Ordinary differential equations solving methods

Size: px
Start display at page:

Download "Ordinary differential equations solving methods"

Transcription

1 Radim Hošek, A07237 Ordinary differential equations solving methods Problem: y = y2 (1) y = x y (2) y = sin ( + y 2 ) (3) Where it is possible we try to solve the equations analytically, then we use both implicit and explicit Euler methods to get approximate numeric solutions. To prove the qualities of both methods, we compare them to analytic solution (if available) or to Ode23, which is more accurate (second order) method then Euler methods. 1 Analytic solution 1.1 y = y2 For solving equation (1) we can use a basic method called separation of variables, because the algebra allows us to rewrite the equation in such a way that each of the variables occurs at opposite side of the equation. First we try to get a constant solution derivative of a constant is zero: y = K 0 = K which equals only for K = 0. Now we rewrite the derivative of y as a fraction: dy dx = y2 In the next step we can separate each variable to one side of the equation: Now let s integrate the equation. dy y 2 = dx 1

2 After simple integration we obtain: 1 y dy dx y 2 = = 1 x + C, C R where C stands for both integration constants. The solution, explicitly: x y = 1 Cx, C R Figure 1: Visualisation of the solution depending on C: (C = 4 blue; C = 2 violet; C = 0 linear; C = 2 dark red; C = 4 red). To prove that the function found really solves the equation (1), we can substitute y. Just briefly: 1 Cx + Cx (1 Cx) 2 = 1 (1 Cx) 2 = 0 = 0 (1 Cx) 2 (1 Cx) 2 2

3 We have proved the correctness of our calculation. 1.2 y = x y More, the equation (2) can be solved analytically using the separation of variables. The procedure is the same as in 1.1. y = x y ydy = xdx ydy = xdx y 2 = + C, C R where C stands for a real constant. Remark that not every C gives us a solution. Obviously, after rewriting into the explicit form: y = + x2 + C Figure 2: Visualisation of the solution of (2) depending on C (see the legend). The choice of the positive (or negative) solution depends on initial condition. 3

4 2 Numerical solution - Euler methods Only a small part of all the differential equations is possible to be solved analytically with some of the basic methods. There s no analytic solution for most of first order ordinary differential equations (ODEs), just like for (3), for example. The only way to handle them is to use numerical methods for their solving. 2.1 Explicit Euler method Often called shortly just Euler 1 method, is the simpliest one step method for solving first order ODEs with initial condition. Like other numerical methods it is based on computing the function value in a set of discrete figures of the variable (in our case equidistant). Euler method requires sufficient smoothness of the function which solves the equation. Let s have a sequence of values x, in which we ll calculate the function values, we can mark them x 0, x 1,... x k. For each x n+1 let f(x n+1 ) = f(x n )+hf (x n ). Tildes indicate the calculation with approximate values since the first step. We can see that it s nothing else but the approximation given by the first order Taylor polynomial of the function - here we can see the connection with our request of sufficient smoothness. Let s explain the algorithm using the equation (2) with initial condition y(0) = 1 and the step of the method (the difference between discrete values of x) h = y = x y x 0 = 0 as the problem is set. We can calculate f(x 1 ) as an approximation of f(x 1 ). f(x 1 ) = f(x 0 ) + hf (x 0 ) f(x 1 ) = f(x 1 ) = The derivative of f in x 0 was evaluated by using the initial condition of the equation (2), thus f(x 1 ) = 1. Thanks to having the precise analytic solution, we can compare the error of the method in the first step, which is expressed by the difference f(x 1 ) f(x 1 ), which is approx The value of f(x 1 ) is now our approximation of f(x 1 ) that we use for calculating f( ): f (x 1 ) = x 1 f(x 1 ) = = Leonhard Euler ( ), Swiss mathematician and physicist 4

5 Figure 3: Explicit Euler method in comparison with analytic solution. f( ) = f(x 1 ) + hf (x 1 ) f( ) = f( ) = and so on through the recursion. We want to know whether the method gives us acceptable values it means, that the method converges, which is fulfilled for Euler method. Intuitively it seems that better approximation can be reached by decreasing the step of the method as the picture (Fig.4) shows. It s true with expectation of no rounding errors which is unreal. Hence this proposition is false. We always have to be careful about sufficient number of decimal places to ensure that the rounding error doesn t exceed the error of the method. 5

6 Figure 4: Explicit Euler method using basic step (0.10) and half step (0.05). Can we get more information from our approximation? Consider following problem. y = y (4) y(0) = 1. Solution of this problem is simple (y = e x ), so there s no need to use any numerical method. But its simplicity allows us to demonstrate some more interesting things. We know that the solution is a convex function in R. Can we recognize it at the beginning? Sure we can. After calculating the derivative of (4) we obtain y = y, which, after substitution from itself, gives y = y. (5) Now let s use the initial condition. It says that y is positive at x 0. But also y is positive, which gives us: n 0 : y(x n ) 1 > 0. 6

7 so (according to (5)) n 0, y(x n ) is also positive, the solution of our problem must be convex. Let s see what happens in a single step during the algorithm of Euler method: We approximate the function f at I n = [x n ; x n+1 ] with its tangent in x n. We know that f is strictly increasing and convex at I n, which gives us that x (x n ; x n+1 ] : y (x) > y (x n ) Which means that the Explicit Euler method approximates f at I n with piecewise linear function f in such a way, that f < f. As it holds for all n 0, when considering the very first interval [x 0 ; x 1 ], we know that f(x 1 ) f(x 1 ), so in each next step we start the approximation even lower and x (x 0 ; + ) : f(x) < f(x) Thus, explicit Euler method gives us lower approximation of the solution. Figure 5: Demonstration of output given by explicit Euler method for a convex solution - problem (4). 2.2 Implicit Euler method Implicit Euler method has almost the same algorithm but in the approximation at I n = [x n ; x n+1 ] we don t use the derivative at x n, but at x n+1. This slight change causes a big problem let s see the step of recursion in solving the equation (2) with initial condition y(0) = 1. f (x n+1 ) = x n+1 f(x n+1 ) f(x n+1 ) = f(x n ) + hf (x n+1 ) 7

8 Figure 6: Implicit Euler method in comparison with analytic solution. After substitution from the first equation to the second one: f(x n+1 ) = f(x n ) + h x n+1 f(x n+1 ) Where h is the given step of the method, f(xn ) is the value (known from the previous step). But there s a problem left: we have to calculate f(x n+1 ) as a root of an implicit function. This is made in the appendant programme by using original MATLAB function fzero which looks for a root close to previous value f(x n ). This is what makes this method inexpedient looking for roots of implicit function in each step rapidly elongates the time necessary for the calculation. 2.3 Euler methods in use On previous pages we showed the algorithm of both methods in analytically solvable problems, which has given us sufficient knowledge to handle the equation (3): y = sin ( + y 2 ) The two following figures show this ODE with following attributes: step of the method h = 0.005, beginning of the interval x 0 = 10 and initial conditions varying from -1 to 1. Axes: horizontal x, vertical y. 8

9 Figures 7 & 8: Both Euler methods (explicit in green, implicit in blue) in use for solving equation (3) 9

10 Even if the two previous pictures look pretty the same, it gives us no information about the precisity. As (3) can t be solved analytically, we ll use for our comparison the second order ode23 method, which we ll consider being a precise solution to establish the absolute value of the error of each method. Figure 9: Comparison of both methods solving (3) with initial condition y( 10) = 0. We can see that, in this case, implicit method gives us more accurate values especially in a greater distance from the initial value. However, we often need the approximation in a very close neighbourhood of the intial value, where both these methods are comparable. 10

11 3 Conclusion Euler methods are suitable for solving ODEs with sufficiently smooth solution. It is impossible to say in general which of both methods is better for solving ODEs. The simplicity of the explicit EM predetermines it for wider use, because where eem collapses (due to unfulfilling the condition of smoothness, for example), iem doesn t work either. For numerical solving of ODEs especially MATLAB contains a lot of much better algorithms than EMs. As for its help ode45 is recommended to be the first try for solving most of the problems. ode23 and ode45 are both one step methods based on Runge-Kutta formulas. The undiscutable advantage of EMs is their simplicity, which allows us to observe what s happening during the algorithm. EMs are great when we need to know just rough shape of the solution and don t insist on high accuracy. 11

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

4 Visualization and. Approximation

4 Visualization and. Approximation 4 Visualization and Approximation b A slope field for the differential equation y tan(x + y) tan(x) tan(y). It is not always possible to write down an explicit formula for the solution to a differential

More information

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows)

The Bisection Method versus Newton s Method in Maple (Classic Version for Windows) The Bisection Method versus (Classic Version for Windows) Author: Barbara Forrest Contact: baforres@uwaterloo.ca Copyrighted/NOT FOR RESALE version 1.1 Contents 1 Objectives for this Lab i 2 Approximate

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Euler s Methods (a family of Runge- Ku9a methods)

Euler s Methods (a family of Runge- Ku9a methods) Euler s Methods (a family of Runge- Ku9a methods) ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an

More information

2.9 Linear Approximations and Differentials

2.9 Linear Approximations and Differentials 2.9 Linear Approximations and Differentials 2.9.1 Linear Approximation Consider the following graph, Recall that this is the tangent line at x = a. We had the following definition, f (a) = lim x a f(x)

More information

over The idea is to construct an algorithm to solve the IVP ODE (9.1)

over The idea is to construct an algorithm to solve the IVP ODE (9.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (9.1) over To obtain the solution point we can use the fundamental theorem

More information

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab

ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab ChE 400: Applied Chemical Engineering Calculations Tutorial 6: Numerical Solution of ODE Using Excel and Matlab Tutorial 6: Numerical Solution of ODE Gerardine G. Botte This handout contains information

More information

Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer

Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer Approximate Solutions to Differential Equations Slope Fields (graphical) and Euler s Method (numeric) by Dave Slomer Leonhard Euler was a great Swiss mathematician. The base of the natural logarithm function,

More information

Homework Set #2-3, Math 475B

Homework Set #2-3, Math 475B Homework Set #2-3, Math 475B Part I: Matlab In the last semester you learned a number of essential features of MATLAB. 1. In this instance, you will learn to make 3D plots and contour plots of z = f(x,

More information

Mathematics for chemical engineers

Mathematics for chemical engineers Mathematics for chemical engineers Drahoslava Janovská Department of mathematics Winter semester 2013-2014 Numerical solution of ordinary differential equations Initial value problem Outline 1 Introduction

More information

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10

x n x n stepnumber k order r error constant C r+1 1/2 5/12 3/8 251/720 abs. stab. interval (α,0) /11-3/10 MATH 573 LECTURE NOTES 77 13.8. Predictor-corrector methods. We consider the Adams methods, obtained from the formula xn+1 xn+1 y(x n+1 y(x n ) = y (x)dx = f(x,y(x))dx x n x n by replacing f by an interpolating

More information

1

1 Zeros&asymptotes Example 1 In an early version of this activity I began with a sequence of simple examples (parabolas and cubics) working gradually up to the main idea. But now I think the best strategy

More information

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions.

2/22/ Transformations but first 1.3 Recap. Section Objectives: Students will know how to analyze graphs of functions. 1 2 3 4 1.4 Transformations but first 1.3 Recap Section Objectives: Students will know how to analyze graphs of functions. 5 Recap of Important information 1.2 Functions and their Graphs Vertical line

More information

Lesson 10 Rational Functions and Equations

Lesson 10 Rational Functions and Equations Lesson 10 Rational Functions and Equations Lesson 10 Rational Functions and Equations In this lesson, you will embark on a study of rational functions. Rational functions look different because they are

More information

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations

Mathematical Methods and Modeling Laboratory class. Numerical Integration of Ordinary Differential Equations Mathematical Methods and Modeling Laboratory class Numerical Integration of Ordinary Differential Equations Exact Solutions of ODEs Cauchy s Initial Value Problem in normal form: Recall: if f is locally

More information

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka.

(Part - 1) P. Sam Johnson. April 14, Numerical Solution of. Ordinary Differential Equations. (Part - 1) Sam Johnson. NIT Karnataka. P. April 14, 2015 1/51 Overview We discuss the following important methods of solving ordinary differential equations of first / second order. Picard s method of successive approximations (Method of successive

More information

Inverse and Implicit functions

Inverse and Implicit functions CHAPTER 3 Inverse and Implicit functions. Inverse Functions and Coordinate Changes Let U R d be a domain. Theorem. (Inverse function theorem). If ϕ : U R d is differentiable at a and Dϕ a is invertible,

More information

Lecture 2 September 3

Lecture 2 September 3 EE 381V: Large Scale Optimization Fall 2012 Lecture 2 September 3 Lecturer: Caramanis & Sanghavi Scribe: Hongbo Si, Qiaoyang Ye 2.1 Overview of the last Lecture The focus of the last lecture was to give

More information

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits

ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits Solving ODEs General Stuff ODEs occur quite often in physics and astrophysics: Wave Equation in 1-D stellar structure equations hydrostatic equation in atmospheres orbits need workhorse solvers to deal

More information

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives.

OpenGL Graphics System. 2D Graphics Primitives. Drawing 2D Graphics Primitives. 2D Graphics Primitives. Mathematical 2D Primitives. D Graphics Primitives Eye sees Displays - CRT/LCD Frame buffer - Addressable pixel array (D) Graphics processor s main function is to map application model (D) by projection on to D primitives: points,

More information

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations)

Module 2: Single Step Methods Lecture 4: The Euler Method. The Lecture Contains: The Euler Method. Euler's Method (Analytical Interpretations) The Lecture Contains: The Euler Method Euler's Method (Analytical Interpretations) An Analytical Example file:///g /Numerical_solutions/lecture4/4_1.htm[8/26/2011 11:14:40 AM] We shall now describe methods

More information

Euler s Method for Approximating Solution Curves

Euler s Method for Approximating Solution Curves Euler s Method for Approximating Solution Curves As you may have begun to suspect at this point, time constraints will allow us to learn only a few of the many known methods for solving differential equations.

More information

The Addition Formulas in Trigonometry. Scott Fallstrom Faculty Director, Math Learning Center

The Addition Formulas in Trigonometry. Scott Fallstrom Faculty Director, Math Learning Center The Addition Formulas in Trigonometry Scott Fallstrom Faculty Director, Math Learning Center Why not the usual? In Mathematics, we know that the distributive property allows 7(x + 5) = 7x + 35 With derivatives,

More information

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes

Introduction to Programming for Engineers Spring Final Examination. May 10, Questions, 170 minutes Final Examination May 10, 2011 75 Questions, 170 minutes Notes: 1. Before you begin, please check that your exam has 28 pages (including this one). 2. Write your name and student ID number clearly on your

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material

MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #11 Sakai Web Project Material MTH Calculus II Essex County College Division of Mathematics and Physics Lecture Notes # Sakai Web Project Material Introduction - - 0 - Figure : Graph of y sin ( x y ) = x cos (x + y) with red tangent

More information

Dynamics and Vibrations Mupad tutorial

Dynamics and Vibrations Mupad tutorial Dynamics and Vibrations Mupad tutorial School of Engineering Brown University ENGN40 will be using Matlab Live Scripts instead of Mupad. You can find information about Live Scripts in the ENGN40 MATLAB

More information

Exponential and Logarithmic Functions. College Algebra

Exponential and Logarithmic Functions. College Algebra Exponential and Logarithmic Functions College Algebra Exponential Functions Suppose you inherit $10,000. You decide to invest in in an account paying 3% interest compounded continuously. How can you calculate

More information

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn

Today s class. Roots of equation Finish up incremental search Open methods. Numerical Methods, Fall 2011 Lecture 5. Prof. Jinbo Bi CSE, UConn Today s class Roots of equation Finish up incremental search Open methods 1 False Position Method Although the interval [a,b] where the root becomes iteratively closer with the false position method, unlike

More information

= f (a, b) + (hf x + kf y ) (a,b) +

= f (a, b) + (hf x + kf y ) (a,b) + Chapter 14 Multiple Integrals 1 Double Integrals, Iterated Integrals, Cross-sections 2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

Generating Functions

Generating Functions 6.04/8.06J Mathematics for Computer Science Srini Devadas and Eric Lehman April 7, 005 Lecture Notes Generating Functions Generating functions are one of the most surprising, useful, and clever inventions

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Review Initial Value Problems Euler s Method Summary

Review Initial Value Problems Euler s Method Summary THE EULER METHOD P.V. Johnson School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 INITIAL VALUE PROBLEMS The Problem Posing a Problem 3 EULER S METHOD Method Errors 4 SUMMARY OUTLINE 1 REVIEW 2 INITIAL

More information

Computer Simulations

Computer Simulations Computer Simulations A practical approach to simulation Semra Gündüç gunduc@ankara.edu.tr Ankara University Faculty of Engineering, Department of Computer Engineering 2014-2015 Spring Term Ankara University

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop

AXIOMS OF AN IMPERATIVE LANGUAGE PARTIAL CORRECTNESS WEAK AND STRONG CONDITIONS. THE AXIOM FOR nop AXIOMS OF AN IMPERATIVE LANGUAGE We will use the same language, with the same abstract syntax that we used for operational semantics. However, we will only be concerned with the commands, since the language

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

Algebra 2 Semester 1 (#2221)

Algebra 2 Semester 1 (#2221) Instructional Materials for WCSD Math Common Finals The Instructional Materials are for student and teacher use and are aligned to the 2016-2017 Course Guides for the following course: Algebra 2 Semester

More information

Exercises for a Numerical Methods Course

Exercises for a Numerical Methods Course Exercises for a Numerical Methods Course Brian Heinold Department of Mathematics and Computer Science Mount St. Mary s University November 18, 2017 1 / 73 About the class Mix of Math and CS students, mostly

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable:

ODE IVP. An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: Euler s Methods ODE IVP An Ordinary Differential Equation (ODE) is an equation that contains a function having one independent variable: The equation is coupled with an initial value/condition (i.e., value

More information

CS321 Introduction To Numerical Methods

CS321 Introduction To Numerical Methods CS3 Introduction To Numerical Methods Fuhua (Frank) Cheng Department of Computer Science University of Kentucky Lexington KY 456-46 - - Table of Contents Errors and Number Representations 3 Error Types

More information

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX

CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX CALCULUS WITH PHYSICS APPLICATIONS - FUNCTIONALITY for the TiNspire CAS CX www.tinspireapps.com Physics Apps Center of Mass (2D) 1. Moment of Mass about x and y-axis Mass of Lamina - f(x) Mass of Lamina

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly.

Exam 1 Review. MATH Intuitive Calculus Fall Name:. Show your reasoning. Use standard notation correctly. MATH 11012 Intuitive Calculus Fall 2012 Name:. Exam 1 Review Show your reasoning. Use standard notation correctly. 1. Consider the function f depicted below. y 1 1 x (a) Find each of the following (or

More information

A-SSE.1.1, A-SSE.1.2-

A-SSE.1.1, A-SSE.1.2- Putnam County Schools Curriculum Map Algebra 1 2016-2017 Module: 4 Quadratic and Exponential Functions Instructional Window: January 9-February 17 Assessment Window: February 20 March 3 MAFS Standards

More information

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS

CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS CALCULUS MADE EASY - FUNCTIONALITY for the TiNspire CAS www.tinspireapps.com Functions READ: Linear Functions Find Slope Find y=mx+b All-in-one-Function Explorer Evaluate Function Find Domain of f(x) Find

More information

SHOW ALL NEEDED WORK IN YOUR NOTEBOOK.

SHOW ALL NEEDED WORK IN YOUR NOTEBOOK. DO NOW: 1 3: NO CALCULATORS 1. Consider the function f () x the value of f (4.1)? SHOW ALL NEEDED WORK IN YOUR NOTEBOOK. x. We all know that f (4), but without a calculator, what is . The approximate value

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

Lecture 8: Euler s Methods

Lecture 8: Euler s Methods Lecture 8: Euler s Methods Forward Euler Method The formula for the forward Euler method is given by equation (8.2) in the lecture note for week 8, as y i+1 = y i + f(x i, y i )h. (1) where f(x i, y i

More information

Euler s Method with Python

Euler s Method with Python Euler s Method with Python Intro. to Differential Equations October 23, 2017 1 Euler s Method with Python 1.1 Euler s Method We first recall Euler s method for numerically approximating the solution of

More information

Lesson 11 Rational Functions

Lesson 11 Rational Functions Lesson 11 Rational Functions In this lesson, you will embark on a study of rational functions. These may be unlike any function you have ever seen. Rational functions look different because they are in

More information

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations

COURSE: NUMERICAL ANALYSIS. LESSON: Methods for Solving Non-Linear Equations COURSE: NUMERICAL ANALYSIS LESSON: Methods for Solving Non-Linear Equations Lesson Developer: RAJNI ARORA COLLEGE/DEPARTMENT: Department of Mathematics, University of Delhi Page No. 1 Contents 1. LEARNING

More information

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier

Calculus I Review Handout 1.3 Introduction to Calculus - Limits. by Kevin M. Chevalier Calculus I Review Handout 1.3 Introduction to Calculus - Limits by Kevin M. Chevalier We are now going to dive into Calculus I as we take a look at the it process. While precalculus covered more static

More information

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners)

Section 3.7 Notes. Rational Functions. is a rational function. The graph of every rational function is smooth (no sharp corners) Section.7 Notes Rational Functions Introduction Definition A rational function is fraction of two polynomials. For example, f(x) = x x + x 5 Properties of Rational Graphs is a rational function. The graph

More information

Math 225 Scientific Computing II Outline of Lectures

Math 225 Scientific Computing II Outline of Lectures Math 225 Scientific Computing II Outline of Lectures Spring Semester 2003 I. Interpolating polynomials Lagrange formulation of interpolating polynomial Uniqueness of interpolating polynomial of degree

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving

f( x ), or a solution to the equation f( x) 0. You are already familiar with ways of solving The Bisection Method and Newton s Method. If f( x ) a function, then a number r for which f( r) 0 is called a zero or a root of the function f( x ), or a solution to the equation f( x) 0. You are already

More information

MEI GeoGebra Tasks for AS Pure

MEI GeoGebra Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x 2 4x + 1 2. Add a line, e.g. y = x 3 3. Use the Intersect tool to find the points of intersection of

More information

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a).

We can conclude that if f is differentiable in an interval containing a, then. f(x) L(x) = f(a) + f (a)(x a). = sin( x) = 8 Lecture :Linear Approximations and Differentials Consider a point on a smooth curve y = f(x), say P = (a, f(a)), If we draw a tangent line to the curve at the point P, we can see from the

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA:

Exam 3 SCORE. MA 114 Exam 3 Spring Section and/or TA: MA 114 Exam 3 Spring 217 Exam 3 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test.

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator.

Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator. Investigating Transformations of Quadratics Open Google Chrome. Go to desmos.com, and click the big red button labelled Launch Calculator. Optional: You can create an account or sign into Desmos. This

More information

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral.

= w. w u. u ; u + w. x x. z z. y y. v + w. . Remark. The formula stated above is very important in the theory of. surface integral. 1 Chain rules 2 Directional derivative 3 Gradient Vector Field 4 Most Rapid Increase 5 Implicit Function Theorem, Implicit Differentiation 6 Lagrange Multiplier 7 Second Derivative Test Theorem Suppose

More information

Name: Date: 1. Match the equation with its graph. Page 1

Name: Date: 1. Match the equation with its graph. Page 1 Name: Date: 1. Match the equation with its graph. y 6x A) C) Page 1 D) E) Page . Match the equation with its graph. ( x3) ( y3) A) C) Page 3 D) E) Page 4 3. Match the equation with its graph. ( x ) y 1

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS480: Computer Graphics Curves and Surfaces Sung-Eui Yoon ( 윤성의 ) Course URL: http://jupiter.kaist.ac.kr/~sungeui/cg Today s Topics Surface representations Smooth curves Subdivision 2 Smooth Curves and

More information

The Straight Line. m is undefined. Use. Show that mab

The Straight Line. m is undefined. Use. Show that mab The Straight Line What is the gradient of a horizontal line? What is the equation of a horizontal line? So the equation of the x-axis is? What is the gradient of a vertical line? What is the equation of

More information

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53

Homework: Study 6.1 # 1, 5, 7, 13, 25, 19; 3, 17, 27, 53 January, 7 Goals:. Remember that the area under a curve is the sum of the areas of an infinite number of rectangles. Understand the approach to finding the area between curves.. Be able to identify the

More information

Examples from Section 7.1: Integration by Parts Page 1

Examples from Section 7.1: Integration by Parts Page 1 Examples from Section 7.: Integration by Parts Page Questions Example Determine x cos x dx. Example e θ cos θ dθ Example You may wonder why we do not add a constant at the point where we integrate for

More information

Finite difference methods

Finite difference methods Finite difference methods Siltanen/Railo/Kaarnioja Spring 8 Applications of matrix computations Applications of matrix computations Finite difference methods Spring 8 / Introduction Finite difference methods

More information

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient

Supplemental 1.5. Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Supplemental 1.5 Objectives Interval Notation Increasing & Decreasing Functions Average Rate of Change Difference Quotient Interval Notation Many times in this class we will only want to talk about what

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS 1.5 Exponential Functions In this section, we will learn about: Exponential functions and their applications. EXPONENTIAL FUNCTIONS The function f(x) = 2 x is

More information

Functions. Edexcel GCE. Core Mathematics C3

Functions. Edexcel GCE. Core Mathematics C3 Edexcel GCE Core Mathematics C Functions Materials required for examination Mathematical Formulae (Green) Items included with question papers Nil Advice to Candidates You must ensure that your answers

More information

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method

A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method A Study on Numerical Exact Solution of Euler, Improved Euler and Runge - Kutta Method Mrs. P. Sampoornam P.K.R Arts College for Women, Gobichettipalayam Abstract: In this paper, I will discuss the Runge

More information

Hot X: Algebra Exposed

Hot X: Algebra Exposed Hot X: Algebra Exposed Solution Guide for Chapter 3 Here are the solutions for the Doing the Math exercises in Hot X: Algebra Exposed! DTM from p.93-95 2. Our units aren t consistent, and since the answer

More information

Graphs of Exponential

Graphs of Exponential Graphs of Exponential Functions By: OpenStaxCollege As we discussed in the previous section, exponential functions are used for many realworld applications such as finance, forensics, computer science,

More information

FUNCTIONS AND MODELS

FUNCTIONS AND MODELS 1 FUNCTIONS AND MODELS FUNCTIONS AND MODELS In this section, we assume that you have access to a graphing calculator or a computer with graphing software. FUNCTIONS AND MODELS 1.4 Graphing Calculators

More information

Limits at Infinity

Limits at Infinity Limits at Infinity 9-6-08 In this section, I ll discuss the it of a function f() as goes to and. We ll see that this is related to horizontal asyptotes of a graph. It s natural to discuss vertical asymptotes

More information

Outline. Numerical Analysis Basics. Some Higher-Level Languages. Programming Languages. BASIC and VBA MATLAB

Outline. Numerical Analysis Basics. Some Higher-Level Languages. Programming Languages. BASIC and VBA MATLAB umerical Analysis Basics Larry Caretto Mechanical Engineering 39 umerical Analysis of Engineering Systems February 5, 214 Outline Programming Languages Binary umbers and Data Types Limits on the size and

More information

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012

Problem #3 Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page Mark Sparks 2012 Problem # Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 490 Mark Sparks 01 Finding Anti-derivatives of Polynomial-Type Functions If you had to explain to someone how to find

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B

MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3. Practice Paper C3-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS METHODS FOR ADVANCED MATHEMATICS, C3 Practice Paper C3-B Additional materials: Answer booklet/paper Graph paper List of formulae (MF)

More information

STEP Support Programme. Assignment 13

STEP Support Programme. Assignment 13 STEP Support Programme Assignment 13 Warm-up You probably already know that for a graph with gradient dy : if dy > 0 then the graph is increasing ; if dy < 0 then the graph is decreasing. The sign of the

More information

Application 2.4 Implementing Euler's Method

Application 2.4 Implementing Euler's Method Application 2.4 Implementing Euler's Method One's understanding of a numerical algorithm is sharpened by considering its implementation in the form of a calculator or computer program. Figure 2.4.13 in

More information

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods

Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods Math 133A, September 10: Numerical Methods (Euler & Runge-Kutta) Section 1: Numerical Methods We have seen examples of first-order differential equations which can, by one method of another, be solved

More information

y= sin( x) y= cos( x)

y= sin( x) y= cos( x) . The graphs of sin(x) and cos(x). Now I am going to define the two basic trig functions: sin(x) and cos(x). Study the diagram at the right. The circle has radius. The arm OP starts at the positive horizontal

More information

Space Filling Curves and Hierarchical Basis. Klaus Speer

Space Filling Curves and Hierarchical Basis. Klaus Speer Space Filling Curves and Hierarchical Basis Klaus Speer Abstract Real world phenomena can be best described using differential equations. After linearisation we have to deal with huge linear systems of

More information

1 Making Decisions in Arduino Programs

1 Making Decisions in Arduino Programs ME 120: If-then-else structures in Arduino October 11, 2018 Gerald Recktenwald gerry@pdx.edu 1 Making Decisions in Arduino Programs It s incredibly useful that computer programs can respond to changing

More information

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration

AP Calculus. Slide 1 / 213 Slide 2 / 213. Slide 3 / 213. Slide 4 / 213. Slide 4 (Answer) / 213 Slide 5 / 213. Derivatives. Derivatives Exploration Slide 1 / 213 Slide 2 / 213 AP Calculus Derivatives 2015-11-03 www.njctl.org Slide 3 / 213 Table of Contents Slide 4 / 213 Rate of Change Slope of a Curve (Instantaneous ROC) Derivative Rules: Power, Constant,

More information

IB HL Mathematical Exploration

IB HL Mathematical Exploration IB HL Mathematical Exploration Modelling the surface area of a ceramic pot Personal code: glt101 Table of Contents Introduction... 1 Rationale... 1 Aim... 1-2 Exploring the formula for surface area...

More information

1.00 Lecture 25. Root Finding

1.00 Lecture 25. Root Finding 1.00 Lecture 25 Numerical Methods: Root Finding Reading for next time: Big Java: section 19.4 Root Finding Two cases: One dimensional function: f(x)= 0 Systems of equations (F(X)= 0), where X and 0 are

More information

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e.,

Convexity. 1 X i is convex. = b is a hyperplane in R n, and is denoted H(p, b) i.e., Convexity We ll assume throughout, without always saying so, that we re in the finite-dimensional Euclidean vector space R n, although sometimes, for statements that hold in any vector space, we ll say

More information

MA 1128: Lecture 02 1/22/2018

MA 1128: Lecture 02 1/22/2018 MA 1128: Lecture 02 1/22/2018 Exponents Scientific Notation 1 Exponents Exponents are used to indicate how many copies of a number are to be multiplied together. For example, I like to deal with the signs

More information

over The idea is to construct an algorithm to solve the IVP ODE (8.1)

over The idea is to construct an algorithm to solve the IVP ODE (8.1) Runge- Ku(a Methods Review of Heun s Method (Deriva:on from Integra:on) The idea is to construct an algorithm to solve the IVP ODE (8.1) over To obtain the solution point we can use the fundamental theorem

More information

Lecture 3: Some Strange Properties of Fractal Curves

Lecture 3: Some Strange Properties of Fractal Curves Lecture 3: Some Strange Properties of Fractal Curves I have been a stranger in a strange land. Exodus 2:22 1. Fractal Strangeness Fractals have a look and feel that is very different from ordinary curves.

More information