FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC)

Size: px
Start display at page:

Download "FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC)"

Transcription

1 FMRI data: Independent Component Analysis (GIFT) & Connectivity Analysis (FNC) Software: Matlab Toolbox: GIFT & FNC Yingying Wang, Ph.D. in Biomedical Engineering th, 2014 PI: Dr. Nadine Gaab

2 Outline Introduction [Independent component analysis & connectivity analysis] Toolbox: GIFT Toolbox: FNC Demo & Hands-on

3 Independent Component Analysis Data Driven Multivariate Model-free The goal of ICA is to separate sources from a linear mixture. Assumptions: Linear mixing, independence, Non-gaussian ICA finds the independent components (also called factors, latent variables or sources) by maximizing the statistical independence of the estimated components. The form of ICA depends on the way to define independence. Minimization mutual information (infomax, Bell and Sejnowski, 1995) Maximization of non-gaussianity (FastICA, Hyvarinen et al., 2001) A simple example: the cocktail party problem

4 Two people talking Microphones at different distances from speakers Voice #1 (source) How can we separate the two speakers voice? X M mic #1 (detector) Y Y = M X 2 k k Voice #2 (source) mic #2 (detector)

5 Matlab Demo (Please download the data and code from our training website: Voice #1 >> [x1,fs]=audioread('x1.wav'); >> plot(x1) Voice #2 >> [x2,fs]=audioread('x2.wav'); >> plot(x2) A real Cocktail Party Effect. Two Speakers have been recorded speaking simultaneously. Speaker 1 says the digits from one to ten in English and speaker 2 counts at the same time the digits in Spanish (uno dos... ) The recording has been done in a normal office room. The distance between the speakers and the microphones is about 60cm in a square ordering (sampling rate 16kHz). (All files are in 16kHz wav-format). Data file:

6 Mic #1 >> [y1,fs]=audioread( y1.wav'); >> plot(y1) Mic #2 >> [y2,fs]=audioread( y2.wav'); >> plot(y2) Data file:

7 y () t m x m x y () t m x m x m ij...depends on the distances of the microphones from the speakers Noise-free ICA definition Use a statistical latent variables system Drop the time index, random variables Y is linear mixture of n independent components: y j m j1x1... m jnxn for all j Y = MX M --- basis functions, also called mixing matrix (unknown) X --- independent components, are latent variables which mean that they cannot be directly observed (unknown) GOAL: Estimate M and X using only the observable random variables Y

8 To solve this problem, some assumptions are needed: The components x i are statistically independent. x i The components have non-gaussian distributions. (if only one IC is gaussian, the estimation is still possible) For simplicity, mixing matrix M is square (can be sometimes relaxed) and can be inverted. The number of ICs equals the number of observable mixtures. Also for simplicity, we omit any noise term and illustrate using a noise-free ICA model. Note: (1) we cannot determine the variances of the independent components. (2) we cannot determine the order of the independent components.

9 Solution >>x=[x1,x2] ; >>r=fastica(x); >>subplot(2,1,1); >>plot(r(1,:), r ); >>hold on; >>plot(x2, y ); >>subplot(2,1,2); >>plot(r(2,:), r ); >>hold on; >>plot(x1, y ); Download cocktail_problem.zip

10 PCA-PCs uncorrelated: E PC PC E PC E PC Note: uncorrelated random variables are not necessarily independent. ICA-ICs independent: Pr( IC IC ) Pr IC Pr IC ICA v.s. PCA Principle component Analysis: find the components which can explain the maximum amount of variance possible presented in the observed data. Both are subspace projection techniques. Basic goal of PCA is to decorrelate the signal by projecting the data onto orthogonal axes, while the goal of ICA is to find statistically independent components from the signal. PCA: minimize the reprojection error from compressed data; ICA: minimize the statistical dependence between the ICs. PCs are orthogonal and ranked in order; ICs are statistical independent, but not orthogonal to each other and not ranked. There is no closed form expression to find M (iterative algorithms). Important property: the new sets of components are uncorrelated with each other (thus PCA is often used in the pre-processing procedure of ICA).

11 PCA reduces the dimensionality (the number of variables) of a data set by maintaining as much as variance as possible) PCA finds directions of maximal variance using second order statistics. ICA finds directions which maximize independence using higher order statistics

12 Summary PCA is good for Gaussian noise separation ICA is good for non-gaussian noise separation PCs have obvious meaning highest energy components ICA derived sources: arbitrary scaling/inversion & ordering --- need energy-independent heuristic to identify signals/noise Order of ICs change IC space is derived from the data -- PC space only changes if SNR changes. ICA assumes linear mixing matrix ICA assumes stationary mixing and ICA requires as many sensors as sources (like EEG, MEG inverse problem).

13 Application in fmri data analysis Relying on the intrinsic structure of the data, no assumptions about the form of the hemodynamic response function (HRF) which is needed for generalized linear modeling (GLM). GOAL: to identify a number of unknown sources of signal, ICA assumes that these sources are mutually and statistically independent in space (sica) or time (tica). For fmri data analysis, sica is preferred because temporal points (few hundreds, corresponding to each occurrence of a functional image acquisition) are small compared to spatial locations (more than millions voxels in a functional image).

14 sica Task Non task-related activations (e.g. Arousal) System Noise Measured Signal Pulsations Assumption: spatial pattern from sources of variability is unrelated (independent).

15 Figure source:

16 ICA Software Packages GIFT ( Matlab, multiple ICA algorithms (infomax, fastica, etc.) Graphic User Interface (GUI) and sorting options AnalyzeFMRI ( R, FastICA BrainVoyager ( Commercial (not free, but FDA approved), FastICA ICALAB Matlab, many ICA algorithms, no user-friendly fmri data display FSL melodic ( C, FastICA

17 GIFT Demo for single subject Installation of the toolbox (1) You need to have Matlab installed in your laptop. (2) Download GIFT toolbox from (3) >>pathtool >>addpath( c:\icatb\ ); >>gift

18

19 Choose a folder to put your ICA results in. Download: single_subject_ica.zip Then, click OK

20

21 Number of ICs Too many over-splitting Too few over-clumping How to choose? Between 20 and 40 appears to be a reasonable choice for typical fmri experiment Tools for estimating this number are available in GIFT (AIC/MDL/BIC) (make decision based upon the complexity or information content of data) Akaike s information criterion (AIC) Minimum description length (MDL) Bayesian information criterion (BIC) Note: See more in V.D. Calhoun, et al. (2001) HBM, vol.14:

22

23

24

25 Preprocessing Centering (subtract the mean to create a zero mean signal) Simplify the ICA analysis (zero mean variable so ICs are zeromean too according to the equation [take expectations on both sides of the Y=MX equation). Whitening (transform Y linearly so that new Y is white) and dimension reduction can be achieved using Principle Component Analysis or Singular Value Decomposition (to make sure its components are uncorrelated and their variances equal unity).

26 Scaling Z-score: each image and time course are divided by its standard deviation Percent signal change Time courses are regressed onto original data at voxels which are maximal for a given IC. Scaled to reflect percent signal change from the mean. Images are also scaled such that the maximal voxel value contains the maximal percent signal change value.

27

28

29 Run ICA

30

31

32

33

34

35

36

37

38 Sorting Temporal sorting Correlation Multiple regression Frequency power spectra, etc Spatial sorting Correlation with mask or prior knowledge Maximum value with in mask Multiple regression Multivariate sorting Support Vector Machine

39

40

41 Group ICA Sub 1 Sub N ICA ICA? Figure source:

42 Group ICA Figure source:

43 Group ICA Data ICA Back-reconstruction Subject 1 A 1 A i 1 Subject i S i X A S_agg Subject N A N Figure source:

44 Group ICA Download cocktail_problem.zip

45 If each subject went through multiple sessions, you can put the preprocessed fmri data into the sub-folder.

46 ICASSO Consistency and Clustering of ICs

47

48

49

50 Our example only has one session, so choose No here. Then click OK.

51

52 Change to 10, we let ICA run 10 times, each time starts with random initial value.

53

54

55

56

57

58

59

60

61

62 Run analysis using commands:

63 Different useful tools, like Write Talairach Table to get the IC s Talairach coordinates, etc.

64 After sica, Functional Network Connectivity (FNC) Functional Connectivity Effective Connectivity Structural Connectivity Pic source:

65 Functional Network Connectivity (FNC) FNC is a Matlab toolbox which finds and displays temporal relations amongst components. This can help determine causal relations in the brain. Using GIFT to preprocess the raw data for FNC is recommended. Webpage: Documentation: Publications:

66 Functional Network Connectivity (between groups) Key: : ρ patient > ρ control : ρ control > ρ patient A: Default G: Temporal B: Parietal F: Frontal C: L. & M. Visual Cortical Areas E: Frontal Parietal Subcortical D: Frontal Temporal Parietal

67 Start FNC >> fnctb

68

69

70

71 Let s pick Com9, 11, 16, 27

72

73

74

75

76

77

78 The End Thank you

This Week. Last Week. Independent Component Analysis. ICA vs. PCA. ICA vs PCA. Blind Source Separation: The Cocktail Party Problem

This Week. Last Week. Independent Component Analysis. ICA vs. PCA. ICA vs PCA. Blind Source Separation: The Cocktail Party Problem 1 Last Week Functional Connectivity This Week (Brief) ICA Intro ICA of fmri Sorting/Calibration Validation Demo single-subject subject ICA 2 Blind Source Separation: The Cocktail Party Problem Observations

More information

INDEPENDENT COMPONENT ANALYSIS WITH FEATURE SELECTIVE FILTERING

INDEPENDENT COMPONENT ANALYSIS WITH FEATURE SELECTIVE FILTERING INDEPENDENT COMPONENT ANALYSIS WITH FEATURE SELECTIVE FILTERING Yi-Ou Li 1, Tülay Adalı 1, and Vince D. Calhoun 2,3 1 Department of Computer Science and Electrical Engineering University of Maryland Baltimore

More information

Independent Component Analysis of fmri Data

Independent Component Analysis of fmri Data Independent Component Analysis of fmri Data Denise Miller April 2005 Introduction Techniques employed to analyze functional magnetic resonance imaging (fmri) data typically use some form of univariate

More information

X A S. Overview. Modeling the Brain? ICA vs PCA. Independent Component Analysis

X A S. Overview. Modeling the Brain? ICA vs PCA. Independent Component Analysis fmri Course Lecture 9: Introduction to Independent Component Analysis Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The Mind Research Network Associate Professor, Electrical and Computer

More information

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS

INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS INDEPENDENT COMPONENT ANALYSIS APPLIED TO fmri DATA: A GENERATIVE MODEL FOR VALIDATING RESULTS V. Calhoun 1,2, T. Adali, 2 and G. Pearlson 1 1 Johns Hopkins University Division of Psychiatric Neuro-Imaging,

More information

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015

Statistical Analysis of Neuroimaging Data. Phebe Kemmer BIOS 516 Sept 24, 2015 Statistical Analysis of Neuroimaging Data Phebe Kemmer BIOS 516 Sept 24, 2015 Review from last time Structural Imaging modalities MRI, CAT, DTI (diffusion tensor imaging) Functional Imaging modalities

More information

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques

Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Analysis of Functional MRI Timeseries Data Using Signal Processing Techniques Sea Chen Department of Biomedical Engineering Advisors: Dr. Charles A. Bouman and Dr. Mark J. Lowe S. Chen Final Exam October

More information

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13

Statistical Methods in functional MRI. False Discovery Rate. Issues with FWER. Lecture 7.2: Multiple Comparisons ( ) 04/25/13 Statistical Methods in functional MRI Lecture 7.2: Multiple Comparisons 04/25/13 Martin Lindquist Department of iostatistics Johns Hopkins University Issues with FWER Methods that control the FWER (onferroni,

More information

New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine

New Approaches for EEG Source Localization and Dipole Moment Estimation. Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine New Approaches for EEG Source Localization and Dipole Moment Estimation Shun Chi Wu, Yuchen Yao, A. Lee Swindlehurst University of California Irvine Outline Motivation why EEG? Mathematical Model equivalent

More information

FSL Workshop Session 3 David Smith & John Clithero

FSL Workshop Session 3 David Smith & John Clithero FSL Workshop 12.09.08 Session 3 David Smith & John Clithero What is MELODIC? Probabilistic ICA Improves upon standard ICA Allows for inference Avoids over-fitting Three stage process ( ppca ) 1.) Dimension

More information

International Journal of Digital Application & Contemporary research Website: (Volume 1, Issue 8, March 2013)

International Journal of Digital Application & Contemporary research Website:   (Volume 1, Issue 8, March 2013) Face Recognition using ICA for Biometric Security System Meenakshi A.D. Abstract An amount of current face recognition procedures use face representations originate by unsupervised statistical approaches.

More information

Group ICA of fmri Toolbox (GIFT) Manual

Group ICA of fmri Toolbox (GIFT) Manual Group ICA of fmri Toolbox (GIFT) Manual Srinivas Rachakonda, Eric Egolf, Nicolle Correa 3 and Vince Calhoun 4 Sep 3, The MIND Research Network, Albuquerque, NM Olin Neuropsychiatry Research Center, Hartford,

More information

The Artifact Subspace Reconstruction method. Christian A Kothe SCCN / INC / UCSD January 2013

The Artifact Subspace Reconstruction method. Christian A Kothe SCCN / INC / UCSD January 2013 The Artifact Subspace Reconstruction method Christian A Kothe SCCN / INC / UCSD January 2013 Artifact Subspace Reconstruction New algorithm to remove non-stationary highvariance signals from EEG Reconstructs

More information

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features

A problem - too many features. TDA 231 Dimension Reduction: PCA. Features. Making new features A problem - too many features TDA 1 Dimension Reduction: Aim: To build a classifier that can diagnose leukaemia using Gene expression data. Data: 7 healthy samples,11 leukaemia samples (N = 8). Each sample

More information

Group ICA/IVA of fmri Toolbox (GIFT) Manual

Group ICA/IVA of fmri Toolbox (GIFT) Manual Group ICA/IVA of fmri Toolbox (GIFT) Manual The GIFT Documentation Team May, 3 Contents Introduction. What is GIFT?.................................................. Why ICA on fmri data?............................................3

More information

Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue

Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue Why Normalizing v? Why did we normalize v on the right side? Because we want the length of the left side to be the eigenvalue 1 CCI PCA Algorithm (1) 2 CCI PCA Algorithm (2) 3 PCA from the FERET Face Image

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Raquel Urtasun & Rich Zemel University of Toronto Nov 4, 2015 Urtasun & Zemel (UofT) CSC 411: 14-PCA & Autoencoders Nov 4, 2015 1 / 18

More information

Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question.

Single Subject Demo Data Instructions 1) click New and answer No to the spatially preprocess question. (1) conn - Functional connectivity toolbox v1.0 Single Subject Demo Data Instructions 1) click "New" and answer "No" to the "spatially preprocess" question. 2) in "Basic" enter "1" subject, "6" seconds

More information

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders

CSC 411: Lecture 14: Principal Components Analysis & Autoencoders CSC 411: Lecture 14: Principal Components Analysis & Autoencoders Richard Zemel, Raquel Urtasun and Sanja Fidler University of Toronto Zemel, Urtasun, Fidler (UofT) CSC 411: 14-PCA & Autoencoders 1 / 18

More information

OHBA M/EEG Analysis Workshop. Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker

OHBA M/EEG Analysis Workshop. Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker OHBA M/EEG Analysis Workshop Mark Woolrich Diego Vidaurre Andrew Quinn Romesh Abeysuriya Robert Becker Workshop Schedule Tuesday Session 1: Preprocessing, manual and automatic pipelines Session 2: Task

More information

Group ICA of FMRI: Introduction and Review of Current Work Vince D. Calhoun, Ph.D.

Group ICA of FMRI: Introduction and Review of Current Work Vince D. Calhoun, Ph.D. Group ICA of FMRI: Introduction and Review of Current Work Vince D. Calhoun, Ph.D. Director, Image Analysis & MR Research The Mind Research Network Associate Professor, Electrical and Computer Engineering

More information

Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Mi

Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Mi Advances in Neural Information Processing Systems, 1999, In press. Unsupervised Classication with Non-Gaussian Mixture Models using ICA Te-Won Lee, Michael S. Lewicki and Terrence Sejnowski Howard Hughes

More information

An independent component analysis based tool for exploring functional connections in the brain

An independent component analysis based tool for exploring functional connections in the brain An independent component analysis based tool for exploring functional connections in the brain S. M. Rolfe a, L. Finney b, R. F. Tungaraza b, J. Guan b, L.G. Shapiro b, J. F. Brinkely b, A. Poliakov c,

More information

OCULAR ARTIFACT REMOVAL FROM EEG: A COMPARISON OF SUBSPACE PROJECTION AND ADAPTIVE FILTERING METHODS.

OCULAR ARTIFACT REMOVAL FROM EEG: A COMPARISON OF SUBSPACE PROJECTION AND ADAPTIVE FILTERING METHODS. OCULAR ARTIFACT REMOVAL FROM EEG: A COMPARISON OF SUBSPACE PROJECTION AND ADAPTIVE FILTERING METHODS. Eleni Kroupi 1, Ashkan Yazdani 1, Jean-Marc Vesin 2, Touradj Ebrahimi 1 1 Multimedia Signal Processing

More information

Recognition, SVD, and PCA

Recognition, SVD, and PCA Recognition, SVD, and PCA Recognition Suppose you want to find a face in an image One possibility: look for something that looks sort of like a face (oval, dark band near top, dark band near bottom) Another

More information

The organization of the human cerebral cortex estimated by intrinsic functional connectivity

The organization of the human cerebral cortex estimated by intrinsic functional connectivity 1 The organization of the human cerebral cortex estimated by intrinsic functional connectivity Journal: Journal of Neurophysiology Author: B. T. Thomas Yeo, et al Link: https://www.ncbi.nlm.nih.gov/pubmed/21653723

More information

PRINCIPAL components analysis (PCA) is a widely

PRINCIPAL components analysis (PCA) is a widely 1586 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 6, JUNE 2006 Independent Component Analysis-Based Dimensionality Reduction With Applications in Hyperspectral Image Analysis Jing Wang,

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Robust Image Transmission over Noisy Channel Using Independent Component Analysis

Robust Image Transmission over Noisy Channel Using Independent Component Analysis 37 obust Image Transmission over oisy Channel Using Independent Component Analysis Deepak.. A Department of Computer cience, Ghousia College of Engineering, amanagaram-571511 Email: deepak_n_a@rediffmail.com

More information

FNC Toolbox Walk Through

FNC Toolbox Walk Through FNC Toolbox Walk Through Date: August 10 th, 2009 By: Nathan Swanson, Vince Calhoun at The Mind Research Network Email: nswanson@mrn.org Introduction The FNC Toolbox is an extension of the GIFT toolbox

More information

Motion Interpretation and Synthesis by ICA

Motion Interpretation and Synthesis by ICA Motion Interpretation and Synthesis by ICA Renqiang Min Department of Computer Science, University of Toronto, 1 King s College Road, Toronto, ON M5S3G4, Canada Abstract. It is known that high-dimensional

More information

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series

CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series CS 229 Final Project Report Learning to Decode Cognitive States of Rat using Functional Magnetic Resonance Imaging Time Series Jingyuan Chen //Department of Electrical Engineering, cjy2010@stanford.edu//

More information

Face Recognition by Independent Component Analysis

Face Recognition by Independent Component Analysis 1450 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 13, NO. 6, NOVEMBER 2002 Face Recognition by Independent Component Analysis Marian Stewart Bartlett, Member, IEEE, Javier R. Movellan, Member, IEEE, and

More information

Face Modeling by Information Maximization 1

Face Modeling by Information Maximization 1 Face Modeling by Information Maximization 1 Marian Stewart Bartlett Javier R. Movellan Terrence J. Sejnowski UC San Diego UC San Diego UC San Diego; Salk marni@salk.edu movellan@mplab.ucsd.edu Howard Hughes

More information

Quality Checking an fmri Group Result (art_groupcheck)

Quality Checking an fmri Group Result (art_groupcheck) Quality Checking an fmri Group Result (art_groupcheck) Paul Mazaika, Feb. 24, 2009 A statistical parameter map of fmri group analyses relies on the assumptions of the General Linear Model (GLM). The assumptions

More information

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Feature Selection. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Feature Selection CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Dimensionality reduction Feature selection vs. feature extraction Filter univariate

More information

Unsupervised Learning

Unsupervised Learning Unsupervised Learning Learning without Class Labels (or correct outputs) Density Estimation Learn P(X) given training data for X Clustering Partition data into clusters Dimensionality Reduction Discover

More information

Independent Component Analysis Using Random Projection For Data Pre-Processing

Independent Component Analysis Using Random Projection For Data Pre-Processing www.ijcsi.org 200 Independent Component Analysis Using Random Projection For Data Pre-Processing Abstract There is an inherent difficulty of finding out latent structures within high dimensional data repository

More information

Ganesh Naik RMIT University, Melbourne

Ganesh Naik RMIT University, Melbourne Independent Component Analysis (ICA) Ganesh Naik RMIT University, Melbourne ganesh.naik@rmit.edu.au Introduction Surface electromyogram (SEMG) is an indicator of the underlying muscle activity Difficulty

More information

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\

Data Preprocessing. Javier Béjar. URL - Spring 2018 CS - MAI 1/78 BY: $\ Data Preprocessing Javier Béjar BY: $\ URL - Spring 2018 C CS - MAI 1/78 Introduction Data representation Unstructured datasets: Examples described by a flat set of attributes: attribute-value matrix Structured

More information

Generalized Principal Component Analysis CVPR 2007

Generalized Principal Component Analysis CVPR 2007 Generalized Principal Component Analysis Tutorial @ CVPR 2007 Yi Ma ECE Department University of Illinois Urbana Champaign René Vidal Center for Imaging Science Institute for Computational Medicine Johns

More information

Basics of Multivariate Modelling and Data Analysis

Basics of Multivariate Modelling and Data Analysis Basics of Multivariate Modelling and Data Analysis Kurt-Erik Häggblom 9. Linear regression with latent variables 9.1 Principal component regression (PCR) 9.2 Partial least-squares regression (PLS) [ mostly

More information

Fusion ICA Toolbox (FIT) Manual

Fusion ICA Toolbox (FIT) Manual Fusion ICA Toolbox (FIT) Manual Srinivas Rachakonda 1, Jean Liu 1 and Vince Calhoun 12 June 19, 2012 1 The MIND Research Network, Albuquerque, NM 2 Dept. of Electrical and Computer Engineering, University

More information

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses.

Supplementary Data. in residuals voxel time-series exhibiting high variance, for example, large sinuses. Supplementary Data Supplementary Materials and Methods Step-by-step description of principal component-orthogonalization technique Below is a step-by-step description of the principal component (PC)-orthogonalization

More information

Dimension Reduction CS534

Dimension Reduction CS534 Dimension Reduction CS534 Why dimension reduction? High dimensionality large number of features E.g., documents represented by thousands of words, millions of bigrams Images represented by thousands of

More information

Spectral Classification

Spectral Classification Spectral Classification Spectral Classification Supervised versus Unsupervised Classification n Unsupervised Classes are determined by the computer. Also referred to as clustering n Supervised Classes

More information

Fundamentals of Digital Image Processing

Fundamentals of Digital Image Processing \L\.6 Gw.i Fundamentals of Digital Image Processing A Practical Approach with Examples in Matlab Chris Solomon School of Physical Sciences, University of Kent, Canterbury, UK Toby Breckon School of Engineering,

More information

SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES. Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari

SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES. Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari SPARSE COMPONENT ANALYSIS FOR BLIND SOURCE SEPARATION WITH LESS SENSORS THAN SOURCES Yuanqing Li, Andrzej Cichocki and Shun-ichi Amari Laboratory for Advanced Brain Signal Processing Laboratory for Mathematical

More information

Cognitive States Detection in fmri Data Analysis using incremental PCA

Cognitive States Detection in fmri Data Analysis using incremental PCA Department of Computer Engineering Cognitive States Detection in fmri Data Analysis using incremental PCA Hoang Trong Minh Tuan, Yonggwan Won*, Hyung-Jeong Yang International Conference on Computational

More information

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image

Histograms. h(r k ) = n k. p(r k )= n k /NM. Histogram: number of times intensity level rk appears in the image Histograms h(r k ) = n k Histogram: number of times intensity level rk appears in the image p(r k )= n k /NM normalized histogram also a probability of occurence 1 Histogram of Image Intensities Create

More information

BESA Research. CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG

BESA Research. CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG BESA Research CE certified software package for comprehensive, fast, and user-friendly analysis of EEG and MEG BESA Research choose the best analysis tool for your EEG and MEG data BESA Research is the

More information

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal!

7/15/2016 ARE YOUR ANALYSES TOO WHY IS YOUR ANALYSIS PARAMETRIC? PARAMETRIC? That s not Normal! ARE YOUR ANALYSES TOO PARAMETRIC? That s not Normal! Martin M Monti http://montilab.psych.ucla.edu WHY IS YOUR ANALYSIS PARAMETRIC? i. Optimal power (defined as the probability to detect a real difference)

More information

Independent Component Analysis of Functional Magnetic Resonance Imaging (fmri) Data: A simple Approach

Independent Component Analysis of Functional Magnetic Resonance Imaging (fmri) Data: A simple Approach Research Journal of Applied Sciences, Engineering and Technology 5(24): 5494-552, 213 ISSN: 24-7459; e-issn: 24-7467 Maxwell Scientific Organization, 213 Submitted: August 17, 212 Accepted: September 8,

More information

Resting state network estimation in individual subjects

Resting state network estimation in individual subjects Resting state network estimation in individual subjects Data 3T NIL(21,17,10), Havard-MGH(692) Young adult fmri BOLD Method Machine learning algorithm MLP DR LDA Network image Correlation Spatial Temporal

More information

A Modified Infomax ICA Algorithm for fmri Data Source Separation

A Modified Infomax ICA Algorithm for fmri Data Source Separation Research Journal of Applied Sciences, Engineering and echnology 5(20): 4862-4868, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: December 17, 2012 Accepted: January

More information

Machine Learning. Topic 4: Linear Regression Models

Machine Learning. Topic 4: Linear Regression Models Machine Learning Topic 4: Linear Regression Models (contains ideas and a few images from wikipedia and books by Alpaydin, Duda/Hart/ Stork, and Bishop. Updated Fall 205) Regression Learning Task There

More information

Version. Getting Started: An fmri-cpca Tutorial

Version. Getting Started: An fmri-cpca Tutorial Version 11 Getting Started: An fmri-cpca Tutorial 2 Table of Contents Table of Contents... 2 Introduction... 3 Definition of fmri-cpca Data... 3 Purpose of this tutorial... 3 Prerequisites... 4 Used Terms

More information

CONN fmri functional connectivity toolbox

CONN fmri functional connectivity toolbox CONN fmri functional connectivity toolbox Gabrieli Lab. McGovern Institute for Brain Research Massachusetts Institute of Technology http://www.nitrc.org/projects/conn Susan Whitfield-Gabrieli Alfonso Nieto-Castanon

More information

On the Minimum l p. 193 On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries

On the Minimum l p. 193 On the Strong Uniqueness of Highly Sparse Representations from Redundant Dictionaries Theory and Fundamentals A FastICA Algorithm for Non-negative Independent Component Analysis p. 1 Blind Source Separation by Adaptive Estimation of Score Function Difference p. 9 Exploiting Spatiotemporal

More information

Mixture Models and the EM Algorithm

Mixture Models and the EM Algorithm Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine c 2017 1 Finite Mixture Models Say we have a data set D = {x 1,..., x N } where x i is

More information

CSC321: Neural Networks. Lecture 13: Learning without a teacher: Autoencoders and Principal Components Analysis. Geoffrey Hinton

CSC321: Neural Networks. Lecture 13: Learning without a teacher: Autoencoders and Principal Components Analysis. Geoffrey Hinton CSC321: Neural Networks Lecture 13: Learning without a teacher: Autoencoders and Principal Components Analysis Geoffrey Hinton Three problems with backpropagation Where does the supervision come from?

More information

A Computational Approach To Understanding The Response Properties Of Cells In The Visual System

A Computational Approach To Understanding The Response Properties Of Cells In The Visual System A Computational Approach To Understanding The Response Properties Of Cells In The Visual System David C. Noelle Assistant Professor of Computer Science and Psychology Vanderbilt University March 3, 2004

More information

Function-Structure Integration in FreeSurfer

Function-Structure Integration in FreeSurfer Function-Structure Integration in FreeSurfer Outline Function-Structure Integration Function-Structure Registration in FreeSurfer fmri Analysis Preprocessing First-Level Analysis Higher-Level (Group) Analysis

More information

Decoding the Human Motor Cortex

Decoding the Human Motor Cortex Computer Science 229 December 14, 2013 Primary authors: Paul I. Quigley 16, Jack L. Zhu 16 Comment to piq93@stanford.edu, jackzhu@stanford.edu Decoding the Human Motor Cortex Abstract: A human being s

More information

Decomposition methods for explorative neuroimaging. Lars Kai Hansen. DTU Informatics Technical University of Denmark

Decomposition methods for explorative neuroimaging. Lars Kai Hansen. DTU Informatics Technical University of Denmark Decomposition methods for explorative neuroimaging DTU Informatics Technical University of Denmark Co-workers: Morten Mørup, Kristoffer Madsen, Finn Å. Nielsen, Mads Dyrholm, Stephen Strother, Rasmus Olsson,

More information

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University

Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Data Mining Chapter 3: Visualizing and Exploring Data Fall 2011 Ming Li Department of Computer Science and Technology Nanjing University Exploratory data analysis tasks Examine the data, in search of structures

More information

An ICA-Based Multivariate Discretization Algorithm

An ICA-Based Multivariate Discretization Algorithm An ICA-Based Multivariate Discretization Algorithm Ye Kang 1,2, Shanshan Wang 1,2, Xiaoyan Liu 1, Hokyin Lai 1, Huaiqing Wang 1, and Baiqi Miao 2 1 Department of Information Systems, City University of

More information

Dimension reduction : PCA and Clustering

Dimension reduction : PCA and Clustering Dimension reduction : PCA and Clustering By Hanne Jarmer Slides by Christopher Workman Center for Biological Sequence Analysis DTU The DNA Array Analysis Pipeline Array design Probe design Question Experimental

More information

Applying Supervised Learning

Applying Supervised Learning Applying Supervised Learning When to Consider Supervised Learning A supervised learning algorithm takes a known set of input data (the training set) and known responses to the data (output), and trains

More information

INDEPENDENT COMPONENT ANALYSIS WITH QUANTIZING DENSITY ESTIMATORS. Peter Meinicke, Helge Ritter. Neuroinformatics Group University Bielefeld Germany

INDEPENDENT COMPONENT ANALYSIS WITH QUANTIZING DENSITY ESTIMATORS. Peter Meinicke, Helge Ritter. Neuroinformatics Group University Bielefeld Germany INDEPENDENT COMPONENT ANALYSIS WITH QUANTIZING DENSITY ESTIMATORS Peter Meinicke, Helge Ritter Neuroinformatics Group University Bielefeld Germany ABSTRACT We propose an approach to source adaptivity in

More information

CS 521 Data Mining Techniques Instructor: Abdullah Mueen

CS 521 Data Mining Techniques Instructor: Abdullah Mueen CS 521 Data Mining Techniques Instructor: Abdullah Mueen LECTURE 2: DATA TRANSFORMATION AND DIMENSIONALITY REDUCTION Chapter 3: Data Preprocessing Data Preprocessing: An Overview Data Quality Major Tasks

More information

MULTIVARIATE ANALYSES WITH fmri DATA

MULTIVARIATE ANALYSES WITH fmri DATA MULTIVARIATE ANALYSES WITH fmri DATA Sudhir Shankar Raman Translational Neuromodeling Unit (TNU) Institute for Biomedical Engineering University of Zurich & ETH Zurich Motivation Modelling Concepts Learning

More information

PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition

PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition PCA vs. ICA Decomposition of High Resolution SAR Images: Application to Urban Structures Recognition Houda Chaabouni-Chouayakh a and Mihai Datcu a,b a German Aerospace Center (DLR), Oberpfaffenhofen D-82234

More information

Reconstructing visual experiences from brain activity evoked by natural movies

Reconstructing visual experiences from brain activity evoked by natural movies Reconstructing visual experiences from brain activity evoked by natural movies Shinji Nishimoto, An T. Vu, Thomas Naselaris, Yuval Benjamini, Bin Yu, and Jack L. Gallant, Current Biology, 2011 -Yi Gao,

More information

CS 195-5: Machine Learning Problem Set 5

CS 195-5: Machine Learning Problem Set 5 CS 195-5: Machine Learning Problem Set 5 Douglas Lanman dlanman@brown.edu 26 November 26 1 Clustering and Vector Quantization Problem 1 Part 1: In this problem we will apply Vector Quantization (VQ) to

More information

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging

Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging 1 CS 9 Final Project Classification of Subject Motion for Improved Reconstruction of Dynamic Magnetic Resonance Imaging Feiyu Chen Department of Electrical Engineering ABSTRACT Subject motion is a significant

More information

Outline. Data integration/fusion: Previous Work. Data Fusion vs. Data Integration

Outline. Data integration/fusion: Previous Work. Data Fusion vs. Data Integration Outline / data Three Approaches to integration/fusion Prediction Constraints 2 nd Level Fusion Conclusions Approaches to -MRI data integration Data Integration through: (i) Prediction some features of

More information

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy

Basic Introduction to Data Analysis. Block Design Demonstration. Robert Savoy Basic Introduction to Data Analysis Block Design Demonstration Robert Savoy Sample Block Design Experiment Demonstration Use of Visual and Motor Task Separability of Responses Combined Visual and Motor

More information

Analysis of fmri data within Brainvisa Example with the Saccades database

Analysis of fmri data within Brainvisa Example with the Saccades database Analysis of fmri data within Brainvisa Example with the Saccades database 18/11/2009 Note : All the sentences in italic correspond to informations relative to the specific dataset under study TP participants

More information

Batch processing of GLMs

Batch processing of GLMs Batch processing of GLMs 1 Contents Batch processing of GLMs... 1 Contents... 2 Introduction... 3 Installing the project... 4 1. Location of the script project... 4 2. Setting the project as current in

More information

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu

FMA901F: Machine Learning Lecture 3: Linear Models for Regression. Cristian Sminchisescu FMA901F: Machine Learning Lecture 3: Linear Models for Regression Cristian Sminchisescu Machine Learning: Frequentist vs. Bayesian In the frequentist setting, we seek a fixed parameter (vector), with value(s)

More information

LibrarY of Complex ICA Algorithms (LYCIA) Toolbox v1.2. Walk-through

LibrarY of Complex ICA Algorithms (LYCIA) Toolbox v1.2. Walk-through LibrarY of Complex ICA Algorithms (LYCIA) Toolbox v1.2 Walk-through Josselin Dea, Sai Ma, Patrick Sykes and Tülay Adalı Department of CSEE, University of Maryland, Baltimore County, MD 212150 Updated:

More information

DOCUMENT INDEXING USING INDEPENDENT TOPIC EXTRACTION. Yu-Hwan Kim and Byoung-Tak Zhang

DOCUMENT INDEXING USING INDEPENDENT TOPIC EXTRACTION. Yu-Hwan Kim and Byoung-Tak Zhang DOCUMENT INDEXING USING INDEPENDENT TOPIC EXTRACTION Yu-Hwan Kim and Byoung-Tak Zhang School of Computer Science and Engineering Seoul National University Seoul 5-7, Korea yhkim,btzhang bi.snu.ac.kr ABSTRACT

More information

ESTIMATING THE MIXING MATRIX IN UNDERDETERMINED SPARSE COMPONENT ANALYSIS (SCA) USING CONSECUTIVE INDEPENDENT COMPONENT ANALYSIS (ICA)

ESTIMATING THE MIXING MATRIX IN UNDERDETERMINED SPARSE COMPONENT ANALYSIS (SCA) USING CONSECUTIVE INDEPENDENT COMPONENT ANALYSIS (ICA) ESTIMATING THE MIXING MATRIX IN UNDERDETERMINED SPARSE COMPONENT ANALYSIS (SCA) USING CONSECUTIVE INDEPENDENT COMPONENT ANALYSIS (ICA) A. Javanmard 1,P.Pad 1, M. Babaie-Zadeh 1 and C. Jutten 2 1 Advanced

More information

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images

Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 16 Chapter 3 Set Redundancy in Magnetic Resonance Brain Images 3.1 MRI (magnetic resonance imaging) MRI is a technique of measuring physical structure within the human anatomy. Our proposed research focuses

More information

Principal Component Image Interpretation A Logical and Statistical Approach

Principal Component Image Interpretation A Logical and Statistical Approach Principal Component Image Interpretation A Logical and Statistical Approach Md Shahid Latif M.Tech Student, Department of Remote Sensing, Birla Institute of Technology, Mesra Ranchi, Jharkhand-835215 Abstract

More information

Bayesian Inference in fmri Will Penny

Bayesian Inference in fmri Will Penny Bayesian Inference in fmri Will Penny Bayesian Approaches in Neuroscience Karolinska Institutet, Stockholm February 2016 Overview Posterior Probability Maps Hemodynamic Response Functions Population

More information

Journal of Articles in Support of The Null Hypothesis

Journal of Articles in Support of The Null Hypothesis Data Preprocessing Martin M. Monti, PhD UCLA Psychology NITP 2016 Typical (task-based) fmri analysis sequence Image Pre-processing Single Subject Analysis Group Analysis Journal of Articles in Support

More information

Algebraic Iterative Methods for Computed Tomography

Algebraic Iterative Methods for Computed Tomography Algebraic Iterative Methods for Computed Tomography Per Christian Hansen DTU Compute Department of Applied Mathematics and Computer Science Technical University of Denmark Per Christian Hansen Algebraic

More information

Note Set 4: Finite Mixture Models and the EM Algorithm

Note Set 4: Finite Mixture Models and the EM Algorithm Note Set 4: Finite Mixture Models and the EM Algorithm Padhraic Smyth, Department of Computer Science University of California, Irvine Finite Mixture Models A finite mixture model with K components, for

More information

Independent Component Analysis (ICA) in Real and Complex Fourier Space: An Application to Videos and Natural Scenes

Independent Component Analysis (ICA) in Real and Complex Fourier Space: An Application to Videos and Natural Scenes Independent Component Analysis (ICA) in Real and Complex Fourier Space: An Application to Videos and Natural Scenes By Nimit Kumar* and Shantanu Sharma** {nimitk@iitk.ac.in, shsharma@iitk.ac.in} A Project

More information

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization

Slides adapted from Marshall Tappen and Bryan Russell. Algorithms in Nature. Non-negative matrix factorization Slides adapted from Marshall Tappen and Bryan Russell Algorithms in Nature Non-negative matrix factorization Dimensionality Reduction The curse of dimensionality: Too many features makes it difficult to

More information

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask

Machine Learning and Data Mining. Clustering (1): Basics. Kalev Kask Machine Learning and Data Mining Clustering (1): Basics Kalev Kask Unsupervised learning Supervised learning Predict target value ( y ) given features ( x ) Unsupervised learning Understand patterns of

More information

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters

3.5 Filtering with the 2D Fourier Transform Basic Low Pass and High Pass Filtering using 2D DFT Other Low Pass Filters Contents Part I Decomposition and Recovery. Images 1 Filter Banks... 3 1.1 Introduction... 3 1.2 Filter Banks and Multirate Systems... 4 1.2.1 Discrete Fourier Transforms... 5 1.2.2 Modulated Filter Banks...

More information

3. Data Preprocessing. 3.1 Introduction

3. Data Preprocessing. 3.1 Introduction 3. Data Preprocessing Contents of this Chapter 3.1 Introduction 3.2 Data cleaning 3.3 Data integration 3.4 Data transformation 3.5 Data reduction SFU, CMPT 740, 03-3, Martin Ester 84 3.1 Introduction Motivation

More information

- Graphical editing of user montages for convenient data review - Import of user-defined file formats using generic reader

- Graphical editing of user montages for convenient data review - Import of user-defined file formats using generic reader Data review and processing Source montages and 3D whole-head mapping Onset of epileptic seizure with 3D whole-head maps and hemispheric comparison of density spectral arrays (DSA) Graphical display of

More information

2. Data Preprocessing

2. Data Preprocessing 2. Data Preprocessing Contents of this Chapter 2.1 Introduction 2.2 Data cleaning 2.3 Data integration 2.4 Data transformation 2.5 Data reduction Reference: [Han and Kamber 2006, Chapter 2] SFU, CMPT 459

More information

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and

7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and Chapter 7 FACE RECOGNITION USING CURVELET 7.1 INTRODUCTION Wavelet Transform is a popular multiresolution analysis tool in image processing and computer vision, because of its ability to capture localized

More information

Linear Methods for Regression and Shrinkage Methods

Linear Methods for Regression and Shrinkage Methods Linear Methods for Regression and Shrinkage Methods Reference: The Elements of Statistical Learning, by T. Hastie, R. Tibshirani, J. Friedman, Springer 1 Linear Regression Models Least Squares Input vectors

More information

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin

Clustering K-means. Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, Carlos Guestrin Clustering K-means Machine Learning CSEP546 Carlos Guestrin University of Washington February 18, 2014 Carlos Guestrin 2005-2014 1 Clustering images Set of Images [Goldberger et al.] Carlos Guestrin 2005-2014

More information