The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0

Size: px
Start display at page:

Download "The directional derivative of f x, y in the direction of at x, y u. f x sa y sb f x y (, ) (, ) 0 0 y 0 0"

Transcription

1 Review: 0, lim D f u u The directional derivative of f, in the direction of at, is denoted b D f, : u a, b must a unit vector u f sa sb f s 0 (, ) (, ) s f (, ) a f (, ) b D f, f u where f f, f u Fastest increase is f, in the direction of 0 0 Fastest decrease is f, in the direction of 0 0 f u f f u f f (, ) is orthogonal to the level (contour) curve f (, ) f (, ) If w f (,, z), then the directional derivative is: D f,, z f u where f f, f, f u z

2 Eample: Find the gradient vector of f,, z z z f ( z ) ( k i) (z ) (k + j) ( z ) ( z ) i + ( z) j+ ( ) k ( z )

3 Let S be a surface with equation F,, z k S is a level surface of a function F of three variables Let P,, z be a point on S. Let C be an curve that lies on the surface S and passes through the point P. Let C defined b r t t, t, z t An point t, t, z t on C is also on S.,, F t t z t k If,, and z are differentiable functions of t and F is also differentiable, then F d F d F dz 0 dt dt z dt Another wa to write this is: F F F d d dz,,,, 0 z dt dt dt t 0 Fr F r t Let t be the parameter value corresponding to P. 0 r The tangent vector r t,, z 0 0 lies in the tangent plane to the surface S at the point P Gradient vector in 3-space t F r t 0 F,, z is the normal 0 vector to the tangent plane to S at P

4 The equation of the plane with normal a, b, c containing the point,, z : a b c z z 0,, b F,, z c F,, z a F z F,, z is the normal vector to the tangent plane to S at P z When the plane is the tangent plane to the surface F,, z k at the point,, z : F (,, z ) F (,, z ) F (,, z ) z z z 0 Eample: 3 Compute the tangent plane to the surface 4z z 0 at the point (1,, 1) F 4z F 1,, F z 1,,1 F 1z F 1 1 z 1,,1 1 z F z z 6 0 5z 3 0 z

5 14.5 Tangent Planes and Differentials

6 Recall: If a surface in 3-space is described as a level surface, i.e. F,, z k, then the tangent plane at,, z is given b F (,, z ) F (,, z ) F (,, z ) z z z 0 Often, a surface is given as the graph of a function z f (, ). What is a good formula for the tangent plane? Let F f (, ) z Then the surface is also describe b F 0, i.e., it is a level surface of F Then F f, F f and F 1 The z So f f z z 0 tangent plane to the surface z f, at the point P,, z is z z f (, ) f (, ) 0

7 Eample: 4 Find the equation of the tangent plane to z e at 3,0,. 4, f e f 1 e 4 f 3,0 1 3 e f 4e 4 e 4 4 e e 4 f 3,0 e 40 3 e ,, z z f f 0 1 z z 3 4 4z z 5 0

8 The tangent plane approimates the surface: z The elliptic paraboloid appears to coincide with its tangent plane as we zoom in toward (1, 1, 3). The tangent plane and the elliptic paraboloid become virtuall Indistinguishable the closer we get to (1, 1, 3). locall the surface looks linear The tangent plane is the linearization of the function at the point of tangenc.

9 The linearization of f at a, b is L, f a, b f a, b a f a, b b The approimation f, f a, b f a, b a f a, b b This can be used to approimate the function at "nearb" points. L, Recall, the tangent plane is z f ( a, b) f ( a, b) a f ( a, b) b is called the linear approimation of f at a, b or the tangent plane approimation of f at a, b.

10 Eample: L, f a, b f a, b a f, a b b Find the linear approimation of the function f, 0 7 at,1 and use it to approimate f 1.95,1.08. f, 0 7,,1 f a b f 1,1 f 14,1 f, 3 1 f f f f, Linear approimation: L(, ) , , , A calculator shows the difference is If (, ) is close to (,1) f 7 3

11 Recall the eample: f (, ), f (0,0) 0 f f is not continuous at (0,0). 0,0 0 f Tangent plane would be: 0,0 0 z z f (, ) f (, ) 0 0 or z z 0 The "tangent plane" would be the - plane Clearl a bad approimation near (0,0) (Recall though that for f ( ) the tangent line approimates f near a if f '( a) eists!) So we need a better definition of when f is differentiable at ( a, b) It is not sufficient to assume that f ( a, b) and f ( a, b) eists.

12 Definition : z f, is called differentiable at ( a, b) if z f (, ) f ( a, b) is approimatel f ( a, b) f ( a, b) for small, (and the approimation gets better the smaller, ) Theorem : If z f, and f and f are continuous near ( a, b), then f is differentiable at ( a, b) Corollar : If f is differentiable at ( a, b), then it is also continuous at ( a, b). Indeed, if z f (, ) f ( a, b) is approimatel f ( a, b) f ( a, b) for small,, then as (, ) ( a, b), 0 and 0 and hence z 0. Thus lim f (, ) f ( a, b ) (, ) ( a, b)

13 Recall the concept of a differential for a function of one variable d a f a h f a f '( a) lim lim d h0 h h0 hence f '( a) Differentials : d and d f '( a) d Recall tangent line is f ( a) f '( a)( a) hence along the tangent line the change in d is f ( a) f '( a)( a) is the change along the tangent line f '( a) f '( a) d

14 The linear approimation formula f, f a, b f a, b a f a, b b the increment of the increment of the d differential of the d differential of for independent variables, the increment is the same as the differential d What about the dependent variable z?,, z f f a b dz? d

15 The differential dz or the total differential is dz f, d f, d The linear approimation formula f, f a, b f a, b a f a, b b f, f a, b f a, b a f a, b b z dz but dz is much easier to calculate

16 Geometric interpretation of the differential dz and the incerement z dz goes along the tangent plane from ( a, b) to ( a, b )

17 Problem: 1 a A Watch out for units! A 1 da Ad Ad d d 1 da da m Relative error b z error actual 1 1 A 1 the maimum error in the measurement 5 1 d 0.00 m. d 0.00 similarl d 0.00 the maimum error in the calculated value of the area % 30 dz d d m Relative error % 13 z

18 Problem: z 4 The ellipsoid 1 bounds a region of volume V abc. a b c 3 At a moment when a 1, b, and c 3, a is changing at a rate of and b is changing at a rate of 3. At what rate must c change for the volume to be constant?

What you will learn today

What you will learn today What you will learn today Tangent Planes and Linear Approximation and the Gradient Vector Vector Functions 1/21 Recall in one-variable calculus, as we zoom in toward a point on a curve, the graph becomes

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Lecture 25 February 28, 2007 Recall Fact Recall Fact If f is a dierentiable function of x and y, then f has a directional derivative in the direction

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Directional Derivatives and the Gradient Vector Part 2

Directional Derivatives and the Gradient Vector Part 2 Directional Derivatives and the Gradient Vector Part 2 Marius Ionescu October 26, 2012 Marius Ionescu () Directional Derivatives and the Gradient Vector Part October 2 26, 2012 1 / 12 Recall Fact Marius

More information

Functions of Several Variables

Functions of Several Variables Functions of Several Variables Directional Derivatives and the Gradient Vector Philippe B Laval KSU April 7, 2012 Philippe B Laval (KSU) Functions of Several Variables April 7, 2012 1 / 19 Introduction

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) =

Graphing Functions. 0, < x < 0 1, 0 x < is defined everywhere on R but has a jump discontinuity at x = 0. h(x) = Graphing Functions Section. of your tetbook is devoted to reviewing a series of steps that you can use to develop a reasonable graph of a function. Here is my version of a list of things to check. You

More information

14.4: Tangent Planes and Linear Approximations

14.4: Tangent Planes and Linear Approximations 14.4: Tangent Planes and Linear Approximations Marius Ionescu October 15, 2012 Marius Ionescu () 14.4: Tangent Planes and Linear Approximations October 15, 2012 1 / 13 Tangent Planes Marius Ionescu ()

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 20C. Lecture Eamples. (8/7/0) Section 4.4. Linear approimations and tangent planes A function z = f(,) of two variables is linear if its graph in z-space is a plane. Equations of planes were found

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Differentiability and Tangent Planes October 2013

Differentiability and Tangent Planes October 2013 Differentiability and Tangent Planes 14.4 04 October 2013 Differentiability in one variable. Recall for a function of one variable, f is differentiable at a f (a + h) f (a) lim exists and = f (a) h 0 h

More information

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives

Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives. Directional Derivatives Recall that if z = f(x, y), then the partial derivatives f x and f y are defined as and represent the rates of change of z in the x- and y-directions, that is, in the directions of the unit vectors i and

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b.

Practice problems. 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. Practice problems 1. Given a = 3i 2j and b = 2i + j. Write c = i + j in terms of a and b. 1, 1 = c 1 3, 2 + c 2 2, 1. Solve c 1, c 2. 2. Suppose a is a vector in the plane. If the component of the a in

More information

Surfaces and Integral Curves

Surfaces and Integral Curves MODULE 1: MATHEMATICAL PRELIMINARIES 16 Lecture 3 Surfaces and Integral Curves In Lecture 3, we recall some geometrical concepts that are essential for understanding the nature of solutions of partial

More information

Equation of tangent plane: for implicitly defined surfaces section 12.9

Equation of tangent plane: for implicitly defined surfaces section 12.9 Equation of tangent plane: for implicitly defined surfaces section 12.9 Some surfaces are defined implicitly, such as the sphere x 2 + y 2 + z 2 = 1. In general an implicitly defined surface has the equation

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f

d f(g(t), h(t)) = x dt + f ( y dt = 0. Notice that we can rewrite the relationship on the left hand side of the equality using the dot product: ( f Gradients and the Directional Derivative In 14.3, we discussed the partial derivatives f f and, which tell us the rate of change of the x y height of the surface defined by f in the x direction and the

More information

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015

The Limit Concept. Introduction to Limits. Definition of Limit. Example 1. Example 2. Example 3 4/7/2015 4/7/015 The Limit Concept Introduction to Limits Precalculus 1.1 The notion of a it is a fundamental concept of calculus. We will learn how to evaluate its and how they are used in the two basic problems

More information

14.6 Directional Derivatives and the Gradient Vector

14.6 Directional Derivatives and the Gradient Vector 14 Partial Derivatives 14.6 and the Gradient Vector Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and the Gradient Vector In this section we introduce

More information

Math 21a Final Exam Solutions Spring, 2009

Math 21a Final Exam Solutions Spring, 2009 Math a Final Eam olutions pring, 9 (5 points) Indicate whether the following statements are True or False b circling the appropriate letter No justifications are required T F The (vector) projection of

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Functions of Several Variables module: - Section 3: Limits and Continuity - Section 4: Partial Derivatives - Section 5: Tangent Plane, Linearization, and Differentiability

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

12.7 Tangent Planes and Normal Lines

12.7 Tangent Planes and Normal Lines .7 Tangent Planes and Normal Lines Tangent Plane and Normal Line to a Surface Suppose we have a surface S generated by z f(x,y). We can represent it as f(x,y)-z 0 or F(x,y,z) 0 if we wish. Hence we can

More information

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane

Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Lecture 6: Chain rule, Mean Value Theorem, Tangent Plane Rafikul Alam Department of Mathematics IIT Guwahati Chain rule Theorem-A: Let x : R R n be differentiable at t 0 and f : R n R be differentiable

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite.

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite. Integration 1. Calculate (a) ( 5) d (b) 4 + 3 1 d (c) ( ) + d 1 = 6. Calculate the shaded area in the diagram opposite. 3. The diagram shows part of the graph of = 7 10. 5 = + 0 4. Find the area between

More information

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation 3.9 Differentials 3 3.9 Differentials Understand the concept of a tangent line approimation. Compare the value of the differential, d, with the actual change in,. Estimate a propagated error using a differential.

More information

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra

Kevin James. MTHSC 206 Section 15.6 Directional Derivatives and the Gra MTHSC 206 Section 15.6 Directional Derivatives and the Gradient Vector Definition We define the directional derivative of the function f (x, y) at the point (x 0, y 0 ) in the direction of the unit vector

More information

Slope of the Tangent Line. Estimating with a Secant Line

Slope of the Tangent Line. Estimating with a Secant Line Slope of the Tangent Line Given a function f find the slope of the line tangent to the graph of f, that is, to the curve, at the point P(a, f (a)). The graph of a function f and the tangent line at a point

More information

(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8

(i) h(7,8,24) (ii) h(6,5,6) (iii) h( 7,8,9) (iv) h(10,9, 16) (iv) g 3,32 8 M252 Practice Eam for 12.1-12.9 1. Find and simplify the function values. f ( y, ) = 5 10y (i) f(0,0) (ii) f(0,1) (iii) f(3,9) (iv) f(1,y) (v) f(,0) (vi) f(t,1) 2. Find and simplify the function values.

More information

Quiz 6 Practice Problems

Quiz 6 Practice Problems Quiz 6 Practice Problems Practice problems are similar, both in difficulty and in scope, to the type of problems you will see on the quiz. Problems marked with a are for your entertainment and are not

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Introduction to PDEs: Notation, Terminology and Key Concepts

Introduction to PDEs: Notation, Terminology and Key Concepts Chapter 1 Introduction to PDEs: Notation, Terminology and Key Concepts 1.1 Review 1.1.1 Goal The purpose of this section is to briefly review notation as well as basic concepts from calculus. We will also

More information

27. Tangent Planes & Approximations

27. Tangent Planes & Approximations 27. Tangent Planes & Approximations If z = f(x, y) is a differentiable surface in R 3 and (x 0, y 0, z 0 ) is a point on this surface, then it is possible to construct a plane passing through this point,

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION The volume of a sphere is the limit of sums of volumes of approimating clinders. In this chapter we eplore some of the applications of the definite integral b using it to

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

Name: Class: Date: 1. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. . Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint. f (x, y) = x y, x + y = 8. Set up the triple integral of an arbitrary continuous function

More information

MATH 19520/51 Class 6

MATH 19520/51 Class 6 MATH 19520/51 Class 6 Minh-Tam Trinh University of Chicago 2017-10-06 1 Review partial derivatives. 2 Review equations of planes. 3 Review tangent lines in single-variable calculus. 4 Tangent planes to

More information

2.3 Polynomial Functions of Higher Degree with Modeling

2.3 Polynomial Functions of Higher Degree with Modeling SECTION 2.3 Polnomial Functions of Higher Degree with Modeling 185 2.3 Polnomial Functions of Higher Degree with Modeling What ou ll learn about Graphs of Polnomial Functions End Behavior of Polnomial

More information

3.6 Directional Derivatives and the Gradient Vector

3.6 Directional Derivatives and the Gradient Vector 288 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.6 Directional Derivatives and te Gradient Vector 3.6.1 Functions of two Variables Directional Derivatives Let us first quickly review, one more time, te

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes.

The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), Goals. Warm-up: Differentiability. Notes. Notes. The Differential df, the Gradient f, & the Directional Derivative Dû f sec 14.4 (cont), 14.5 10 March 2014 Goals. We will: Define the differential df and use it to approximate changes in a function s value.

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

Hw 4 Due Feb 22. D(fg) x y z (

Hw 4 Due Feb 22. D(fg) x y z ( Hw 4 Due Feb 22 2.2 Exercise 7,8,10,12,15,18,28,35,36,46 2.3 Exercise 3,11,39,40,47(b) 2.4 Exercise 6,7 Use both the direct method and product rule to calculate where f(x, y, z) = 3x, g(x, y, z) = ( 1

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

13.4 TANGENT PLANES and DIFFERENTIALS

13.4 TANGENT PLANES and DIFFERENTIALS 3.4 Tangent Planes and Differentials Contemporar Calculus 3.4 TANGENT PLANES and DIFFERENTIALS In Section.8 we were able to use the derivative f ' of a function = f() of one variable to find the equation

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k

while its direction is given by the right hand rule: point fingers of the right hand in a 1 a 2 a 3 b 1 b 2 b 3 A B = det i j k I.f Tangent Planes and Normal Lines Again we begin by: Recall: (1) Given two vectors A = a 1 i + a 2 j + a 3 k, B = b 1 i + b 2 j + b 3 k then A B is a vector perpendicular to both A and B. Then length

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

The Fundamental Theorem of Calculus Using the Rule of Three

The Fundamental Theorem of Calculus Using the Rule of Three The Fundamental Theorem of Calculus Using the Rule of Three A. Approimations with Riemann sums. The area under a curve can be approimated through the use of Riemann (or rectangular) sums: n Area f ( k

More information

Let and be a differentiable function. Let Then be the level surface given by

Let and be a differentiable function. Let Then be the level surface given by Module 12 : Total differential, Tangent planes and normals Lecture 35 : Tangent plane and normal [Section 35.1] > Objectives In this section you will learn the following : The notion tangent plane to a

More information

Derivatives 3: The Derivative as a Function

Derivatives 3: The Derivative as a Function Derivatives : The Derivative as a Function 77 Derivatives : The Derivative as a Function Model : Graph of a Function 9 8 7 6 5 g() - - - 5 6 7 8 9 0 5 6 7 8 9 0 5 - - -5-6 -7 Construct Your Understanding

More information

University of California, Berkeley

University of California, Berkeley University of California, Berkeley FINAL EXAMINATION, Fall 2012 DURATION: 3 hours Department of Mathematics MATH 53 Multivariable Calculus Examiner: Sean Fitzpatrick Total: 100 points Family Name: Given

More information

Triple Integrals in Rectangular Coordinates

Triple Integrals in Rectangular Coordinates Triple Integrals in Rectangular Coordinates P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Triple Integrals in Rectangular Coordinates April 10, 2017 1 / 28 Overview We use triple integrals

More information

Downloaded from

Downloaded from 1 Class XI: Math Chapter 13: Limits and Derivatives Chapter Notes Key-Concepts 1. The epected value of the function as dictated by the points to the left of a point defines the left hand it of the function

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS

MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 OVERVIEW OF CONTENTS AND SAMPLE PROBLEMS MAT203 covers essentially the same material as MAT201, but is more in depth and theoretical. Exam problems are often more sophisticated in scope and difficulty

More information

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore,

t dt ds Then, in the last class, we showed that F(s) = <2s/3, 1 2s/3, s/3> is arclength parametrization. Therefore, 13.4. Curvature Curvature Let F(t) be a vector values function. We say it is regular if F (t)=0 Let F(t) be a vector valued function which is arclength parametrized, which means F t 1 for all t. Then,

More information

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities

Graph Sketching. Review: 1) Interval Notation. Set Notation Interval Notation Set Notation Interval Notation. 2) Solving Inequalities Lesson. Graph Sketching Review: ) Interval Notation Set Notation Interval Notation Set Notation Interval Notation a) { R / < < 5} b) I (, 3) ( 3, ) c){ R} d) I (, ] (0, ) e){ R / > 5} f) I [ 3,5) ) Solving

More information

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity

MA123, Chapter 6: Extreme values, Mean Value Theorem, Curve sketching, and Concavity MA123, Chapter 6: Etreme values, Mean Value Theorem, Curve sketching, and Concavit Chapter Goals: Appl the Etreme Value Theorem to find the global etrema for continuous function on closed and bounded interval.

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim

f (Pijk ) V. may form the Riemann sum: . Definition. The triple integral of f over the rectangular box B is defined to f (x, y, z) dv = lim Chapter 14 Multiple Integrals..1 Double Integrals, Iterated Integrals, Cross-sections.2 Double Integrals over more general regions, Definition, Evaluation of Double Integrals, Properties of Double Integrals.3

More information

Parametric Surfaces. Substitution

Parametric Surfaces. Substitution Calculus Lia Vas Parametric Surfaces. Substitution Recall that a curve in space is given by parametric equations as a function of single parameter t x = x(t) y = y(t) z = z(t). A curve is a one-dimensional

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus III-Final review Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the corresponding position vector. 1) Define the points P = (-,

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

Solution of final examination

Solution of final examination of final examination Math 20, pring 201 December 9, 201 Problem 1 Let v(t) (2t e t ) i j + π cos(πt) k be the velocity of a particle with initial position r(0) ( 1, 0, 2). Find the accelaration at the

More information

Euler s Method and Logistic Growth (BC Only)

Euler s Method and Logistic Growth (BC Only) Euler s Method Students should be able to: Approximate numerical solutions of differential equations using Euler s method without a calculator. Recognize the method as an recursion formula extension of

More information

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx

x=2 26. y 3x Use calculus to find the area of the triangle with the given vertices. y sin x cos 2x dx 31. y sx 2 x dx 4 CHAPTER 6 APPLICATIONS OF INTEGRATION 6. EXERCISES 4 Find the area of the shaded region.. =5-. (4, 4) =. 4. = - = (_, ) = -4 =œ + = + =.,. sin,. cos, sin,, 4. cos, cos, 5., 6., 7.,, 4, 8., 8, 4 4, =_

More information

C3 Integration 1. June 2010 qu. 4

C3 Integration 1. June 2010 qu. 4 C Integration. June qu. 4 k The diagram shows part of the curve y =, where k is a positive constant. The points A and B on the curve have -coordinates and 6 respectively. Lines through A and B parallel

More information

TI-89 Clinic. Let s first set up our calculators so that we re all working in the same mode.

TI-89 Clinic. Let s first set up our calculators so that we re all working in the same mode. TI-89 Clinic Preliminaries Let s first set up our calculators so that we re all working in the same mode. From the home screen, select F6 new problem. Hit enter to eecute that command. This erases previous

More information

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem

The derivative of a function at one point. 1. Secant lines and tangents. 2. The tangent problem 1. Secant lines and tangents The derivative of a function at one point A secant line (or just secant ) is a line passing through two points of a curve. As the two points are brought together (or, more

More information

2.4 Polynomial and Rational Functions

2.4 Polynomial and Rational Functions Polnomial Functions Given a linear function f() = m + b, we can add a square term, and get a quadratic function g() = a 2 + f() = a 2 + m + b. We can continue adding terms of higher degrees, e.g. we can

More information

TANGENTS AND NORMALS

TANGENTS AND NORMALS Mathematics Revision Guides Tangents and Normals Page 1 of 8 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edecel: C OCR: C1 OCR MEI: C TANGENTS AND NORMALS Version : 1 Date:

More information

2.2 Absolute Value Functions

2.2 Absolute Value Functions . Absolute Value Functions 7. Absolute Value Functions There are a few was to describe what is meant b the absolute value of a real number. You ma have been taught that is the distance from the real number

More information

Implicit differentiation

Implicit differentiation Roberto s Notes on Differential Calculus Chapter 4: Basic differentiation rules Section 5 Implicit differentiation What ou need to know alread: Basic rules of differentiation, including the chain rule.

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Further Differentiation

Further Differentiation Worksheet 39 Further Differentiation Section Discriminant Recall that the epression a + b + c is called a quadratic, or a polnomial of degree The graph of a quadratic is called a parabola, and looks like

More information

Dr. Allen Back. Aug. 27, 2014

Dr. Allen Back. Aug. 27, 2014 Dr. Allen Back Aug. 27, 2014 Math 2220 Preliminaries (2+ classes) Differentiation (12 classes) Multiple Integrals (9 classes) Vector Integrals (15 classes) Math 2220 Preliminaries (2+ classes) Differentiation

More information

Kevin James. MTHSC 206 Section 14.5 The Chain Rule

Kevin James. MTHSC 206 Section 14.5 The Chain Rule MTHSC 206 Section 14.5 The Chain Rule Theorem (Chain Rule - Case 1) Suppose that z = f (x, y) is a differentiable function and that x(t) and y(t) are both differentiable functions as well. Then, dz dt

More information

Engineering Mathematics (4)

Engineering Mathematics (4) Engineering Mathematics (4) Zhang, Xinyu Department of Computer Science and Engineering, Ewha Womans University, Seoul, Korea zhangxy@ewha.ac.kr Example With respect to parameter: s (arc length) r( t)

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

GRAPHICS OUTPUT PRIMITIVES

GRAPHICS OUTPUT PRIMITIVES CHAPTER 3 GRAPHICS OUTPUT PRIMITIVES LINE DRAWING ALGORITHMS DDA Line Algorithm Bresenham Line Algorithm Midpoint Circle Algorithm Midpoint Ellipse Algorithm CG - Chapter-3 LINE DRAWING Line drawing is

More information

The Divergence Theorem

The Divergence Theorem The Divergence Theorem MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Summer 2011 Green s Theorem Revisited Green s Theorem: M(x, y) dx + N(x, y) dy = C R ( N x M ) da y y x Green

More information

Technology Assignment: Limits at Infinity

Technology Assignment: Limits at Infinity The goal of this technology assignment is to find the location of the horizontal asymptote for your model from Technology Assignment: Rational Model. You will produce a graph similar to the one below.

More information

Winter 2012 Math 255 Section 006. Problem Set 7

Winter 2012 Math 255 Section 006. Problem Set 7 Problem Set 7 1 a) Carry out the partials with respect to t and x, substitute and check b) Use separation of varibles, i.e. write as dx/x 2 = dt, integrate both sides and observe that the solution also

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

3 D DIFFERENTIATION RULES

3 D DIFFERENTIATION RULES 3 D DIFFERENTIATION RULES 3.1 Derivatives ofpolnomials and Eponential Functions h 1. (a) e is the number such that lim e h- 1 = 1. h----+o (b).7 X - 1-0.001 0.998-0.0001 0.993 0.001 0.9937 0.0001 0.9933.8

More information

3.5 - Concavity. a concave up. a concave down

3.5 - Concavity. a concave up. a concave down . - Concavity 1. Concave up and concave down For a function f that is differentiable on an interval I, the graph of f is If f is concave up on a, b, then the secant line passing through points 1, f 1 and,

More information

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1

PRACTICE FINAL - MATH 1210, Spring 2012 CHAPTER 1 PRACTICE FINAL - MATH 2, Spring 22 The Final will have more material from Chapter 4 than other chapters. To study for chapters -3 you should review the old practice eams IN ADDITION TO what appears here.

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information