(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8

Size: px
Start display at page:

Download "(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8"

Transcription

1 M252 Practice Eam for Find and simplify the function values. f ( y, ) = 5 10y (i) f(0,0) (ii) f(0,1) (iii) f(3,9) (iv) f(1,y) (v) f(,0) (vi) f(t,1) 2. Find and simplify the function values. hyz (,, ) = y z (i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) 3. Find and simplify the function values. y gy (, ) = (16t 6) dt (i) g(0,32) (ii) g(1,32) (iii) g 3,32 8 (iv) g 3 0, 8 4. Describe the domain and range of the function. f ( y, ) = 100 y Page 1

2 5. Describe the level curves of the function. Sketch the level curves for the given c-values. z = 6 2 3y, c = 0, 2, 4, 6 6. Find the limit and discusss the continuity of the function. ( y, ) ( 5,4) 2 ( y ) lim Find the limit and discusss the continuity of the function. ( y, ) (2, 10) ( + y ) lim Find the limit and discusss the continuity of the function. lim 7 6y ( y, ) (1,1) + 9. Find the limit and discusss the continuity of the function. lim 5e ( yz,, ) ( 1,0,8) y 6 z Page 2

3 10. Find the limit (if it eists). If the limit does not eist, eplain why. y 4 lim 3 + y ( y, ) (4,3) 11. Discusss the continuity of the function at the origin y, ( y, ) (0,0) 8 8 f(, y) = + y 2, ( y, ) = (0,0) 12. Use polar coordinates to find the limit. [Hint: Let = rcosθ and y = rsinθ, and note that ( y, ) (0,0) implies r 0.] lim y ( y, ) (0,0) + y 13. Discusss the continuity of the function. f(, y, z) = z + y 64 Page 3

4 14. Find each limit for the function 2 f ( y, ) 7 4y =. (i) lim 0 f ( +, y) f(, y) (ii) f y+ y f y lim y 0 (, ) (, ) y 15. Find both first partial derivatives. f(, y) = y Find both first partial derivatives. f y y (, ) = Find both first partial derivatives. z = 4 y 18. Find both first partial derivatives. 3 z = 2y Page 4

5 19. Find both first partial derivatives. z = e 6 10y 20. Find both first partial derivatives. 5 8 ( ) f ( y, ) = ln + y 21. Find both first partial derivatives. f ( y, ) = ln 7 y 22. Find both first partial derivatives. 5y z = + 9y 23. Find both first partial derivatives. f ( y, ) = 4 + y 10 4 Page 5

6 24. Evaluate f and fy at the given point. f(, y) = 3y 9 + 2y, (1,1) 25. For f(,y), find all values of and y such that f(,y) = 0 and fy(,y) = 0 simultaneously. f ( y, ) = 9 3 y+ 9y Find the first partial derivatives with respect to, y, and z. 2z w = 9 + 6y 27. Find the first partial derivatives with respect to, y, and z. H ( yz,, ) = cos(2+ 8y+ 7 z) 28. Evaluate f and fy at the given point. y f(, y, z) =, (6,8,3) + y + z Page 6

7 29. Find the four second partial derivatives. Observe that the second mied partials are equal. z = + 2y+ 8y 30. Find the four second partial derivatives. Observe that the second mied partials are equal. z = 11e y + 8ye 31. Find the total differential of the function z 10 9 = 5 y. 32. Find the total differential of the function 9 z =. y Find the total differential of the function z = y 34. For the function f(, y) = 5 4y: (i) Evaluate f(1,5) and f(1.09,5.09) and calculate (ii) Use the total differential dz to approimate z, and z. Page 7

8 35. For the function f(, y) = sin y: (i) Evaluate f(4,2) and f(4.08,2.03) and calculate (ii) Use the total differential dz to approimate z, and z. 36. The radius r and height h of a right circular cylinder are measured with possible errors of 8% and 3%, respectively. Approimate the maimum possible percent error in measuring the volume. 37. A triangle is measured and two adjacent sides are found to be 3 inches and 4 inches π 1 long, with an included angle of. The possible errors in measurement are inch for 4 10 the sides and 0.04 radian for the angle. Approimate the maimum possible error in the computation of the area. 38. Let w = y, where = 10sin t and y = 8cost. Find dw dt. 39. Let w= cos(2 4 y), where 9 = t and y = 7. Find dw dt. Page 8

9 40. Let w= ycos z, where 9 = t, y 2 = t, and z arccos = t. Find dw dt. 41. Let 3 3 w= + y, where = 4s+ t, y = 4s t. Find partial derivative at the point s = 2, t = 2. w ds and w dt and evaluate each 42. Let 7 6 w 7 y =, where s = e, derivative at the point s = 0, t = 1. y t = e. Find w ds and w dt and evaluate each partial 43. Let w y 3 = ( ), where r θ = + and y = r θ. Find w r and w θ. 44. Let yz w =, where y = r+ θ, and z = 9r 7θ. Find 2 = θ, 9 7 w r and w θ. 45. Differentiate implicitly to find dy d. y y y = 0 Page 9

10 46. Differentiate implicitly to find the first partial derivatives of z y + z = Differentiate implicitly to find the first partial derivatives of z. 3 y z + sin(6 + 7 ) = Differentiate implicitly to find the first partial derivatives of w y + z 7yw+ 9w = The radius of a right cylinder is increasing at a rate of 2 inches per minute, and the height is decreasing at a rate of 3 inches per minute. What is the rate of change of the volume and surface area (including both ends of the cylinder as well as the side) when the radius is 9 inches and height is 27 inches? 50. Find the directional derivative of the function at P in the direction of v. ( ) 1 f(, y) = 5 7y+ 10 y, P(1,4), v= ˆ i+ 3 ˆ j 2 Page 10

11 51. Find the directional derivative of the function at P in the direction of v. ( ) f(, y) = y, P(2,1), v = ˆ i+ ˆ j Find the directional derivative of the function at P in the direction of v. f (, y, z) = y + yz + z, P(1,1,1), v = 9ˆi+ 5ˆj-10 kˆ 53. Find the directional derivative of the function in the direction of u= cosθˆi+ sinθˆj. π f(, y) = sin(3 2 y), θ = Find the gradient of the function at the given point. f y y 2 (, ) = , (4,1) 55. Find the gradient of the function at the given point. gy (, ) = 9 e, (9,0) y Page 11

12 56. Find the gradient of the function at the given point. w= y yz+ z 6 10, (1,1, 2) 57. Use the gradient to find the directional derivative of the function at P in the direction of Q. g y y P Q (, ) = + + 1, (2, 4) (6,12) 58. Use the gradient to find the directional derivative of the function at P in the direction of Q. f(, y) = sin(7 )cos y, P(0,0), Q( π, π ) Find the gradient of the function and the maimum value of the directional derivative at the given point. 4 w= y z 7, (9,1,1) y 60. Find the directional derivative Du f (3,2) of the function f(, y ) = 10 in the 10 3 direction of u= cosθˆi+ sinθˆj. π (i) θ = ; (ii) θ = 4 2π 3 Page 12

13 y 61. Find the directional derivative Du f (3,2) of the function f(, y ) = 10 in the 10 5 direction of u = v. v (i) v = ˆi+ ˆ j; (ii) v = 3ˆi 4ˆj y 62. Find the directional derivative Du f (3,2) of the function f(, y ) = 10 in the 10 5 direction of u = v. v (i) v is the vector from (1,2) to ( 2,6); (ii) v is the vector from (3,2) to (4,5). y 63. Find f (, y) for function f(, y ) = y 64. For function f(, y ) = 6, find the maimum value of the directional derivative 6 9 at (3,2). Page 13

14 65. Use the gradient to find a normal vector to the graph of the equation at the given point. 2 9 y = 4, (10,896) 66. Find a unit normal vector to the surface + y+ z = 6 at the point (3,0,3). 67. Find a unit normal vector to the surface 2 + y + z = 18 at the point (4,1,1). 68. Find a unit normal vector to the surface y 4 2 z= 0 at the point ( 1, 6,36 ). 69. Find a unit normal vector to the surface + + = at the point ( 2, 1,2 ) 2 3 2y z Find an equation of the tangent plane to the surface ( 4,6, 20). gy (, ) y = at the point 71. Find an equation of the tangent plane to the surface ( 8, 1,1). 5 f ( y, ) = 10 yat the point 4 Page 14

15 2 72. Find an equation of the tangent plane to the surface + 9y + z = 504at the point ( 6, 6,12). 73. Find an equation of the tangent plane to the surface = y(7z 5) at the point ( 96, 6,3 ). 74. Find an equation of the tangent plane and find symmetric equations of the normal line to 2 the surface y z 201 1,10, = at the point ( ) 75. Find an equation of the tangent plane and find symmetric equations of the normal line to the surface y 4z 0 4, 10,10. = at the point ( ) 76. Find an equation of the tangent plane and find symmetric equations of the normal line to the surface 30 1,3,10. yz = at the point ( ) 77. Find the angle of inclination θ of the tangent plane to the surface point ( 1, 3, 8 ). y z + = 0 at the Page 15

16 78. Find the angle of inclination θ of the tangent plane to the surface 3 + 4y z = 0 at the point ( 6,6,252 ). 79. Find the distance from the point (0,0,0) to the plane 9+ 10y+ z = Find three positive numbers, y, and z whose sum is 3 and product is a maimum. 81. Find three positive numbers, y, and z whose sum is 24 and the sum of the squares is a maimum. 82. The sum of the length (denote by z) and the girth (perimeter of a cross section) of packages carried by a delivery service cannot eceed 36 inches. Find the dimensions of the rectangular package of largest volume that may be sent. 83. The material for constructing the base of an open bo costs 1.5 times as much per unit area as the material for constructing the sides. For a fied amount of money , find the dimensions of the bo of largest volume that can be made. Page 16

17 84. A company manufactures two types of sneakers: running shoes and basketball shoes. The total revenue from 1 units of running shoes and y1 units of basketball shoes is: R = , where 1 and 2 are in thousands of units. Find 1 and 2 so as to maimize the revenue. 85. Find the least squares regression line for the points (1,0), (3,3), (10,6). 86. A store manager wants to know the demand y for an energy bar as a function of price. The daily sales for three different prices of the energy bar are shown in the table. Price, $ 1.06 $ 1.21 $ 1.45 Demand, y (i) Use the regression capabilities of a graphing utility to find the least squares regression line for the data. (ii) Use the model to estimate the demand when the price is Page 17

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1

Chapter 7 curve. 3. x=y-y 2, x=0, about the y axis. 6. y=x, y= x,about y=1 Chapter 7 curve Find the volume of the solid obtained by rotating the region bounded by the given cures about the specified line. Sketch the region, the solid, and a typical disk or washer.. y-/, =, =;

More information

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two:

1. Suppose that the equation F (x, y, z) = 0 implicitly defines each of the three variables x, y, and z as functions of the other two: Final Solutions. Suppose that the equation F (x, y, z) implicitly defines each of the three variables x, y, and z as functions of the other two: z f(x, y), y g(x, z), x h(y, z). If F is differentiable

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0 Review: 0, lim D f u 0 0 0 0 u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b 0 0 0 0 0 0 D f, f u

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Multiple Integrals. max x i 0

Multiple Integrals. max x i 0 Multiple Integrals 1 Double Integrals Definite integrals appear when one solves Area problem. Find the area A of the region bounded above by the curve y = f(x), below by the x-axis, and on the sides by

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below:

To graph the point (r, θ), simply go out r units along the initial ray, then rotate through the angle θ. The point (1, 5π 6. ) is graphed below: Polar Coordinates Any point in the plane can be described by the Cartesian coordinates (x, y), where x and y are measured along the corresponding axes. However, this is not the only way to represent points

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

P1 REVISION EXERCISE: 1

P1 REVISION EXERCISE: 1 P1 REVISION EXERCISE: 1 1. Solve the simultaneous equations: x + y = x +y = 11. For what values of p does the equation px +4x +(p 3) = 0 have equal roots? 3. Solve the equation 3 x 1 =7. Give your answer

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 28 / 46 Polar Coordinates Polar Coordinates: Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ)

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral More on Area More on Area Integrating the vertical separation gives Riemann Sums of the form More on Area Example Find the area A of the set shaded in Figure

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Summary Assignments...2 PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Summary...1 3. Assignments...2 i PMTH212, Multivariable Calculus Assignment Summary 2010 Assignment Date to be Posted

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

The Fundamental Theorem of Calculus Using the Rule of Three

The Fundamental Theorem of Calculus Using the Rule of Three The Fundamental Theorem of Calculus Using the Rule of Three A. Approimations with Riemann sums. The area under a curve can be approimated through the use of Riemann (or rectangular) sums: n Area f ( k

More information

1 x 3 9x x. Chapter 4 Curve Part Sketch a graph of the function with the following. properties: 1. What is the second derivative test?

1 x 3 9x x. Chapter 4 Curve Part Sketch a graph of the function with the following. properties: 1. What is the second derivative test? Chapter 4 Curve Part 1 1. What is the second derivative test?. Restate the following using calculus: Our prices are rising slower than any place in town. For numbers 3-19, find all critical points of the

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES

LECTURE 3-1 AREA OF A REGION BOUNDED BY CURVES 7 CALCULUS II DR. YOU 98 LECTURE 3- AREA OF A REGION BOUNDED BY CURVES If y = f(x) and y = g(x) are continuous on an interval [a, b] and f(x) g(x) for all x in [a, b], then the area of the region between

More information

Practice problems from old exams for math 233

Practice problems from old exams for math 233 Practice problems from old exams for math 233 William H. Meeks III October 26, 2012 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

6. Find P, the image of P( 3, 6), after a reflection across the line y = x.

6. Find P, the image of P( 3, 6), after a reflection across the line y = x. Name: 1. What is the image of point after a rotation of 90 in the counterclockwise direction? 4. is the image of. Which of the following rotations could be used to perform this transformation? I. 90 counterclockwise

More information

Math 11 Fall 2016 Section 1 Monday, October 17, 2016

Math 11 Fall 2016 Section 1 Monday, October 17, 2016 Math 11 Fall 16 Section 1 Monday, October 17, 16 First, some important points from the last class: f(x, y, z) dv, the integral (with respect to volume) of f over the three-dimensional region, is a triple

More information

4.3 Maximum and Minimum Values of a Function

4.3 Maximum and Minimum Values of a Function MA: Prepared b Asst.Prof.Dr. Archara Pacheenburawana 83 4.3 Maimum and Minimum Values of a Function Some of the most important applications of differential calculus are optimization problems, in which

More information

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes.

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes. The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), 14.5 10 March 2014 Goals. We will: Define the differential df and use it to approximate changes in a function s value.

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

MATH 261 EXAM III PRACTICE PROBLEMS

MATH 261 EXAM III PRACTICE PROBLEMS MATH 6 EXAM III PRACTICE PROBLEMS These practice problems are pulled from actual midterms in previous semesters. Exam 3 typically has 5 (not 6!) problems on it, with no more than one problem of any given

More information

R f da (where da denotes the differential of area dxdy (or dydx)

R f da (where da denotes the differential of area dxdy (or dydx) Math 28H Topics for the second exam (Technically, everything covered on the first exam, plus) Constrained Optimization: Lagrange Multipliers Most optimization problems that arise naturally are not unconstrained;

More information

Polar Coordinates

Polar Coordinates Polar Coordinates 7-7-2 Polar coordinates are an alternative to rectangular coordinates for referring to points in the plane. A point in the plane has polar coordinates r,θ). r is roughly) the distance

More information

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments...

PURE MATHEMATICS 212 Multivariable Calculus CONTENTS. Page. 1. Assignment Summary... i 2. Introduction Timetable Assignments... PURE MATHEMATICS 212 Multivariable Calculus CONTENTS Page 1. Assignment Summary... i 2. Introduction...1 3. Timetable... 3 4. Assignments...5 i PMTH212, Multivariable Calculus Assignment Summary 2009

More information

MAC 2233 Exam 1 Review Fall 2017

MAC 2233 Exam 1 Review Fall 2017 Fall 2017 This review, produced by the your professor, contains a collection of questions which are represen-tative of the type you may encounter on the eam. Other resources made available by the Teaching

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line

(i) Find the exact value of p. [4] Show that the area of the shaded region bounded by the curve, the x-axis and the line H Math : Integration Apps 0. M p The diagram shows the curve e e and its maimum point M. The -coordinate of M is denoted b p. (i) Find the eact value of p. [] (ii) Show that the area of the shaded region

More information

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus,

) in the k-th subbox. The mass of the k-th subbox is M k δ(x k, y k, z k ) V k. Thus, 1 Triple Integrals Mass problem. Find the mass M of a solid whose density (the mass per unit volume) is a continuous nonnegative function δ(x, y, z). 1. Divide the box enclosing into subboxes, and exclude

More information

minutes/question 26 minutes

minutes/question 26 minutes st Set Section I (Multiple Choice) Part A (No Graphing Calculator) 3 problems @.96 minutes/question 6 minutes. What is 3 3 cos cos lim? h hh (D) - The limit does not exist.. At which of the five points

More information

WW Prob Lib1 Math course-section, semester year

WW Prob Lib1 Math course-section, semester year WW Prob Lib Math course-section, semester year WeBWorK assignment due /25/06 at :00 PM..( pt) Consider the parametric equation x = 7(cosθ + θsinθ) y = 7(sinθ θcosθ) What is the length of the curve for

More information

Math 265 Exam 3 Solutions

Math 265 Exam 3 Solutions C Roettger, Fall 16 Math 265 Exam 3 Solutions Problem 1 Let D be the region inside the circle r 5 sin θ but outside the cardioid r 2 + sin θ. Find the area of D. Note that r and θ denote polar coordinates.

More information

CYLINDRICAL COORDINATES

CYLINDRICAL COORDINATES CHAPTER 11: CYLINDRICAL COORDINATES 11.1 DEFINITION OF CYLINDRICAL COORDINATES A location in 3-space can be defined with (r, θ, z) where (r, θ) is a location in the xy plane defined in polar coordinates

More information

Math 209, Fall 2009 Homework 3

Math 209, Fall 2009 Homework 3 Math 209, Fall 2009 Homework 3 () Find equations of the tangent plane and the normal line to the given surface at the specified point: x 2 + 2y 2 3z 2 = 3, P (2,, ). Solution Using implicit differentiation

More information

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes

Math 295: Exam 3 Name: Caleb M c Whorter Solutions Fall /16/ Minutes Math 295: Eam 3 Name: Caleb M c Whorter Solutions Fall 2018 11/16/2018 50 Minutes Write your name on the appropriate line on the eam cover sheet. This eam contains 10 pages (including this cover page)

More information

MAC2313 Test 3 A E g(x, y, z) dy dx dz

MAC2313 Test 3 A E g(x, y, z) dy dx dz MAC2313 Test 3 A (5 pts) 1. If the function g(x, y, z) is integrated over the cylindrical solid bounded by x 2 + y 2 = 3, z = 1, and z = 7, the correct integral in Cartesian coordinates is given by: A.

More information

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008

A small review, Second Midterm, Calculus 3, Prof. Montero 3450: , Fall 2008 A small review, Second Midterm, Calculus, Prof. Montero 45:-4, Fall 8 Maxima and minima Let us recall first, that for a function f(x, y), the gradient is the vector ( f)(x, y) = ( ) f f (x, y); (x, y).

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

3 Applications of Di erentiation

3 Applications of Di erentiation 9 Applications of Di erentiation This chapter is intended to illustrate some of the applications of di erentiation. The activities of Section. illustrate the relationship between the values of rst and

More information

The diagram above shows a sketch of the curve C with parametric equations

The diagram above shows a sketch of the curve C with parametric equations 1. The diagram above shows a sketch of the curve C with parametric equations x = 5t 4, y = t(9 t ) The curve C cuts the x-axis at the points A and B. (a) Find the x-coordinate at the point A and the x-coordinate

More information

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π.

Answer: Find the volume of the solid generated by revolving the shaded region about the given axis. 2) About the x-axis. y = 9 - x π. Final Review Study All Eams. Omit the following sections: 6.,.6,., 8. For Ch9 and, study Eam4 and Eam 4 review sheets. Find the volume of the described solid. ) The base of the solid is the disk + y 4.

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Section 7.2 Volume: The Disk Method

Section 7.2 Volume: The Disk Method Section 7. Volume: The Disk Method White Board Challenge Find the volume of the following cylinder: No Calculator 6 ft 1 ft V 3 1 108 339.9 ft 3 White Board Challenge Calculate the volume V of the solid

More information

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y).

f for Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). Directional Derivatives and Gradient The gradient vector is calculated using partial derivatives of the function f(x,y). For a function f(x,y), the gradient vector, denoted as f (pronounced grad f ) is

More information

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework.

Mth Test 3 Review Stewart 8e Chapter 4. For Test #3 study these problems, the examples in your notes, and the homework. For Test #3 study these problems, the eamples in your notes, and the homework. I. Absolute Etrema A function, continuous on a closed interval, always has an absolute maimum and absolute minimum. They occur

More information

Math 253, Section 102, Fall 2006 Practice Final Solutions

Math 253, Section 102, Fall 2006 Practice Final Solutions Math 253, Section 102, Fall 2006 Practice Final Solutions 1 2 1. Determine whether the two lines L 1 and L 2 described below intersect. If yes, find the point of intersection. If not, say whether they

More information

MATH 200 EXAM 2 SPRING April 27, 2011

MATH 200 EXAM 2 SPRING April 27, 2011 MATH 00 EXAM SPRING 00-0 April 7, 0 Name: Section: ONLY THE CORRECT ANSWER AND ALL WORK USED TO REACH IT WILL EARN FULL CREDIT. Simplify all answers as much as possible unless eplicitly stated otherwise.

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures

Grad operator, triple and line integrals. Notice: this material must not be used as a substitute for attending the lectures Grad operator, triple and line integrals Notice: this material must not be used as a substitute for attending the lectures 1 .1 The grad operator Let f(x 1, x,..., x n ) be a function of the n variables

More information

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv.

MAC2313 Final A. a. The vector r u r v lies in the tangent plane of S at a given point. b. S f(x, y, z) ds = R f(r(u, v)) r u r v du dv. MAC2313 Final A (5 pts) 1. Let f(x, y, z) be a function continuous in R 3 and let S be a surface parameterized by r(u, v) with the domain of the parameterization given by R; how many of the following are

More information

(a) Find cylindrical coordinates for the point whose rectangular coordinates are (x, y, z) = ( 4, 8, 2). Solution: r = p x 2 + y 2 =

(a) Find cylindrical coordinates for the point whose rectangular coordinates are (x, y, z) = ( 4, 8, 2). Solution: r = p x 2 + y 2 = MATH 03 Exam Solutions February 16, 004 S. F. Ellermeyer Name Instructions. This exam contains seven problems, but only six of them will be graded. You maychooseanysixtodo. PleasewriteDON TGRADEontheonethatyoudon

More information

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved.

Conics, Parametric Equations, and Polar Coordinates. Copyright Cengage Learning. All rights reserved. 10 Conics, Parametric Equations, and Polar Coordinates Copyright Cengage Learning. All rights reserved. 10.5 Area and Arc Length in Polar Coordinates Copyright Cengage Learning. All rights reserved. Objectives

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1] C Integration. June 00 qu. Use the trapezium rule, with strips each of width, to estimate the area of the region bounded by the curve y = 7 +, the -ais, and the lines = and = 0. Give your answer correct

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14

Solution 2. ((3)(1) (2)(1), (4 3), (4)(2) (3)(3)) = (1, 1, 1) D u (f) = (6x + 2yz, 2y + 2xz, 2xy) (0,1,1) = = 4 14 Vector and Multivariable Calculus L Marizza A Bailey Practice Trimester Final Exam Name: Problem 1. To prepare for true/false and multiple choice: Compute the following (a) (4, 3) ( 3, 2) Solution 1. (4)(

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following:

Quiz problem bank. Quiz 1 problems. 1. Find all solutions (x, y) to the following: Quiz problem bank Quiz problems. Find all solutions x, y) to the following: xy x + y = x + 5x + 4y = ) x. Let gx) = ln. Find g x). sin x 3. Find the tangent line to fx) = xe x at x =. 4. Let hx) = x 3

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

13.4 TANGENT PLANES and DIFFERENTIALS

13.4 TANGENT PLANES and DIFFERENTIALS 3.4 Tangent Planes and Differentials Contemporar Calculus 3.4 TANGENT PLANES and DIFFERENTIALS In Section.8 we were able to use the derivative f ' of a function = f() of one variable to find the equation

More information

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12.

Exam 2 Preparation Math 2080 (Spring 2011) Exam 2: Thursday, May 12. Multivariable Calculus Exam 2 Preparation Math 28 (Spring 2) Exam 2: Thursday, May 2. Friday May, is a day off! Instructions: () There are points on the exam and an extra credit problem worth an additional

More information

Review Sheet for Second Midterm Mathematics 1300, Calculus 1

Review Sheet for Second Midterm Mathematics 1300, Calculus 1 Review Sheet for Second Midterm Mathematics 300, Calculus. For what values of is the graph of y = 5 5 both increasing and concave up? 2. Where does the tangent line to y = 2 through (0, ) intersect the

More information

Math : Differentiation

Math : Differentiation EP-Program - Strisuksa School - Roi-et Math : Differentiation Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou. Differentiation

More information

10.1 Curves Defined by Parametric Equations

10.1 Curves Defined by Parametric Equations 10.1 Curves Defined by Parametric Equations Ex: Consider the unit circle from Trigonometry. What is the equation of that circle? There are 2 ways to describe it: x 2 + y 2 = 1 and x = cos θ y = sin θ When

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES

EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES EXTRA-CREDIT PROBLEMS ON SURFACES, MULTIVARIABLE FUNCTIONS AND PARTIAL DERIVATIVES A. HAVENS These problems are for extra-credit, which is counted against lost points on quizzes or WebAssign. You do not

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Math 233. Lagrange Multipliers Basics

Math 233. Lagrange Multipliers Basics Math 33. Lagrange Multipliers Basics Optimization problems of the form to optimize a function f(x, y, z) over a constraint g(x, y, z) = k can often be conveniently solved using the method of Lagrange multipliers:

More information

Topics in Analytic Geometry Part II

Topics in Analytic Geometry Part II Name Chapter 9 Topics in Analytic Geometry Part II Section 9.4 Parametric Equations Objective: In this lesson you learned how to evaluate sets of parametric equations for given values of the parameter

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information