Limits at Infinity

Size: px
Start display at page:

Download "Limits at Infinity"

Transcription

1 Limits at Infinity In this section, I ll discuss the it of a function f() as goes to and. We ll see that this is related to horizontal asyptotes of a graph. It s natural to discuss vertical asymptotes as well, and I ll eplain how these are connected to values of where the it of f() becomes infinite. Let s start with an eample. Here is the graph of f() = + : The graph approaches the horizontal line y = as it goes out to the left and right. You write: + = and + =. Here s a rough definition. If the graph of f() approaches y = L as you plug in larger and larger positive values for, then f() = L. Likewise, if the graph of f() approaches y = L as you plug in larger and larger negative values for, then f() = L. As a numerical eample, consider f() = +. If you set = 06, you get f() That s pretty close to, isn t it? Here are the precise definitions. They re analogous to the ǫ-δ definitions of ordinary its. Definition. f() = L means: For every ǫ > 0, there is a number M, such that: If > M, then ǫ > f() L. (You can give a similar definition for f() = L.)

2 The definition says that I can make f() as close to L as I want, by making sufficiently large. L M As the picture shows, values of greater than M produce values of f() that lie within ǫ of L. 0+4 Eample. Prove that 5+ =. Scratch work. I ll start by working backwards from ǫ to M. ǫ > = (0+4) (5+) 5+ = 5+ = 5+. (I can remove the absolute value bars, since means will be large and positive.) So 5+ > ǫ 5 > ǫ > ( ) 5 ǫ This suggests that I should take M = ( ) 5 ǫ. The reason for doing things this way is that you may not prove something by assuming what you want to prove. So the working backward part isn t by itself a valid proof: It is possible that some of the steps aren t reversible. You can ensure that everything works properly by writing the proof in the correct order, from assumptions to conclusion. The real proof. Let ǫ > 0. Take M = 5 Then if > M, I have ( ) ǫ. > 5 5 > ǫ ( ) ǫ 5+ > ǫ

3 Note that since ǫ > 0, the last inequality implies 5+ > 0. So ǫ > 5+ ǫ > 5+ Dividing by 5+ in the first step is okay, because 5+ > 0 (so the inequality doesn t flip ). Likewise, the second step is okay, because 5+ > 0, so is positive, so I can add the absolute values. 5+ Continuing, I have ǫ > 5+ = This shows that 5+ =. Most of the properties of ordinary its hold for its as ±. Theorem. (a) (b) If k is a number, (c) (d) If g() 0, then (f()+g()) = f()+ g(). (k f()) = k f(). (f() g()) = ( f()) ( g()). f() g() = f() g(). The statements mean that if the its on the right side of the equation are defined, then the its on the left sides are defined, and the two sides are equal. Proof. I ll prove (a) by way of eample. As in most it proofs, you discover what to do by working backward ( on scratch paper ). Then you write the real proof forward. I ll omit the scratch work in this case. A reminder about something before I start: I ll use the Triangle Inequality, which says that if p and q are real numbers, then p + q p+q. Suppose that I want to show that f() = A and g() = B. (f()+g()) = A+B. Let ǫ > 0. Since f() = A, I can find a number M such that if > M, then ǫ > f() A. Since g() = A, I can find a number N such that if > N, then ǫ > g() B. 3

4 Suppose that > ma(m,n). This means that > M and > N, so both of the ǫ inequalities hold. Hence, adding the inequalities, I get ǫ = ǫ+ ǫ > f() A + g() B (f() A)+(g() B) = (f()+g()) (A+B) (I used the Triangle Inequality in the step.) This proves that (f()+g()) = f()+ g(). Similar ideas are used in the proofs of (b), (c), and (d), though in some cases the algebra involved is a little trickier. Here is a property that I ll use frequently. Proposition. Let k > 0. Then k = 0. Proof. Let ǫ > 0. I must find a number M such that if > M and is defined, then k ǫ > k 0 = k. Set M = ǫ /k. Note that ǫ/k is defined and positive, since ǫ > 0 and k > 0. Suppose > M. Since M is positive, so is, so is defined and positive. k I have > M = ǫ /k k > ǫ ǫ > k Hence, k = 0. Is it true that ǫ > k ǫ > k k = 0? It is provided that k is defined. What could go wrong? Suppose k =. Then is / undefined, since / is not defined if is negative and means that is taking on negative values. On the other hand, 4 = 0. 4

5 Here are some eamples of its at + and Eample. (a) Compute (b) Compute (c) Compute 3/ 4+ = 0. (a) In its at infinity involving powers of, the rule of thumb is that the biggest powers dominate. In this case, the biggest powers on the top and bottom are the 3 s. Therefore, the it in (a) behaves almost like = 5. So you epect the answer to be 5. On way to see this formally is to divide the top and bottom by 3 : = Now as +, Hence, a number a number positive power something big = 0. Here s a picture of : = = (b) =. + In this case, the 5 on top beats out the puny on the bottom. 5

6 By the way, it would be correct to say this it diverges. However, it s more informative to say how it diverges. In this case, the function becomes large and negative, so you write for the + it. (c) 7 3/ 4+ = 0. Here the 3/ on the bottom beats out the on the top. Suppose that f() = L. I noted above that this means that the graph of f() approaches the line y = L as you move to the right. Likewise, suppose f() = L. This means that the graph of f() approaches the line y = L as you move to the left. In these situations, y = L is a horizontal asymptote for the graph of f(). Not all graphs have horizontal asymptotes for eample, y = goes to as and as. You can check for the presence of horizontal asymptotes by computing f() and f() and seeing if either is a number. Eample. Find the horizontal asymptotes (if any) of y = +. + = 0 and + = 0. Therefore, y = 0 is a horizontal asymptote for the graph at + and at. The graph is shown below: Eample. Find the horizontal asymptotes of f() = +4. The it at + works without any surprises. The highest power on the top and the bottom is (since looks like ), so divide the top and bottom by : +4 = +4 6 = + 4 = =.

7 However, the it at is a little tricky! Here s the computation: +4 = +4 = + 4 = =. Where did that negative sign come from? Look at the bottom, which was +4. is going to, so is taking on negative values. Now is positive, so +4 is negative. When you push the into the square root, you must leave a negative sign outside. Otherwise, you d have junk, a positive thing. Alternatively, to think of it the other way, =. So if is negative (because ), I have = =. Thus, this is a case where it matters that is going to, as opposed to +. Here s the graph: Howdologarithmsandeponentialsbehaveas + or? Therelevantfactsaresummarized below. lna = + and lna = if a > ea = + and ea = 0 if a > 0. I ve graphed y = ln (on the left) and y = e 3 (on the right) below; you can see that the pictures are consistent with the formulas above

8 For eample, the graph of y = ln goes downward asymptotically along the y-ais from the right. This confirms that 0 + ln =. Likewise, the graph of e 3 rises sharply as you go to the right; this confirms that e3 = +. Note that if a < 0 in e a, the its are reversed. Specifically, ea = 0 and ea = + if a < 0. Eample. (a) Compute (b) Compute (c) Compute (a) (b) (c) ln.37 and 0 +ln.37. e6 and e6. e and e. ln.37 = + and e6 = + and e = 0 and 0 +ln.37 =. e6 = 0. e = +. Infinity can also appear in its in connection with vertical asymptotes. I ll say that the graph of a function y = f() has a vertical asymptote at = a if at least one of the its f() or a + f() is either + or. a Eample. The graph below has a vertical asymptote at = a: What are a + f() and a f()? =a 8

9 f() = while a + f() = +. a In general, you might suspect the presence of a vertical asymptote at an isolated value of for which f() is undefined. To confirm your suspicion, you need to compute the left- and right-hand its at the point. Eample. Locate the vertical asymptotes of f() = and sketch the graph near the asymptotes. ( )( ) f() is undefined at = and at =. I ll check for vertical asymptotes by computing the left- and right-hand its at = and at =. I ll work through the first one carefully. + ( )( ) =. To see this, consider numbers close to but to the right of. Then will be positive, while will be negative. For eample, if =., then = 0. while = 0.9. All together, the fraction ( )( ) will be negative. But plugging = into the fraction gives. Since the result is negative 0 and infinite, it must be. You can see numerical evidence for this by plugging (e.g.) =.00 into (.00 )(.00 ) 00. This is a large negative number, which suggests that the it is. In similar fashion, ( )( ) = +, Here s the graph: 40 + ( )( ) = +, ( )( ) =. ( )( )

10 Eample. f() = is undefined at =. Does it have a vertical asymptote at =? The fact that a function is undefined at an isolated value does not imply that it has a vertical asymptote there. The graph of f() = looks like this: y You can see this by noting that, for, = ( )(+) = +. Thus, the graph is the same as the graph of the line y = + ecept at =, where there s a hole. In other words, = ( )(+) = (+) =. In particular, the graph does not have a vertical asymptote at =. c 08 by Bruce Ikenaga 0

Outputs. Inputs. the point where the graph starts, as we ll see on Example 1.

Outputs. Inputs. the point where the graph starts, as we ll see on Example 1. We ve seen how to work with functions algebraically, by finding domains as well as function values. In this set of notes we ll be working with functions graphically, and we ll see how to find the domain

More information

Limits. f(x) and lim. g(x) g(x)

Limits. f(x) and lim. g(x) g(x) Limits Limit Laws Suppose c is constant, n is a positive integer, and f() and g() both eist. Then,. [f() + g()] = f() + g() 2. [f() g()] = f() g() [ ] 3. [c f()] = c f() [ ] [ ] 4. [f() g()] = f() g()

More information

Limits and Derivatives (Review of Math 249 or 251)

Limits and Derivatives (Review of Math 249 or 251) Chapter 3 Limits and Derivatives (Review of Math 249 or 251) 3.1 Overview This is the first of two chapters reviewing material from calculus; its and derivatives are discussed in this chapter, and integrals

More information

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation

Example 1: Use the graph of the function f given below to find the following. a. Find the domain of f and list your answer in interval notation When working with the graph of a function, the inputs (the elements of the domain) are always the values on the horizontal ais (-ais) and the outputs (the elements of the range) are always the values on

More information

Topic 2 Transformations of Functions

Topic 2 Transformations of Functions Week Topic Transformations of Functions Week Topic Transformations of Functions This topic can be a little trick, especiall when one problem has several transformations. We re going to work through each

More information

Lesson 6a Exponents and Rational Functions

Lesson 6a Exponents and Rational Functions Lesson 6a Eponents and Rational Functions In this lesson, we put quadratics aside for the most part (not entirely) in this lesson and move to a study of eponents and rational functions. The rules of eponents

More information

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a

Section 2.2: Absolute Value Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Section.: Absolute Value Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

3.5D Graphing Rational Functions

3.5D Graphing Rational Functions 3.5D Graphing Rational Functions A. Strategy 1. Find all asymptotes (vertical, horizontal, oblique, curvilinear) and holes for the function. 2. Find the and intercepts. 3. Plot the and intercepts, draw

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Section 4.1 Max and Min Values

Section 4.1 Max and Min Values Page 1 of 5 Section 4.1 Ma and Min Values Horizontal Tangents: We have looked at graphs and identified horizontal tangents, or places where the slope of the tangent line is zero. Q: For which values does

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

Polar Coordinates. 2, π and ( )

Polar Coordinates. 2, π and ( ) Polar Coordinates Up to this point we ve dealt exclusively with the Cartesian (or Rectangular, or x-y) coordinate system. However, as we will see, this is not always the easiest coordinate system to work

More information

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY

Learning Packet. Lesson 6 Exponents and Rational Functions THIS BOX FOR INSTRUCTOR GRADING USE ONLY Learning Packet Student Name Due Date Class Time/Day Submission Date THIS BOX FOR INSTRUCTOR GRADING USE ONLY Mini-Lesson is complete and information presented is as found on media links (0 5 pts) Comments:

More information

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim

MATH 1A MIDTERM 1 (8 AM VERSION) SOLUTION. (Last edited October 18, 2013 at 5:06pm.) lim MATH A MIDTERM (8 AM VERSION) SOLUTION (Last edited October 8, 03 at 5:06pm.) Problem. (i) State the Squeeze Theorem. (ii) Prove the Squeeze Theorem. (iii) Using a carefully justified application of the

More information

MAT 003 Brian Killough s Instructor Notes Saint Leo University

MAT 003 Brian Killough s Instructor Notes Saint Leo University MAT 003 Brian Killough s Instructor Notes Saint Leo University Success in online courses requires self-motivation and discipline. It is anticipated that students will read the textbook and complete sample

More information

Math Stuart Jones. 4.3 Curve Sketching

Math Stuart Jones. 4.3 Curve Sketching 4.3 Curve Sketching In this section, we combine much of what we have talked about with derivatives thus far to draw the graphs of functions. This is useful in many situations to visualize properties of

More information

1 Review of Functions Symmetry of Functions; Even and Odd Combinations of Functions... 42

1 Review of Functions Symmetry of Functions; Even and Odd Combinations of Functions... 42 Contents 0.1 Basic Facts...................................... 8 0.2 Factoring Formulas.................................. 9 1 Review of Functions 15 1.1 Functions.......................................

More information

The method of rationalizing

The method of rationalizing Roberto s Notes on Differential Calculus Chapter : Resolving indeterminate forms Section The method of rationalizing What you need to know already: The concept of it and the factor-and-cancel method of

More information

Critical and Inflection Points

Critical and Inflection Points Critical and Inflection Points 1 Finding and Classifying Critical Points A critical point is a point on the graph where the tangent slope is horizontal, (0) or vertical, ( ). or not defined like the minimum

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

Using Arithmetic of Real Numbers to Explore Limits and Continuity

Using Arithmetic of Real Numbers to Explore Limits and Continuity Using Arithmetic of Real Numbers to Explore Limits and Continuity by Maria Terrell Cornell University Problem Let a =.898989... and b =.000000... (a) Find a + b. (b) Use your ideas about how to add a and

More information

In this chapter, we define limits of functions and describe some of their properties.

In this chapter, we define limits of functions and describe some of their properties. Chapter 2 Limits of Functions In this chapter, we define its of functions and describe some of their properties. 2.. Limits We begin with the ϵ-δ definition of the it of a function. Definition 2.. Let

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

Hot X: Algebra Exposed

Hot X: Algebra Exposed Hot X: Algebra Exposed Solution Guide for Chapter 10 Here are the solutions for the Doing the Math exercises in Hot X: Algebra Exposed! DTM from p.137-138 2. To see if the point is on the line, let s plug

More information

g(x) h(x) f (x) = Examples sin x +1 tan x!

g(x) h(x) f (x) = Examples sin x +1 tan x! Lecture 4-5A: An Introduction to Rational Functions A Rational Function f () is epressed as a fraction with a functiong() in the numerator and a function h() in the denominator. f () = g() h() Eamples

More information

Radical Functions Review

Radical Functions Review Radical Functions Review Specific Outcome 3 Graph and analyze radical functions (limited to functions involving one radical) Acceptable Standard sketch and analyze (domain, range, invariant points, - and

More information

Chapter 2.4: Parent Functions & Transformations

Chapter 2.4: Parent Functions & Transformations Chapter.4: Parent Functions & Transformations In Algebra II, you had eperience with basic functions like linear, quadratic, and hopefully a few others. Additionally, you learned how to transform these

More information

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines

3.5 Day 1 Warm Up. Graph each line. 3.4 Proofs with Perpendicular Lines 3.5 Day 1 Warm Up Graph each line. 1. y = 4x 2. y = 3x + 2 3. y = x 3 4. y = 4 x + 3 3 November 2, 2015 3.4 Proofs with Perpendicular Lines Geometry 3.5 Equations of Parallel and Perpendicular Lines Day

More information

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01)

Calculus I (part 1): Limits and Continuity (by Evan Dummit, 2016, v. 2.01) Calculus I (part ): Limits and Continuity (by Evan Dummit, 206, v. 2.0) Contents Limits and Continuity. Limits (Informally)...............................................2 Limits and the Limit Laws..........................................

More information

AXIOMS FOR THE INTEGERS

AXIOMS FOR THE INTEGERS AXIOMS FOR THE INTEGERS BRIAN OSSERMAN We describe the set of axioms for the integers which we will use in the class. The axioms are almost the same as what is presented in Appendix A of the textbook,

More information

0 COORDINATE GEOMETRY

0 COORDINATE GEOMETRY 0 COORDINATE GEOMETRY Coordinate Geometr 0-1 Equations of Lines 0- Parallel and Perpendicular Lines 0- Intersecting Lines 0- Midpoints, Distance Formula, Segment Lengths 0- Equations of Circles 0-6 Problem

More information

Week 3. Topic 5 Asymptotes

Week 3. Topic 5 Asymptotes Week 3 Topic 5 Asmptotes Week 3 Topic 5 Asmptotes Introduction One of the strangest features of a graph is an asmptote. The come in three flavors: vertical, horizontal, and slant (also called oblique).

More information

SECTION 1.3: BASIC GRAPHS and SYMMETRY

SECTION 1.3: BASIC GRAPHS and SYMMETRY (Section.3: Basic Graphs and Symmetry).3. SECTION.3: BASIC GRAPHS and SYMMETRY LEARNING OBJECTIVES Know how to graph basic functions. Organize categories of basic graphs and recognize common properties,

More information

Advanced Functions Unit 4

Advanced Functions Unit 4 Advanced Functions Unit 4 Absolute Value Functions Absolute Value is defined by:, 0, if if 0 0 - (), if 0 The graph of this piecewise function consists of rays, is V-shaped and opens up. To the left of

More information

Session 3. Rational and Radical Equations. Math 30-1 R 3. (Revisit, Review and Revive)

Session 3. Rational and Radical Equations. Math 30-1 R 3. (Revisit, Review and Revive) Session 3 Rational and Radical Equations Math 30-1 R 3 (Revisit, Review and Revive) Rational Functions Review Specific Outcome 14 Graph and analyze rational functions (limited to numerators and denominators

More information

,?...?, the? or? s are for any holes or vertical asymptotes.

,?...?, the? or? s are for any holes or vertical asymptotes. Name: Period: Pre-Cal AB: Unit 14: Rational Functions Monday Tuesday Block Friday 16 17 18/19 0 end of 9 weeks Graphing Rational Graphing Rational Partial Fractions QUIZ 3 Conic Sections (ON Friday s Quiz)

More information

x 2 + 3, r 4(x) = x2 1

x 2 + 3, r 4(x) = x2 1 Math 121 (Lesieutre); 4.2: Rational functions; September 1, 2017 1. What is a rational function? It s a function of the form p(x), where p(x) and q(x) are both polynomials. In other words, q(x) something

More information

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis

Transformation of curve. a. reflect the portion of the curve that is below the x-axis about the x-axis Given graph of y f = and sketch:. Linear Transformation cf ( b + a) + d a. translate a along the -ais. f b. scale b along the -ais c. scale c along the y-ais d. translate d along the y-ais Transformation

More information

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box.

What is the reasonable domain of this volume function? (c) Can there exist a volume of 0? (d) Estimate a maximum volume for the open box. MA 15800 Lesson 11 Summer 016 E 1: From a rectangular piece of cardboard having dimensions 0 inches by 0 inches, an open bo is to be made by cutting out identical squares of area from each corner and,

More information

Hot X: Algebra Exposed

Hot X: Algebra Exposed Hot X: Algebra Exposed Solution Guide for Chapter 11 Here are the solutions for the Doing the Math exercises in Hot X: Algebra Exposed! DTM from p.149 2. Since m = 2, our equation will look like this:

More information

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form:

Rational functions, like rational numbers, will involve a fraction. We will discuss rational functions in the form: Name: Date: Period: Chapter 2: Polynomial and Rational Functions Topic 6: Rational Functions & Their Graphs Rational functions, like rational numbers, will involve a fraction. We will discuss rational

More information

Distance. Dollars. Reviewing gradient

Distance. Dollars. Reviewing gradient Gradient The gradient of a line is its slope. It is a very important feature of a line because it tells you how fast things are changing. Look at the graphs below to find the meaning of gradient in two

More information

Lesson 6-2: Function Operations

Lesson 6-2: Function Operations So numbers not only have a life but they have relationships well actually relations. There are special relations we call functions. Functions are relations for which each input has one and only one output.

More information

Math 3 Coordinate Geometry Part 2 Graphing Solutions

Math 3 Coordinate Geometry Part 2 Graphing Solutions Math 3 Coordinate Geometry Part 2 Graphing Solutions 1 SOLVING SYSTEMS OF EQUATIONS GRAPHICALLY The solution of two linear equations is the point where the two lines intersect. For example, in the graph

More information

CS 161 Computer Security

CS 161 Computer Security Wagner Spring 2014 CS 161 Computer Security 1/27 Reasoning About Code Often functions make certain assumptions about their arguments, and it is the caller s responsibility to make sure those assumptions

More information

Basics of Computational Geometry

Basics of Computational Geometry Basics of Computational Geometry Nadeem Mohsin October 12, 2013 1 Contents This handout covers the basic concepts of computational geometry. Rather than exhaustively covering all the algorithms, it deals

More information

3.7. Vertex and tangent

3.7. Vertex and tangent 3.7. Vertex and tangent Example 1. At the right we have drawn the graph of the cubic polynomial f(x) = x 2 (3 x). Notice how the structure of the graph matches the form of the algebraic expression. The

More information

COMP 161 Lecture Notes 16 Analyzing Search and Sort

COMP 161 Lecture Notes 16 Analyzing Search and Sort COMP 161 Lecture Notes 16 Analyzing Search and Sort In these notes we analyze search and sort. Counting Operations When we analyze the complexity of procedures we re determine the order of the number of

More information

Section 4.2 Graphs of Exponential Functions

Section 4.2 Graphs of Exponential Functions 238 Chapter 4 Section 4.2 Graphs of Eponential Functions Like with linear functions, the graph of an eponential function is determined by the values for the parameters in the function s formula. To get

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

Domain: The domain of f is all real numbers except those values for which Q(x) =0.

Domain: The domain of f is all real numbers except those values for which Q(x) =0. Math 1330 Section.3.3: Rational Functions Definition: A rational function is a function that can be written in the form P() f(), where f and g are polynomials. Q() The domain of the rational function such

More information

CCNY Math Review Chapter 2: Functions

CCNY Math Review Chapter 2: Functions CCN Math Review Chapter : Functions Section.1: Functions.1.1: How functions are used.1.: Methods for defining functions.1.3: The graph of a function.1.: Domain and range.1.5: Relations, functions, and

More information

Math 1: Solutions to Written Homework 1 Due Friday, October 3, 2008

Math 1: Solutions to Written Homework 1 Due Friday, October 3, 2008 Instructions: You are encouraged to work out solutions to these problems in groups! Discuss the problems with your classmates, the tutors and/or the instructors. After working doing so, please write up

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

16 Rational Functions Worksheet

16 Rational Functions Worksheet 16 Rational Functions Worksheet Concepts: The Definition of a Rational Function Identifying Rational Functions Finding the Domain of a Rational Function The Big-Little Principle The Graphs of Rational

More information

In this chapter, we will investigate what have become the standard applications of the integral:

In this chapter, we will investigate what have become the standard applications of the integral: Chapter 8 Overview: Applications of Integrals Calculus, like most mathematical fields, began with trying to solve everyday problems. The theory and operations were formalized later. As early as 70 BC,

More information

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school.

Albertson AP Calculus AB AP CALCULUS AB SUMMER PACKET DUE DATE: The beginning of class on the last class day of the first week of school. Albertson AP Calculus AB Name AP CALCULUS AB SUMMER PACKET 2017 DUE DATE: The beginning of class on the last class day of the first week of school. This assignment is to be done at you leisure during the

More information

LESSON 3.1 INTRODUCTION TO GRAPHING

LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING LESSON 3.1 INTRODUCTION TO GRAPHING 137 OVERVIEW Here s what ou ll learn in this lesson: Plotting Points a. The -plane b. The -ais and -ais c. The origin d. Ordered

More information

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote.

Section 4.4 Rational Functions and Their Graphs. 1, the line x = 0 (y-axis) is its vertical asymptote. Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, 16 is a rational function.

More information

Section 1.5 Transformation of Functions

Section 1.5 Transformation of Functions Section.5 Transformation of Functions 6 Section.5 Transformation of Functions Often when given a problem, we try to model the scenario using mathematics in the form of words, tables, graphs and equations

More information

Week 10. Topic 1 Polynomial Functions

Week 10. Topic 1 Polynomial Functions Week 10 Topic 1 Polnomial Functions 1 Week 10 Topic 1 Polnomial Functions Reading Polnomial functions result from adding power functions 1 together. Their graphs can be ver complicated, so the come up

More information

Section 4.4 Rational Functions and Their Graphs

Section 4.4 Rational Functions and Their Graphs Section 4.4 Rational Functions and Their Graphs p( ) A rational function can be epressed as where p() and q() are q( ) 3 polynomial functions and q() is not equal to 0. For eample, is a 16 rational function.

More information

Calculus Chapter 1 Limits. Section 1.2 Limits

Calculus Chapter 1 Limits. Section 1.2 Limits Calculus Chapter 1 Limits Section 1.2 Limits Limit Facts part 1 1. The answer to a limit is a y-value. 2. The limit tells you to look at a certain x value. 3. If the x value is defined (in the domain),

More information

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials

( ) ( ) Completing the Square. Alg 3 1 Rational Roots Solving Polynomial Equations. A Perfect Square Trinomials Alg Completing the Square A Perfect Square Trinomials (± ) ± (± ) ± 4 4 (± ) ± 6 9 (± 4) ± 8 6 (± 5) ± 5 What is the relationship between the red term and the blue term? B. Creating perfect squares.. 6

More information

Radical and Rational Function Exam Questions

Radical and Rational Function Exam Questions Radical and Rational Function Exam Questions Name: ANSWERS 2 Multiple Choice 1. Identify the graph of the function x y. x 2. Given the graph of y f x, what is the domain of x f? a. x R b. 2 x 2 c. x 2

More information

Section 4.1: Maximum and Minimum Values

Section 4.1: Maximum and Minimum Values Section 4.: Maimum and Minimum Values In this chapter, we shall consider further applications of the derivative. The main application we shall consider is using derivatives to sketch accurate graphs of

More information

Graphing by. Points. The. Plotting Points. Line by the Plotting Points Method. So let s try this (-2, -4) (0, 2) (2, 8) many points do I.

Graphing by. Points. The. Plotting Points. Line by the Plotting Points Method. So let s try this (-2, -4) (0, 2) (2, 8) many points do I. Section 5.5 Graphing the Equation of a Line Graphing by Plotting Points Suppose I asked you to graph the equation y = x +, i.e. to draw a picture of the line that the equation represents. plotting points

More information

Section Graphs and Lines

Section Graphs and Lines Section 1.1 - Graphs and Lines The first chapter of this text is a review of College Algebra skills that you will need as you move through the course. This is a review, so you should have some familiarity

More information

2-3 Graphing Rational Functions

2-3 Graphing Rational Functions 2-3 Graphing Rational Functions Factor What are the end behaviors of the Graph? Sketch a graph How to identify the intercepts, asymptotes and end behavior of a rational function. How to sketch the graph

More information

Lesson 11 Rational Functions

Lesson 11 Rational Functions Lesson 11 Rational Functions In this lesson, you will embark on a study of rational functions. These may be unlike any function you have ever seen. Rational functions look different because they are in

More information

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125

2.3 Graph Sketching: Asymptotes and Rational Functions Math 125 .3 Graph Sketching: Asymptotes and Rational Functions Math 15.3 GRAPH SKETCHING: ASYMPTOTES AND RATIONAL FUNCTIONS All the functions from the previous section were continuous. In this section we will concern

More information

Preparing for AS Level Further Mathematics

Preparing for AS Level Further Mathematics Preparing for AS Level Further Mathematics Algebraic skills are incredibly important in the study of further mathematics at AS and A level. You should therefore make sure you are confident with all of

More information

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1

1. y = f(x) y = f(x + 3) 3. y = f(x) y = f(x 1) 5. y = 3f(x) 6. y = f(3x) 7. y = f(x) 8. y = f( x) 9. y = f(x 3) + 1 .7 Transformations.7. Eercises To see all of the help resources associated with this section, click OSttS Chapter b. Suppose (, ) is on the graph of = f(). In Eercises - 8, use Theorem.7 to find a point

More information

An Interesting Way to Combine Numbers

An Interesting Way to Combine Numbers An Interesting Way to Combine Numbers Joshua Zucker and Tom Davis October 12, 2016 Abstract This exercise can be used for middle school students and older. The original problem seems almost impossibly

More information

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology

Intermediate Algebra. Gregg Waterman Oregon Institute of Technology Intermediate Algebra Gregg Waterman Oregon Institute of Technolog c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International license. The essence of the license

More information

RATIONAL FUNCTIONS Introductory Material from Earl Please read this!

RATIONAL FUNCTIONS Introductory Material from Earl Please read this! RATIONAL FUNCTIONS Introductory Material from Earl Please read this! In working with rational functions, I tend to split them up into two types: Simple rational functions are of the form or an equivalent

More information

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics

Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics Math 2 Coordinate Geometry Part 3 Inequalities & Quadratics 1 DISTANCE BETWEEN TWO POINTS - REVIEW To find the distance between two points, use the Pythagorean theorem. The difference between x 1 and x

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

The domain of any rational function is all real numbers except the numbers that make the denominator zero or where q ( x)

The domain of any rational function is all real numbers except the numbers that make the denominator zero or where q ( x) We will look at the graphs of these functions, eploring their domain and end behavior. College algebra Class notes Rational Functions with Vertical, Horizontal, and Oblique Asymptotes (section 4.) Definition:

More information

Exploring Slope. We use the letter m to represent slope. It is the ratio of the rise to the run.

Exploring Slope. We use the letter m to represent slope. It is the ratio of the rise to the run. Math 7 Exploring Slope Slope measures the steepness of a line. If you take any two points on a line, the change in y (vertical change) is called the rise and the change in x (horizontal change) is called

More information

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships.

Writing and Graphing Linear Equations. Linear equations can be used to represent relationships. Writing and Graphing Linear Equations Linear equations can be used to represent relationships. Linear equation An equation whose solutions form a straight line on a coordinate plane. Collinear Points that

More information

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c.

Math 0420 Homework 3. Scratch Work:For c > 0, according to the definition of limit, we want to find δ to bound the term x c by ɛ.we have: x c. Math 0420 Homework 3 Eercise 311 Find the it or prove the it does not eit (a) for c 0 Solution: First, we might guess that the it is c Scratch Work:For c > 0, according to the definition of it, we want

More information

Unit 1 and Unit 2 Concept Overview

Unit 1 and Unit 2 Concept Overview Unit 1 and Unit 2 Concept Overview Unit 1 Do you recognize your basic parent functions? Transformations a. Inside Parameters i. Horizontal ii. Shift (do the opposite of what feels right) 1. f(x+h)=left

More information

Functions: Review of Algebra and Trigonometry

Functions: Review of Algebra and Trigonometry Sec. and. Functions: Review of Algebra and Trigonoetry A. Functions and Relations DEFN Relation: A set of ordered pairs. (,y) (doain, range) DEFN Function: A correspondence fro one set (the doain) to anther

More information

6th Bay Area Mathematical Olympiad

6th Bay Area Mathematical Olympiad 6th Bay Area Mathematical Olympiad February 4, 004 Problems and Solutions 1 A tiling of the plane with polygons consists of placing the polygons in the plane so that interiors of polygons do not overlap,

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

2 Unit Bridging Course Day 2 Linear functions I: Gradients

2 Unit Bridging Course Day 2 Linear functions I: Gradients 1 / 33 2 Unit Bridging Course Day 2 Linear functions I: Gradients Clinton Boys 2 / 33 Linear functions Linear functions are a particularly simple and special type of functions. They are widely used in

More information

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University.

Updated: January 16, 2016 Calculus II 6.8. Math 230. Calculus II. Brian Veitch Fall 2015 Northern Illinois University. Updated: January 6, 206 Calculus II 6.8 Math 230 Calculus II Brian Veitch Fall 205 Northern Illinois University Indeterminate Forms and L Hospital s Rule From calculus I, we used a geometric approach to

More information

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation

1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation 1.1 calculator viewing window find roots in your calculator 1.2 functions find domain and range (from a graph) may need to review interval notation functions vertical line test function notation evaluate

More information

Derivatives and Graphs of Functions

Derivatives and Graphs of Functions Derivatives and Graphs of Functions September 8, 2014 2.2 Second Derivatives, Concavity, and Graphs In the previous section, we discussed how our derivatives can be used to obtain useful information about

More information

Limits, Continuity, and Asymptotes

Limits, Continuity, and Asymptotes LimitsContinuity.nb 1 Limits, Continuity, and Asymptotes Limits Limit evaluation is a basic calculus tool that can be used in many different situations. We will develop a combined numerical, graphical,

More information

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2

MCS 118 Quiz 1. Fall (5pts) Solve the following equations for x. 7x 2 = 4x x 2 5x = 2 MCS 8 Quiz Fall 6. (5pts) Solve the following equations for. 7 = 4 + 3. (5pts) Solve the following equations for. 3 5 = 3. (5pts) Factor 3 + 35 as much as possible. 4. (5pts) Simplify +. 5. (5pts) Solve

More information

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor

Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor Algebra II Lesson 10-5: Hyperbolas Mrs. Snow, Instructor In this section, we will look at the hyperbola. A hyperbola is a set of points P in a plane such that the absolute value of the difference between

More information

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters..

A point is pictured by a dot. While a dot must have some size, the point it represents has no size. Points are named by capital letters.. Chapter 1 Points, Lines & Planes s we begin any new topic, we have to familiarize ourselves with the language and notation to be successful. My guess that you might already be pretty familiar with many

More information

1.2 Functions and Graphs

1.2 Functions and Graphs Section.2 Functions and Graphs 3.2 Functions and Graphs You will be able to use the language, notation, and graphical representation of functions to epress relationships between variable quantities. Function,

More information

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs

Example 1: Given below is the graph of the quadratic function f. Use the function and its graph to find the following: Outputs Quadratic Functions: - functions defined by quadratic epressions (a 2 + b + c) o the degree of a quadratic function is ALWAYS 2 - the most common way to write a quadratic function (and the way we have

More information

Section 1: Limits and Continuity

Section 1: Limits and Continuity Chapter The Derivative Applied Calculus 74 Section 1: Limits and Continuity In the last section, we saw that as the interval over which we calculated got smaller, the secant slopes approached the tangent

More information

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd

Is the statement sufficient? If both x and y are odd, is xy odd? 1) xy 2 < 0. Odds & Evens. Positives & Negatives. Answer: Yes, xy is odd Is the statement sufficient? If both x and y are odd, is xy odd? Is x < 0? 1) xy 2 < 0 Positives & Negatives Answer: Yes, xy is odd Odd numbers can be represented as 2m + 1 or 2n + 1, where m and n are

More information