned with the wave properties of light, and phenomena based on them (interference & diffraction). Light also

More information

The Reflection of Light

The Reflection of Light King Saud University College of Applied Studies and Community Service Department of Natural Sciences The Reflection of Light General Physics II PHYS 111 Nouf Alkathran nalkathran@ksu.edu.sa Outline Introduction

More information

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors.

Video: The Mirror. Unit #3 - Optics. Geometric Optics. A) The Law of Reflection. applications Mirrors. Video: The Mirror http://vimeo.com/6212004 Unit #3 - Optics 11.1 - Mirrors Geometric Optics the science of how light reflects and bends optical device is any technology that uses light A) The Law of Reflection

More information

Lecture Outlines Chapter 26

Lecture Outlines Chapter 26 Lecture Outlines Chapter 26 11/18/2013 2 Chapter 26 Geometrical Optics Objectives: After completing this module, you should be able to: Explain and discuss with diagrams, reflection and refraction of light

More information

Downloaded from

Downloaded from 1 Class X: Physics Chapter 10: Light- Reflection and Refraction Points to remember Key learnings: 1. When light falls on a body, it may be absorbed, may be transmitted or light may come back to the same

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian

Chapter 23. Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Chapter 23 Geometrical Optics (lecture 1: mirrors) Dr. Armen Kocharian Reflection and Refraction at a Plane Surface The light radiate from a point object in all directions The light reflected from a plane

More information

Unit 3: Chapter 5. Reflection

Unit 3: Chapter 5. Reflection Unit 3: Chapter 5 Reflection The Law of Reflection To show how light is reflected from a solid surface, we can use ray diagrams. A ray diagram has 5 main components: this is the incoming ray that will

More information

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light.

Chapter 7: Geometrical Optics. The branch of physics which studies the properties of light using the ray model of light. Chapter 7: Geometrical Optics The branch of physics which studies the properties of light using the ray model of light. Overview Geometrical Optics Spherical Mirror Refraction Thin Lens f u v r and f 2

More information

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will

A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will Ray Diagrams Convex Mirror A concave mirror is a converging mirror because parallel rays will. A convex mirror is a diverging mirror because parallel rays will. Quick Activity obtain a ray box and a curved

More information

Science 8 Chapter 5 Section 1

Science 8 Chapter 5 Section 1 Science 8 Chapter 5 Section 1 The Ray Model of Light (pp. 172-187) Models of Light wave model of light: a model in which light is a type of wave that travels through space and transfers energy from one

More information

Light and Mirrors MIRRORS

Light and Mirrors MIRRORS Light and Mirrors MIRRORS 1 Polarized Sunglasses- How do they work? light waves vibrate in more than one plane light waves can be made to vibrate in a single plane by use of polarizing filters. 2 polarizing

More information

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors.

Section 2 Flat Mirrors. Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Section 2 Flat Mirrors Objectives Distinguish between specular and diffuse reflection of light. Apply the law of reflection for flat mirrors. Describe the nature of images formed by flat mirrors. Section

More information

Lecture Notes (Geometric Optics)

Lecture Notes (Geometric Optics) Lecture Notes (Geometric Optics) Intro: - plane mirrors are flat, smooth surfaces from which light is reflected by regular reflection - light rays are reflected with equal angles of incidence and reflection

More information

AP Physics: Curved Mirrors and Lenses

AP Physics: Curved Mirrors and Lenses The Ray Model of Light Light often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization, but is very useful for geometric

More information

Common terminology of reflection of light on a plane mirror. Normal : A line at right angles to the mirror s surface.

Common terminology of reflection of light on a plane mirror. Normal : A line at right angles to the mirror s surface. LESSON 5.1 Understanding reflection of light Introduction : Light is a form energy that enables us to see. Light is emitted or given by hot objects, like a candle flame, or the glowing filament of light

More information

this is the incoming ray that will hit the solid surface/barrier (e.g. a mirror)

this is the incoming ray that will hit the solid surface/barrier (e.g. a mirror) To show how light is reflected from a solid surface, we can use ray diagrams. A ray diagram has 5 main components: this is the incoming ray that will hit the solid surface/barrier (e.g. a mirror) barrier.

More information

Algebra Based Physics

Algebra Based Physics Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Table of ontents Slide 3 / 66 lick on the topic to go to that section Reflection Spherical Mirror Refraction and

More information

3. LENSES & PRISM

3. LENSES & PRISM 3. LENSES & PRISM. A transparent substance bounded by two surfaces of definite geometrical shape is called lens.. A lens may be considered to be made up of a number of small prisms put together. 3. Principal

More information

34.2: Two Types of Image

34.2: Two Types of Image Chapter 34 Images 34.2: Two Types of Image For you to see an object, your eye intercepts some of the light rays spreading from the object and then redirect them onto the retina at the rear of the eye.

More information

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 26. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 26 Physics, 4 th Edition James S. Walker Chapter 26 Geometrical Optics Units of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing

More information

Ch. 25 The Reflection of Light

Ch. 25 The Reflection of Light Ch. 25 The Reflection of Light 25. Wave fronts and rays We are all familiar with mirrors. We see images because some light is reflected off the surface of the mirror and into our eyes. In order to describe

More information

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments

Chapter 23. Geometrical Optics: Mirrors and Lenses and other Instruments Chapter 23 Geometrical Optics: Mirrors and Lenses and other Instruments HITT1 A small underwater pool light is 1 m below the surface of a swimming pool. What is the radius of the circle of light on the

More information

Chapter 34: Geometrical Optics

Chapter 34: Geometrical Optics Chapter 34: Geometrical Optics Mirrors Plane Spherical (convex or concave) Lenses The lens equation Lensmaker s equation Combination of lenses E! Phys Phys 2435: 22: Chap. 34, 3, Pg Mirrors New Topic Phys

More information

P06 ray diagrams with concave mirrors and intro to problem solving.notebook

P06 ray diagrams with concave mirrors and intro to problem solving.notebook Ray Diagrams Concave Mirror A concave mirror is a converging mirror because parallel rays will. For any object, millions and millions of rays are reflected in all directions. Some of these rays hit the

More information

PHYS 202 Notes, Week 9

PHYS 202 Notes, Week 9 PHYS 202 Notes, Week 9 Greg Christian March 22 & 24, 206 Last updated: 03/24/206 at 2:23:56 This week we learn about images by mirrors, refraction, and thin lenses. Images Spherical Mirrors First let s

More information

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection

3. Confirm Does the law of reflection apply to rough surfaces? Explain. Diffuse Reflection Light Key Concepts How does light reflect from smooth surfaces and rough surfaces? What happens to light when it strikes a concave mirror? Which types of mirrors can produce a virtual image? Reflection

More information

Chapter 5 Mirrors and Lenses

Chapter 5 Mirrors and Lenses Chapter 5 Notes: Mirrors and Lenses Name: Block: The Ray Model of Light The ray model of light represents light as a line, or ray, indicating the path of a beam of light. Light travels in straight lines

More information

Image Formed by a Plane Mirror. point object A, source of light

Image Formed by a Plane Mirror. point object A, source of light Today s agenda: Plane Mirrors. You must be able to draw ray diagrams for plane mirrors, and be able to calculate image and object heights, distances, and magnifications. Spherical Mirrors: concave and

More information

CHAPTER 29: REFLECTION

CHAPTER 29: REFLECTION CHAPTER 29: REFLECTION 29.1 REFLECTION The return of a wave back to its original medium is called reflection. Fasten a spring to a wall and send a pulse along the spring s length. The wall is a very rigid

More information

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light

Chapter 5: Mirrors and Lenses. 5.1 Ray Model of Light Chapter 5: Mirrors and Lenses 5.1 Ray Model of Light Ray Model of Light Another model for light is that it is made up of 3ny par3cles called photons Photons travel in perfect, straight lines away from

More information

General Physics II. Mirrors & Lenses

General Physics II. Mirrors & Lenses General Physics II Mirrors & Lenses Nothing New! For the next several lectures we will be studying geometrical optics. You already know the fundamentals of what is going on!!! Reflection: θ 1 = θ r incident

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: x Mirrors and lenses Lecture 13: 6-11-2018 Last lecture: Reflection & Refraction Reflection: Light ray hits surface Ray moves

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Geometric Optics Physics for Scientists & Engineers 2 Spring Semester 2005 Lecture 36! The study of light divides itself into three fields geometric optics wave optics quantum optics! In the previous chapter,

More information

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan

PHYSICS. Light FORM 4. Chapter 5. Compiled by Cikgu Desikan PHYSICS RM 4 Chapter 5 Light Compiled by Cikgu Desikan PRE SPM PHYSICS 2016 Chapter 5 Light Dear students, The two basic processes of education are knowing and valuing. Learning bjectives : 1. Understanding

More information

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses.

Chapter 23. Images and Mirrors 3/23/11. Mirrors and Lenses QUESTIONS? PLEASE ASK! Types of Images for Mirrors and Lenses. 3/23/ LIGO mirror Announcements LIGO mirror Two exams down, one to go! No HW this week. Credit: LIGO Laboratory, Caltech Office hours: My office hours today from 2-3 pm (or make an appointment) Chapter

More information

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image.

GEOMETRIC OPTICS. LENSES refract light, so we need to know how light bends when entering and exiting a lens and how that interaction forms an image. I. What is GEOMTERIC OPTICS GEOMETRIC OPTICS In geometric optics, LIGHT is treated as imaginary rays. How these rays interact with at the interface of different media, including lenses and mirrors, is

More information

Mirrors. N.G. Schultheiss translated and adapted by K. Schadenberg

Mirrors. N.G. Schultheiss translated and adapted by K. Schadenberg Mirrors N.G. Schultheiss translated and adapted by K. Schadenberg 1 Introduction This module Mirrors summarizes and extents your basic knowledge about mirrors. After this module you can proceed with the

More information

Reflection and Refraction. Geometrical Optics

Reflection and Refraction. Geometrical Optics Reflection and Refraction Geometrical Optics Reflection Angle of incidence = Angle of reflection The angle of incidence,i, is always equal to the angle of reflection, r. The incident ray, reflected ray

More information

Assuming: f = 10 cm C = 20 cm p = 12 cm q = 60 cm h = 5 cm h = - 25 cm M = -5

Assuming: f = 10 cm C = 20 cm p = 12 cm q = 60 cm h = 5 cm h = - 25 cm M = -5 Object Distance greater than C Object Distance at C Assuming: f = 10 cm C = 20 cm p = 25 cm q = 16.66 h = 5 cm h = -3.32 cm M = -.664 Assuming: f = 10 cm C = 20 cm p = 20 cm q = 20 cm h = 5 cm h = -5 cm

More information

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles.

Optics. a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. Optics 1- Light Nature: a- Before the beginning of the nineteenth century, light was considered to be a stream of particles. The particles were either emitted by the object being viewed or emanated from

More information

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation

Part Images Formed by Flat Mirrors. This Chapter. Phys. 281B Geometric Optics. Chapter 2 : Image Formation. Chapter 2: Image Formation Phys. 281B Geometric Optics This Chapter 3 Physics Department Yarmouk University 21163 Irbid Jordan 1- Images Formed by Flat Mirrors 2- Images Formed by Spherical Mirrors 3- Images Formed by Refraction

More information

Light: Geometric Optics

Light: Geometric Optics Light: Geometric Optics 23.1 The Ray Model of Light Light very often travels in straight lines. We represent light using rays, which are straight lines emanating from an object. This is an idealization,

More information

Refraction & Concave Mirrors

Refraction & Concave Mirrors rev 05/2018 Equipment List Refraction & Concave Mirrors Qty Items Part Numbers 1 Light Source OS-8517 1 Ray Optics Set OS-8516 1 Optics Bench OS-8518 1 50 mm Concave Mirror, and Half Screen OS-8519 1 Viewing

More information

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction

Unit 11 Light and Optics Holt Chapter 14 Student Outline Light and Refraction Holt Chapter 14 Student Outline Light and Refraction Variables introduced or used in chapter: Quantity Symbol Units Speed of light frequency wavelength angle Object Distance Image Distance Radius of Curvature

More information

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1

Announcement on HW 8. HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am. Physics 102: Lecture 16, Slide 1 Announcement on HW 8 HW 8 originally due this Wednesday, Mar. 13 Now due FRIDAY, Mar. 15 at 8:00am Physics 102: Lecture 16, Slide 1 Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture

More information

Seeing an Object. 6: Geometric Optics (Chapters 34)

Seeing an Object. 6: Geometric Optics (Chapters 34) Seeing an Object 6: Geometric Optics (Chapters 34) Phys130, A01 Dr. Robert MacDonald Light rays from each point on the go everywhere. Some light from each point reaches the. 2 virtual image As long as

More information

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses

LIGHT. Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses LIGHT Speed of light Law of Reflection Refraction Snell s Law Mirrors Lenses Light = Electromagnetic Wave Requires No Medium to Travel Oscillating Electric and Magnetic Field Travel at the speed of light

More information

normal angle of incidence increases special angle no light is reflected

normal angle of incidence increases special angle no light is reflected Reflection from transparent materials (Chapt. 33 last part) When unpolarized light strikes a transparent surface like glass there is both transmission and reflection, obeying Snell s law and the law of

More information

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1

LIGHT & OPTICS. Fundamentals of Physics 2112 Chapter 34 1 LIGHT & OPTICS Fundamentals of Physics 22 Chapter 34 Chapter 34 Images. Two Types of Images 2. Plane Mirrors 3. Spherical Mirrors 4. Images from Spherical Mirrors 5. Spherical Refracting Surfaces 6. Thin

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 1 Overview of Chapter 26 The Reflection of Light Forming Images with a Plane Mirror Spherical Mirrors Ray Tracing and the Mirror Equation The Refraction of Light Ray Tracing

More information

Image Formation and the Lens: Object Beyond The Focal Point

Image Formation and the Lens: Object Beyond The Focal Point Image Formation and the Lens: Object Beyond The Focal Point A convex lens is shown below with its focal points displayed (the dots). An object is located to the left of and at a distance of 2f to the lens.

More information

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 34 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 34 Lecture RANDALL D. KNIGHT Chapter 34 Ray Optics IN THIS CHAPTER, you will learn about and apply the ray model of light Slide 34-2

More information

Physics 102: Lecture 16 Introduction to Mirrors

Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16 Introduction to Mirrors Physics 102: Lecture 16, Slide 1 Exam II Tuesday April 1st! What will exam cover? Lectures 8 15 (Magnetic fields Polarization) What do you need to bring?

More information

Today s Topic: Ray Diagrams Intro to & Converging

Today s Topic: Ray Diagrams Intro to & Converging Today s Topic: Ray Diagrams Intro to & Converging Learning Goal: Students will be able to describe the resulting image of light once it passes through a converging lens. What is a focal point? What happens

More information

Light: Geometric Optics (Chapter 23)

Light: Geometric Optics (Chapter 23) Light: Geometric Optics (Chapter 23) Units of Chapter 23 The Ray Model of Light Reflection; Image Formed by a Plane Mirror Formation of Images by Spherical Index of Refraction Refraction: Snell s Law 1

More information

Light:- it is an agent which produces in us the sensation of sight. It is a form of energy.

Light:- it is an agent which produces in us the sensation of sight. It is a form of energy. Reflection:- Light:- it is an agent which produces in us the sensation of sight. It is a form of energy. Transparent medium:- It is a medium through which light can be propagated easily.(e.g., sun, candle,

More information

Person s Optics Test SSSS

Person s Optics Test SSSS Person s Optics Test SSSS 2017-18 Competitors Names: School Name: All questions are worth one point unless otherwise stated. Show ALL WORK or you may not receive credit. Include correct units whenever

More information

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle.

The image is virtual and erect. When a mirror is rotated through a certain angle, the reflected ray is rotated through twice this angle. 1 Class XII: Physics Chapter 9: Ray optics and Optical Instruments Top Concepts 1. Laws of Reflection. The reflection at a plane surface always takes place in accordance with the following two laws: (i)

More information

Light travels in straight lines, this is referred to as... this means that light does not bend...

Light travels in straight lines, this is referred to as... this means that light does not bend... SNC 2DI - 10.2 Properties of Light and Reflection Light travels in straight lines, this is referred to as... this means that light does not bend... Reflection : Light travels in a straight line as long

More information

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge.

Quest Chapter 30. Same hint as in #1. Consider the shapes of lenses that make them converge or diverge. 1 Consider the light rays depicted in the figure. 1. diverging mirror 2. plane mirror 3. converging mirror 4. converging lens 5. diverging lens 6. Unable to determine. 2 Consider the light rays depicted

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Nicholas J. Giordano. Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College

Nicholas J. Giordano.   Chapter 24. Geometrical Optics. Marilyn Akins, PhD Broome Community College Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 24 Geometrical Optics Marilyn Akins, PhD Broome Community College Optics The study of light is called optics Some highlights in the history

More information

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses

Optics Course (Phys 311) Geometrical Optics Refraction through Lenses Optics Course (Phys ) Geometrical Optics Refraction through Lenses Lecturer: Dr Zeina Hashim Slide 1 Objectives covered in this lesson : 1. Refraction through single spherical refracting surfaces. 2. Lenses:

More information

The Role of Light to Sight

The Role of Light to Sight Reflection The Role of Light to Sight The visual ability of humans and other animals is the result of the complex interaction of light, eyes and brain. Absence of Light Darkness. Luminous objects are objects

More information

AIM To determine the frequency of alternating current using a sonometer and an electromagnet.

AIM To determine the frequency of alternating current using a sonometer and an electromagnet. EXPERIMENT 8 AIM To determine the frequency of alternating current using a sonometer and an electromagnet. APPARATUS AND MATERIAL REQUIRED A sonometer with a soft iron wire stretched over it, an electromagnet,

More information

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc.

Chapter 32 Light: Reflection and Refraction. Copyright 2009 Pearson Education, Inc. Chapter 32 Light: Reflection and Refraction Units of Chapter 32 The Ray Model of Light Reflection; Image Formation by a Plane Mirror Formation of Images by Spherical Mirrors Index of Refraction Refraction:

More information

Reflection of Light. 1)Students will discover how light interacts with certain types of surfaces

Reflection of Light. 1)Students will discover how light interacts with certain types of surfaces Reflection of Light 1)Students will discover how light interacts with certain types of surfaces 2) Students will understand the laws governing the phenomenon of reflection 3) Discover how images are formed,

More information

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2

Optics Homework. Assignment #2. Assignment #1. Textbook: Read Section 23-1 and 23-2 Optics Homework Assignment #1 Textbook: Read Section 22-3 (Honors only) Textbook: Read Section 23-1 Online: Reflection Lesson 1a: * problems are for all students ** problems are for honors physics 1. *

More information

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface

normal: a line drawn perpendicular (90 ) from the point of incidence of the reflecting surface Ch 11 Reflecting Light off a Plane Mirror p. 313 Types of Mirrors (3) 1) Plane: flat fg 1 p. 313 law of reflection: the angle of incidence = the angle of reflection incident ray (in): the ray (light beam)

More information

4. Refraction. glass, air, Perspex and water.

4. Refraction. glass, air, Perspex and water. Mr. C. Grima 11 1. Rays and Beams A ray of light is a narrow beam of parallel light, which can be represented by a line with an arrow on it, in diagrams. A group of rays makes up a beam of light. In laboratory

More information

Lecture 36: FRI 17 APR

Lecture 36: FRI 17 APR Physics 2102 Jonathan Dowling Lecture 36: FRI 17 APR 34.1 4: Geometrical optics Geometrical Optics Geometrical optics (rough approximation): light rays ( particles ) that travel in straight lines. Physical

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

3B SCIENTIFIC PHYSICS... going one step further

3B SCIENTIFIC PHYSICS... going one step further 3B SCIENTIFIC PHYSICS... going one step further Sample experiments for Optics on magnetic boards, basic kit U14600 with Multiple-ray projector U40110 08/03 ALF Exp.1: Reflection on a plane mirror Demonstration

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics The Reflection of Light: Mirrors: Mirrors produce images because the light that strikes them is reflected, rather than absorbed. Reflected light does much more than produce

More information

12:40-2:40 3:00-4:00 PM

12:40-2:40 3:00-4:00 PM Physics 294H l Professor: Joey Huston l email:huston@msu.edu l office: BPS3230 l Homework will be with Mastering Physics (and an average of 1 hand-written problem per week) Help-room hours: 12:40-2:40

More information

Physics 1230: Light and Color. Projects

Physics 1230: Light and Color. Projects Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Matt Heinemann, Matthew.Heinemann@colorado.edu www.colorado.edu/physics/phys1230 Exam 2 tomorrow, here. HWK 6 is due at 5PM Thursday.

More information

Light & Optical Systems Reflection & Refraction. Notes

Light & Optical Systems Reflection & Refraction. Notes Light & Optical Systems Reflection & Refraction Notes What is light? Light is electromagnetic radiation Ultra-violet + visible + infra-red Behavior of Light Light behaves in 2 ways particles (photons)

More information

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook.

In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. In order to get the G.C.S.E. grade you are capable of, you must make your own revision notes using your Physics notebook. When summarising notes, use different colours and draw diagrams/pictures. If you

More information