Multimodal multiplex spectroscopy using photonic crystals

Size: px
Start display at page:

Download "Multimodal multiplex spectroscopy using photonic crystals"

Transcription

1 Multimodal multiplex spectroscopy using photonic crystals Zhaochun Xu, Zhanglei Wang, Michael E. Sullivan and David J. Brady Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham, NC 27708, USA Stephen H. Foulger School of Materials Science and Engineering, Center for Optical Materials Science and Engineering Technologies Clemson University, Clemson, SC 29634, USA Ali Adibi Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA Abstract: Spatio-spectral transmission patterns induced on low coherence fields by disordered photonic crystals can be used to construct optical spectrometers. Experimental results suggest that 1-10 nm resolution multimodal spectrometers for diffuse source analysis may be constructed using a photonic crystal mounted on a focal plane array. The relative independence of spatial and spectral modal response in photonic crystals enables high efficiency spectral analysis of diffuse sources Optical Society of America OCIS codes: ( ) Optical spectrum analysis; ( ) Spectrometers and spectroscopic instrumentation Refererences and links 1. R. Narayanaswamy, "Proceedings of the 6th European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE VI," Sensors and Actuators B 90, (2003). 2. M. Moskovits, "Surface-Enhanced Spectroscopy," Rev. Mod. Phys. 57, (1985). 3. J. F. James and R. S. Sternberg, The Design of Optical Spectrometers (Chapman & Hall, London, 1969). 4. S. Y. Lin, V. M. Hietala, L. Wang, and E. D. Jones, "Highly dispersive photonic band-gap prism," Opt. Lett. 21, (1996). 5. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B 58, R10096-R10099 (1998). 6. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals: Toward microscale lightwave circuits," J. Lightwave Technol. 17, (1999). 7. M. Notomi, "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B 62, (2000). 8. B. Gralak, S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," J. Opt. Soc. Am. A 17, (2000). 9. L. J. Wu, M. Mazilu, T. Karle, and T. F. Krauss, "Superprism phenomena in planar photonic crystals," IEEE J. Quantum Electron. 38, (2002). 10. L. Mandel and E. Wolf, Optical coherence and quantum optics (Cambridge Univ. Press, Cambridge, 1995). 11. D. L. Marks, R. A. Stack, and D. J. Brady, "Digital refraction distortion correction with an astigmatic coherence sensor," Appl. Opt. 41, (2002). 12. E. Yablonovitch, "Inhibited Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, (1987). (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2126

2 13. S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices," Phys. Rev. Lett. 58, (1987). 14. S. H. Foulger, P. Jiang, A. Lattam, D. W. Smith, J. Ballato, D. E. Dausch, S. Grego, and B. R. Stoner, "Photonic crystal composites with reversible high-frequency stop band shifts," Adv. Mater. 15, (2003). 15. S. H. Foulger, P. Jiang, Y. R. Ying, A. C. Lattam, D. W. Smith, and J. Ballato, "Photonic bandgap composites," Adv. Mater. 13, (2001). 16. S. H. Foulger, S. Kotha, B. Sweryda-Krawiec, T. W. Baughman, J. M. Ballato, P. Jiang, and D. W. Smith, "Robust polymer colloidal crystal photonic bandgap structures," Opt. Lett. 25, (2000). 1. Introduction Optical spectroscopy for chemical and biological sensing is based on spectral structure induced by absorption, refraction, fluorescence or scattering [1]. Spectroscopic analysis of incoherent phenomena, such as fluorescence and Raman scattering, is inefficient because spatially diffuse sources couple poorly to spatial filtering spectrometers. Conventional spectrometers spatially filter to reduce ambiguity between spatial and spectral modes. To date, surface enhanced spectroscopy [2] has been the best approach to overcoming this mismatch. By localizing the fluorescing or scattering source, surface enhancement improves coupling between source and spectrometer. We propose an alternative approach to overcoming this mismatch using multimodal multiplex spectroscopy. Multiplex spectrometers measure weighted projections of multiple wavelength channels and have been common for the past half century [3]. Multimodal spectrometers are designed to measure the spectral density averaged over multiple spatial modes. Integrated multimodal spectroscopy is enabled by recent progress in photonic crystals and is to our knowledge first explicitly introduced in this report. A spectrometer capable of averaging spectral densities over many modes would improve the optical throughput of low coherence sources by several orders of magnitude (similar to the enhancements observed using surface enhancement) and could thereby enable volume Raman and fluorescence spectroscopy of diffuse sources, such as tissue and gases. Multimodal multiplex spectrometers may be constructed using the spectral diversity of transmission through inhomogeneous photonic crystals. Several groups have used homogeneous photonic crystals to produce spectral filters and prisms. For example, Lin, et al., demonstrated a dispersive prism in two dimensional microwave photonic crystals [4]. Later, Kosaka et al., considered anomalous dispersion photonic crystals near resonance [5] and proposed use of the resulting superprism effect for wavelength demultiplexing applications [6]. The theory of the superprism effect is well developed [7, 8] and wavelength separation in a planar photonic crystal structure is demonstrated in good agreement with the theory [9]. In all these demonstrations, the incident optical beam has been spatially coherent and the photonic crystal has been assumed to be homogeneous. Spatio-spectral structure in the transmittance of inhomogeneous disordered photonic crystals can convert spatially incoherent input signals with spatially uniform spectral density into spatially non-uniform spectral densities over a detection plane. The inhomogeneity induced in the transmitted spectrum can be sampled to measure multiplex spectral projections. These projections can be computationally inverted to estimate the mean spectrum over all the modes. The proposed microspectromer consists of a photonic crystal mating directly to a detector array as shown in Fig. 1. The photonic crystal in this case is a 3D opal structure that is an inhomogeneous quasi-periodic array of microcavities that cause spectral variation in the near field. Advantages of the photonic crystal filter compared to an array of thin film filters are: insensitivity to angle of incidence, ability to characterize large etendue sources, and spectral diversity as a function of position on a small scale less than 10 microns. (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2127

3 Diffuse Source S ( v ) 3D Photonic Crystal h ( v) Detector Array m Sn ( v) Fig. 1. Proposed microspectromer based on spatio-spectral structure in the transmittance of inhomogeneous disordered photonic crystals for diffuse source characterization. 2. Multimodal spectral diversity in photonic crystals An optical field in an arbitrary state of coherence is described by a cross-spectral density, which can be reduced to a discrete set of spatial and spectral distributions by coherent mode decomposition [10]. Full specification of the field consists of a data cube describing the spatial distributions of the coherent modes as well as the spectral densities. In general, the coherent modes are determined by the nature of the source and by secondary scattering [11]. Spectrometers measure projections of the data cube. Representing the measurements as a vector m, we represent a projection as m = Sn ( ν ) ( ν) dν n h, where S n n ( ν ) is the th power spectral density of the n mode and h n ( ν ) is a vector describing the sensitivity of th each measurement to the n spatial mode at the frequency ν. h n ( ν ) is determined in the spectrometer by dispersive elements, such as prisms, gratings or interferometers. Conventional thin dispersive elements display spatio-spectral modal ambiguity. For example, a thin diffraction grating diffracts the field at wavelength λ 1 incident at angle θ 1 relative to the grating wavevector in the same direction as the field at wavelength λ 2 incident at angle θ 2 such that cosθ2 = cos θ1+ ( λ1 λ2) / Λ, where Λ is the grating period. Spectroscopic measurements are not well-conditioned for estimating the spectra Sn ( ν ) unless this ambiguity is broken. Conventional spectrometers take two approaches to removing the ambiguity. The most common approach is to spatially filter prior to and after dispersion, typically at the entrance and exit apertures (slits) of the spectrometer. This approach removes the ambiguity at a cost of dramatically reducing the light efficiency of the system (most modes are not transmitted to the detector.) The alternative approach is to image through the spectrometer, which is equivalent to spatially filtering many modes in parallel. This approach is effective but the optical and digital hardware required is bulky, expensive and, for nonmode specific spectroscopy, unnecessary. The capacity of photonic crystals to break the ambiguity between spatial and spectral modes was the core of their original conception [12, 13]. The idea has been to form band (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2128

4 gaps such that no modes exist at specific frequencies and then to use dislocations or impurities to introduce localized states. Here we propose a new class of photonic crystal applications that do not require full band gaps, but do rely on inhomogeneous spectral properties due to crystal disorder. We use the local spatio-spectral distribution of fields in photonic crystals to build linear distributed devices for spectral estimation. As an example of a crystal appropriate for these applications, Fig. 2 is a true color image of a colloidal crystal formed of a quasi-periodic array of polymer spheres. The crystal is uniformly illuminated by a halogen light source subtending a solid angle of 0.1 steradians. The half angle is 10 degrees. One is accustomed to observing color separation with gratings, but only for narrow spatial bandwidth fields observed in the far field of the structure. As shown in Fig. 2, a photonic crystal can induce complex multidimensional spectral diversity in the near field of the device. This structure is illustrated in more detail in Fig. 3, which plots the spectral transmission at points distributed on a rectangular grid spaced by 100 microns. The photonic crystal structure is illuminated by the halogen source with an effective source spatial bandwidth of 25mm diameter. The distance of the source to the photonic crystal was 75mm. An Ocean Optics USB2000 fiber optic spectrometer was used to measure the transmission spectrum at a grid of points in a plane 0.5mm behind the opal structure. Fig. 2. True color photographs of the photonic crystal opal structure illuminated by a white light source. (A) 20X magnification. (B) 4X magnification. The photonic crystal composites used in our measurements were prepared as described in [14]. Fabrication begins with a crystalline colloidal array composed of monodispersed crosslinked polystyrene spheres dispersed in water. The sphere diameter is 109 ± 26 nm (mean and standard deviation) and the particle density is cm. The particles formed in a hydrogel using photoinitiated free radical polymerized methacrylate functionalized poly(ethylene glycol)(peg) [15, 16]. Upon hydrogel encapsulation, the long range order of the particles is stable to ionic contamination and minor mechanical deformation. The opalescing hydrogel based film is removed from the glass slide assembly in which it is fabricated [16] and allowed to air dry for 2 days, then placed in a vacuum oven at 35 C. The resulting clear film is then swollen in a monomer solution of 2-methoxyethyl acrylate, 2-methoxyethyl methacrylate, or a mixture of the monomers for 2 days. Ethylene glycol dimethacrylate and DEAP are added to this solution and the formulation crosslinked by a 3-minute exposure to a UV lamp. All chemicals were purchased from Aldrich or Acros Organics. (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2129

5 Fig. 3. Transmission curves as a function of wavelength at points p1 through p7. The points are on a 100 micron spaced grid immediately behind the photonic crystal. Most photonic crystal analyses and applications focus on perfectly periodic structures with perhaps a few defects added to create localized states. Self-assembled colloidal crystals, in contrast, vary slightly in order and period. Such natural inhomogeneity enables multimodal spectroscopy. We searched for regions of the crystal with particularly strong spatio-spectral inhomogeneity. Figure 4 is a spectral diversity map of the crystal used in Fig. 2. The map shows the variance of the spectral transmission of each pixel relative to the mean spectral transmission. The map shows three regions with particularly high spectral variations. Figure 5 is a movie of the crystal images at different illumination wavelengths. Fig. 4. Spectral diversity map of the opal structure. The standard deviation of transmission curves (Fig. 3) was used as a metric of spectral diversity for each point of the photonic crystal. Regions 1,2, and 3 in the plot exhibit strong spectral diversities, and those regions were chosen in our spectral estimation algorithm. (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2130

6 Fig. 5. (800 KB movie) A series of images at different illumination wavelength. Click here to start the movie. One can see that there are three regions with strong pattern variations corresponding to those in Fig Spectral estimation The spatial spectral diversity of the colloidal crystal was used to build a multimodal spectrometer. The goal of the spectrometer is to measure the mean spectral N density S ( ν ) 1 S ( ν ) = N n= 1 n. We are particularly interested in multimodal sources with spectra encoded by identical physical processes, for such sources there is no systematic variation in the power spectrum from one mode to the next. Assuming that variations of the modal power spectra from the mean modal spectrum are random with zero mean, we may assume that Sn ( v) S( v) spectral response h( ν ) h ( ν ) and S ( ) ( ) =. The measurements can be characterized by a multimodal = n n m = ν h ν dν. Bandlimits on the spatio-spectral variation in the transmission of the photonic crystal allow source-measurement transformation to be expressed in discrete form as m = Hs, where m is an m-tuple measurement vector. H is an m-by-n spectral filter response matrix, each row of which represents the spectral filter response of a specific pixel. Each column of H represents the characteristic vector corresponding to a particular spectral channel.s is an n-tuple source vector, representing the mean spectral density at each wavelength. 10,000 contiguous pixel measurements covering regions 1-3 of Fig. 4 were used to estimate source spectra with 5 nm resolution over nm wavelength range. Because the spectral filter response H is not known in advance, a set of calibration sources is used to characterize H. A ½ meter focal length Acton Research grating monochromator with a halogen lamp input illumination source was used for calibration. The output beam from the monochromator illuminated a diffuser such that the effective source for the photonic crystal was a uniform diffuse spot with a diameter of 12mm. The photonic crystal was placed 30mm from the diffuser so that each point on the photonic crystal subtends a full angle of 22 degrees. The image size of the photonic crystal was 5mm square. Images were captured using a Roper Scientific CoolSnap monochrome camera with a 1.2X relay lens. A series of narrow band spectra (each of 8 nm width spaced in 2 nm steps over the nm spectral range) were generated from the monochromator and their corresponding filter responses were (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2131

7 recorded on the CCD camera. These training spectra formed a banded spectral intensity matrix. The transfer function matrix H is estimated using non-negative least squares optimization. The calibrated photonic crystal was used to estimate the spectra of unknown sources over the wavelength range from 500 to 650 nanometers (nm) at resolutions varying from 2 to 20 nm. Since the number of spectral channels estimated (between 8 and 75) is much less than the number of pixel measurements (10,000) pixel, the measurements over-determine the spectrum. Over-determined problems do not have globally consistent solutions due to the presence of noise, but one can find a solution in the least squares sense. In finding the solution, we add the additional constraint that the spectral density is non-negative, which makes direct linear least squares inversion impossible. Instead we used the Matlab Optimization Toolbox to solve the general nonlinear optimization problem: min Hs-m, such that s 0, where s 2 2 denotes the Euclidean norm. Reconstruction at resolutions varying from 2 to 20 nm were attempted, 2 nm reconstruction failed to achieve high fidelity. Example spectral reconstruction results are shown in Fig. 6 with 5 nm resolution. Figure 6(a) shows the spectrum of a 15 inch LCD computer monitor set to a uniform screen color and apertured to 12 mm on the same optical path as the calibration signal. Figure 6(b) shows the spectrum of a mercury neon discharge lamp illuminating the same diffuser as was used for calibration. 4. Conclusion We are not prepared to comment on the ultimate spectral resolution of photonic crystal microspectrometers, but the resolution and modal acceptance demonstrated in the first device promising for the development of spectrometers consisting simply of a photonic crystal mounted directly on a detector array. Demonstrated advantages of the first photonic crystal microspectrometer include high optical throughput and a capacity to characterize diffuse sources. Acknowledgments This work was supported by the National Institute on Alcohol Abuse and Alcoholism through the Integrated Alcohol Sensing and Data Analysis program under contract N01-AA and the Applied and Computational Mathematic Program of the Defense Advanced Research Projects Agency through the ARO contract DAAD (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2132

8 Fig. 6. Spectra reconstruction. (A) Liquid crystal display (LCD) spectrum reconstruction. (B) Neon lamp spectrum reconstruction. In both (A) and (B), the red lines are true spectra taken by Ocean Optics USB2000 optic fiber spectrometer; the cyan bar plots are numerically reconstructed spectra using the photonic crystal spectrometer. (C) 2003 OSA 8 September 2003 / Vol. 11, No. 18 / OPTICS EXPRESS 2133

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light

Experimental Observation of Invariance of Spectral Degree of Coherence. with Change in Bandwidth of Light Experimental Observation of Invariance of Spectral Degree of Coherence with Change in Bandwidth of Light Bhaskar Kanseri* and Hem Chandra Kandpal Optical Radiation Standards, National Physical Laboratory,

More information

High spatial resolution measurement of volume holographic gratings

High spatial resolution measurement of volume holographic gratings High spatial resolution measurement of volume holographic gratings Gregory J. Steckman, Frank Havermeyer Ondax, Inc., 8 E. Duarte Rd., Monrovia, CA, USA 9116 ABSTRACT The conventional approach for measuring

More information

Strong angular dispersion using higher bands of planar silicon photonic crystals

Strong angular dispersion using higher bands of planar silicon photonic crystals Strong angular dispersion using higher bands of planar silicon photonic crystals Babak Momeni, * Maysamreza Chamanzar, Ehsan Shah Hosseini, Murtaza Askari, Mohammad Soltani, and Ali Adibi School of Electrical

More information

Models of Light The wave model: The ray model: The photon model:

Models of Light The wave model: The ray model: The photon model: Models of Light The wave model: under many circumstances, light exhibits the same behavior as sound or water waves. The study of light as a wave is called wave optics. The ray model: The properties of

More information

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2

Lenses lens equation (for a thin lens) = (η η ) f r 1 r 2 Lenses lens equation (for a thin lens) 1 1 1 ---- = (η η ) ------ - ------ f r 1 r 2 Where object o f = focal length η = refractive index of lens material η = refractive index of adjacent material r 1

More information

Comparison of Beam Shapes and Transmission Powers of Two Prism Ducts

Comparison of Beam Shapes and Transmission Powers of Two Prism Ducts Australian Journal of Basic and Applied Sciences, 4(10): 4922-4929, 2010 ISSN 1991-8178 Comparison of Beam Shapes and Transmission Powers of Two Prism Ducts 1 Z. Emami, 2 H. Golnabi 1 Plasma physics Research

More information

Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering

Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering 3284 J. Opt. Soc. Am. A/ Vol. 24, No. 10/ October 2007 Rosenthal et al. Experimental reconstruction of a highly reflecting fiber Bragg grating by using spectral regularization and inverse scattering Amir

More information

Optics Vac Work MT 2008

Optics Vac Work MT 2008 Optics Vac Work MT 2008 1. Explain what is meant by the Fraunhofer condition for diffraction. [4] An aperture lies in the plane z = 0 and has amplitude transmission function T(y) independent of x. It is

More information

Supporting Information

Supporting Information Supporting Information Min et al. 10.1073/pnas.1701092114 UV-Cross-Linking Silk Fibroin Using Stilbene Stilbene chromophore and its derivatives have been used as photoreactive building blocks or dopants

More information

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007

Control of Light. Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 2007 Control of Light Emmett Ientilucci Digital Imaging and Remote Sensing Laboratory Chester F. Carlson Center for Imaging Science 8 May 007 Spectro-radiometry Spectral Considerations Chromatic dispersion

More information

THE photonic crystal (PC) is a multidimensional diffraction

THE photonic crystal (PC) is a multidimensional diffraction JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 22, NO. 3, MARCH 2004 917 Photonic Crystal k-vector Superprism T. Matsumoto and T. Baba, Member, IEEE Abstract We theoretically investigate the resolution of the photonic

More information

AP* Optics Free Response Questions

AP* Optics Free Response Questions AP* Optics Free Response Questions 1978 Q5 MIRRORS An object 6 centimeters high is placed 30 centimeters from a concave mirror of focal length 10 centimeters as shown above. (a) On the diagram above, locate

More information

Chapter 2: Wave Optics

Chapter 2: Wave Optics Chapter : Wave Optics P-1. We can write a plane wave with the z axis taken in the direction of the wave vector k as u(,) r t Acos tkzarg( A) As c /, T 1/ and k / we can rewrite the plane wave as t z u(,)

More information

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Background theory. 1. Characteristics of the apparatus: prismatic, grating, interferometers. 2. Operating

More information

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution.

Spectrographs. C. A. Griffith, Class Notes, PTYS 521, 2016 Not for distribution. Spectrographs C A Griffith, Class Notes, PTYS 521, 2016 Not for distribution 1 Spectrographs and their characteristics A spectrograph is an instrument that disperses light into a frequency spectrum, which

More information

Enhanced optical absorptance of metals using interferometric femtosecond ablation

Enhanced optical absorptance of metals using interferometric femtosecond ablation Enhanced optical absorptance of metals using interferometric femtosecond ablation K. Paivasaari, J. J. J. Kaakkunen, M. Kuittinen and T. Jaaskelainen Department of Physics and Mathematics, University of

More information

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu

Xuechang Ren a *, Canhui Wang, Yanshuang Li, Shaoxin Shen, Shou Liu Available online at www.sciencedirect.com Physics Procedia 22 (2011) 493 497 2011 International Conference on Physics Science and Technology (ICPST 2011) Optical Tweezers Array System Based on 2D Photonic

More information

Chemistry Instrumental Analysis Lecture 6. Chem 4631

Chemistry Instrumental Analysis Lecture 6. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 6 UV to IR Components of Optical Basic components of spectroscopic instruments: stable source of radiant energy transparent container to hold sample device

More information

Cambridge University Press Fundamentals of Photonic Crystal Guiding Maksim Skorobogatiy and Jianke Yang Excerpt More information

Cambridge University Press Fundamentals of Photonic Crystal Guiding Maksim Skorobogatiy and Jianke Yang Excerpt More information 1 troduction When thinking about traditional optical materials one invokes a notion of homogeneous media, where imperfections or variations in the material properties are minimal on the length scale of

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information Compact spectrometer based on a disordered photonic chip Brandon Redding, Seng Fatt Liew, Raktim Sarma, Hui Cao* Department of Applied Physics, Yale University, New Haven, CT

More information

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019

Astronomical spectrographs. ASTR320 Wednesday February 20, 2019 Astronomical spectrographs ASTR320 Wednesday February 20, 2019 Spectrographs A spectrograph is an instrument used to form a spectrum of an object Much higher spectral resolutions than possible with multiband

More information

Formulas of possible interest

Formulas of possible interest Name: PHYS 3410/6750: Modern Optics Final Exam Thursday 15 December 2011 Prof. Bolton No books, calculators, notes, etc. Formulas of possible interest I = ɛ 0 c E 2 T = 1 2 ɛ 0cE 2 0 E γ = hν γ n = c/v

More information

1. Polarization effects in optical spectra of photonic crystals

1. Polarization effects in optical spectra of photonic crystals Speech for JASS 05. April 2005. Samusev A. 1. Polarization effects in optical spectra of photonic crystals Good afternoon. I would like to introduce myself. My name is Anton Samusev. I m a student of Saint

More information

Spectrograph overview:

Spectrograph overview: High performance measurement systems Monochromator Family Gilden Photonics offers a range of integrated optical wavelength solutions in customized designs, OEM design, manufacturing and value added resell

More information

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016

Development of Ultrafast CXRS system in Heliotron J. Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 1 Development of Ultrafast CXRS system in Heliotron J Graduate School of Energy Science Kyoto University LU XIANGXUN 03/15/2016 2 Outline 1. Introduction 2. Charge exchange Recombination Spectroscopy (CXRS)

More information

High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emiccd Technology

High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emiccd Technology 2015 Princeton Instruments, Inc. All rights reserved. High-Accuracy LIBS with Nanosecond and Picosecond Time Resolution Enabled by Ultrasensitive emiccd Technology The PI-MAX4:1024EMB emiccd camera seamlessly

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

Introduction to Diffraction Gratings

Introduction to Diffraction Gratings Introduction to Diffraction Diffraction (Ruled and Holographic) Diffraction gratings can be divided into two basic categories: holographic and ruled. A ruled grating is produced by physically forming grooves

More information

White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting

White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting White-light interference microscopy: minimization of spurious diffraction effects by geometric phase-shifting Maitreyee Roy 1, *, Joanna Schmit 2 and Parameswaran Hariharan 1 1 School of Physics, University

More information

Spectrometers: Monochromators / Slits

Spectrometers: Monochromators / Slits Spectrometers: Monochromators / Slits Monochromator Characteristics Dispersion: The separation, or wavelength selectivity, of a monochromator is dependent on its dispersion. Angular Dispersion: The change

More information

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction.

Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z. direction. Supplementary Figure 1: Schematic of the nanorod-scattered wave along the +z direction. Supplementary Figure 2: The nanorod functions as a half-wave plate. The fast axis of the waveplate is parallel to

More information

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers

Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers Mode-Field Diameter and Spot Size Measurements of Lensed and Tapered Specialty Fibers By Jeffrey L. Guttman, Ph.D., Director of Engineering, Ophir-Spiricon Abstract: The Mode-Field Diameter (MFD) and spot

More information

Mu lt i s p e c t r a l

Mu lt i s p e c t r a l Viewing Angle Analyser Revolutionary system for full spectral and polarization measurement in the entire viewing angle EZContrastMS80 & EZContrastMS88 ADVANCED LIGHT ANALYSIS by Field iris Fourier plane

More information

Wave Optics. April 11, 2014 Chapter 34 1

Wave Optics. April 11, 2014 Chapter 34 1 Wave Optics April 11, 2014 Chapter 34 1 Announcements! Exam tomorrow! We/Thu: Relativity! Last week: Review of entire course, no exam! Final exam Wednesday, April 30, 8-10 PM Location: WH B115 (Wells Hall)

More information

Switzerland ABSTRACT. Proc. of SPIE Vol N-1

Switzerland ABSTRACT. Proc. of SPIE Vol N-1 Two-dimensional refractive index profiling of optical fibers by modified refractive near-field technique A. El Sayed* a,b, Soenke Pilz b, Manuel Ryser a, Valerio Romano a,b a Institute of Applied Physics,

More information

MonoVista CRS+ Raman Microscopes

MonoVista CRS+ Raman Microscopes MonoVista CRS+ Benefits Deep UV to NIR wavelength range Up to 4 integrated multi-line lasers plus port for large external lasers Dual beam path for UV and VIS/NIR Motorized Laser selection Auto Alignment

More information

Throughput of an Optical Instrument II: Physical measurements, Source, Optics. Q4- Number of 500 nm photons per second generated at source

Throughput of an Optical Instrument II: Physical measurements, Source, Optics. Q4- Number of 500 nm photons per second generated at source Throughput of an Optical Instrument II: Physical measurements, Source, Optics Question- Value Q1- Percent output between 450-550 nm by mass Answer (w/ units) Q2- Energy in J of a 500 nm photon Q3- Flux

More information

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection

Coherent Gradient Sensing Microscopy: Microinterferometric Technique. for Quantitative Cell Detection Coherent Gradient Sensing Microscopy: Microinterferometric Technique for Quantitative Cell Detection Proceedings of the SEM Annual Conference June 7-10, 010 Indianapolis, Indiana USA 010 Society for Experimental

More information

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD

A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD A SUPER-RESOLUTION MICROSCOPY WITH STANDING EVANESCENT LIGHT AND IMAGE RECONSTRUCTION METHOD Hiroaki Nishioka, Satoru Takahashi Kiyoshi Takamasu Department of Precision Engineering, The University of Tokyo,

More information

Apex High Performance Spectrometer

Apex High Performance Spectrometer Apex High Performance Spectrometer 1 Elite High Performance Spectrometers Challenge Integrated, high end instruments are required to detect low light levels for challenging Fluorescence and Raman applications

More information

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

12/7/2012. Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry phase difference at a given distance constructive/destructive interference Biomolecular structure. Diffraction, X-ray crystallography, light- and electron microscopy. CD spectroscopy, mass spectrometry

More information

Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship

Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship Proc. Natl. Sci. Counc. ROC(A) Vol. 25, No. 5, 2001. pp. 300-308 Distortion Correction for Conical Multiplex Holography Using Direct Object-Image Relationship YIH-SHYANG CHENG, RAY-CHENG CHANG, AND SHIH-YU

More information

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS

NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS U.P.B. Sci. Bull., Series A, Vol. 77, Iss. 3, 2015 ISSN 1223-7027 NEAR-IR BROADBAND POLARIZER DESIGN BASED ON PHOTONIC CRYSTALS Bogdan Stefaniţă CALIN 1, Liliana PREDA 2 We have successfully designed a

More information

Physical Optics. You can observe a lot just by watching. Yogi Berra ( )

Physical Optics. You can observe a lot just by watching. Yogi Berra ( ) Physical Optics You can observe a lot just by watching. Yogi Berra (1925-2015) OBJECTIVES To observe some interference and diffraction phenomena with visible light. THEORY In a previous experiment you

More information

Development of automated ultraviolet laser beam profiling system using fluorometric technique

Development of automated ultraviolet laser beam profiling system using fluorometric technique Development of automated ultraviolet laser beam profiling system using fluorometric technique BB Shrivastava*, NS Benerji, P Bhatnagar, HS Vora a and U Nundy Chemical and Excimer Laser Section a Laser

More information

Secondary grating formation by readout at Bragg-null incidence

Secondary grating formation by readout at Bragg-null incidence Secondary grating formation by readout at Bragg-null incidence Ali Adibi, Jose Mumbru, Kelvin Wagner, and Demetri Psaltis We show that when a dynamic hologram is read out by illumination at the Bragg nulls

More information

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24

Textbook Reference: Physics (Wilson, Buffa, Lou): Chapter 24 AP Physics-B Physical Optics Introduction: We have seen that the reflection and refraction of light can be understood in terms of both rays and wave fronts of light. Light rays are quite compatible with

More information

Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy

Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy Whitepaper Chemical Characterization of Diverse Pharmaceutical Samples by Confocal Raman Microscopy WITec GmbH, Lise-Meitner-Str. 6, 89081 Ulm, Germany, www.witec.de Introduction The development and production

More information

Reflective Illumination for DMS 803 / 505

Reflective Illumination for DMS 803 / 505 APPLICATION NOTE // Dr. Michael E. Becker Reflective Illumination for DMS 803 / 505 DHS, SDR, VADIS, PID & PLS The instruments of the DMS 803 / 505 series are precision goniometers for directional scanning

More information

Crystal Quality Analysis Group

Crystal Quality Analysis Group Crystal Quality Analysis Group Contents Contents 1. Overview...1 2. Measurement principles...3 2.1 Considerations related to orientation and diffraction conditions... 3 2.2 Rocking curve measurement...

More information

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 24 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

FRESNEL EQUATION RECIPROCAL POLARIZATION METHOD

FRESNEL EQUATION RECIPROCAL POLARIZATION METHOD FRESNEL EQUATION RECIPROCAL POLARIZATION METHOD BY DAVID MAKER, PH.D. PHOTON RESEARCH ASSOCIATES, INC. SEPTEMBER 006 Abstract The Hyperspectral H V Polarization Inverse Correlation technique incorporates

More information

Chapter 38. Diffraction Patterns and Polarization

Chapter 38. Diffraction Patterns and Polarization Chapter 38 Diffraction Patterns and Polarization Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters take advantage of a phenomenon called fluorescence to extend the performance range of the Beamage beam profiling camera to ultraviolet

More information

Performance Improvement of a 3D Stereo Measurement Video Endoscope by Means of a Tunable Monochromator In the Illumination System

Performance Improvement of a 3D Stereo Measurement Video Endoscope by Means of a Tunable Monochromator In the Illumination System More info about this article: http://www.ndt.net/?id=22672 Performance Improvement of a 3D Stereo Measurement Video Endoscope by Means of a Tunable Monochromator In the Illumination System Alexander S.

More information

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed.

OPSE FINAL EXAM Fall CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. CLOSED BOOK. Two pages (front/back of both pages) of equations are allowed. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED.

More information

Interference of Light

Interference of Light Interference of Light Young s Double-Slit Experiment If light is a wave, interference effects will be seen, where one part of wavefront can interact with another part. One way to study this is to do a

More information

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian

HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3. Chapter 20. Classic and Modern Optics. Dr. Armen Kocharian HW Chapter 20 Q 2,3,4,5,6,10,13 P 1,2,3 Chapter 20 Classic and Modern Optics Dr. Armen Kocharian Electromagnetic waves and matter: A Brief History of Light 1000 AD It was proposed that light consisted

More information

E x Direction of Propagation. y B y

E x Direction of Propagation. y B y x E x Direction of Propagation k z z y B y An electromagnetic wave is a travelling wave which has time varying electric and magnetic fields which are perpendicular to each other and the direction of propagation,

More information

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography

Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Three-dimensional imaging of 30-nm nanospheres using immersion interferometric lithography Jianming Zhou *, Yongfa Fan, Bruce W. Smith Microelectronics Engineering Department, Rochester Institute of Technology,

More information

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction

A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction , pp.41-45 http://dx.doi.org/10.14257/astl.2016.140.08 A Single Grating-lens Focusing Two Orthogonally Polarized Beams in Opposite Direction Seung Dae Lee 1 1* Dept. of Electronic Engineering, Namseoul

More information

Hyperspectral Remote Sensing

Hyperspectral Remote Sensing Hyperspectral Remote Sensing Multi-spectral: Several comparatively wide spectral bands Hyperspectral: Many (could be hundreds) very narrow spectral bands GEOG 4110/5100 30 AVIRIS: Airborne Visible/Infrared

More information

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images

Supporting Information. High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Supporting Information High-Throughput, Algorithmic Determination of Nanoparticle Structure From Electron Microscopy Images Christine R. Laramy, 1, Keith A. Brown, 2, Matthew N. O Brien, 2 and Chad. A.

More information

UNIT 102-9: INTERFERENCE AND DIFFRACTION

UNIT 102-9: INTERFERENCE AND DIFFRACTION Name St.No. - Date(YY/MM/DD) / / Section Group # UNIT 102-9: INTERFERENCE AND DIFFRACTION Patterns created by interference of light in a thin film. OBJECTIVES 1. Understand the creation of double-slit

More information

WAVELENGTH MANAGEMENT

WAVELENGTH MANAGEMENT BEAM DIAGNOS TICS SPECIAL PRODUCTS OEM DETECTORS THZ DETECTORS PHOTO DETECTORS HIGH POWER SOLUTIONS POWER DETECTORS ENERGY DETECTORS MONITORS Camera Accessories WAVELENGTH MANAGEMENT UV CONVERTERS UV Converters

More information

Liquid Crystal Displays

Liquid Crystal Displays Liquid Crystal Displays Irma Alejandra Nicholls College of Optical Sciences University of Arizona, Tucson, Arizona U.S.A. 85721 iramirez@email.arizona.edu Abstract This document is a brief discussion of

More information

Surface and thickness measurement of a transparent film using wavelength scanning interferometry

Surface and thickness measurement of a transparent film using wavelength scanning interferometry Surface and thickness measurement of a transparent film using wavelength scanning interferometry Feng Gao, Hussam Muhamedsalih, and Xiangqian Jiang * Centre for Precision Technologies, University of Huddersfield,

More information

Supporting Information

Supporting Information Supporting Information Chameleon-Inspired Mechanochromic Photonic Films Composed of Nonclose-Packed Colloidal Arrays Gun Ho Lee, Tae Min Choi, Bomi Kim, Sang Hoon Han, Jung Min Lee, and Shin-Hyun Kim *,

More information

Renishaw invia Raman Microscope (April 2006)

Renishaw invia Raman Microscope (April 2006) Renishaw invia Raman Microscope (April 2006) I. Starting the System 1. The main system unit is ON all the time. 2. Switch on the Leica microscope and light source for reflective bright field (BF) imaging.

More information

Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions

Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions Imaging Sphere Measurement of Luminous Intensity, View Angle, and Scatter Distribution Functions Hubert Kostal, Vice President of Sales and Marketing Radiant Imaging, Inc. 22908 NE Alder Crest Drive, Suite

More information

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY

ENHANCEMENT OF DIFFUSERS BRDF ACCURACY ENHANCEMENT OF DIFFUSERS BRDF ACCURACY Grégory Bazalgette Courrèges-Lacoste (1), Hedser van Brug (1) and Gerard Otter (1) (1) TNO Science and Industry, Opto-Mechanical Instrumentation Space, P.O.Box 155,

More information

Chapter 36. Diffraction. Dr. Armen Kocharian

Chapter 36. Diffraction. Dr. Armen Kocharian Chapter 36 Diffraction Dr. Armen Kocharian Diffraction Light of wavelength comparable to or larger than the width of a slit spreads out in all forward directions upon passing through the slit This phenomena

More information

1.1 The HeNe and Fourier Lab CCD Camera

1.1 The HeNe and Fourier Lab CCD Camera Chapter 1 CCD Camera Operation 1.1 The HeNe and Fourier Lab CCD Camera For several experiments in this course you will use the CCD cameras to capture images or movies. Make sure to copy all files to your

More information

Supplementary materials of Multispectral imaging using a single bucket detector

Supplementary materials of Multispectral imaging using a single bucket detector Supplementary materials of Multispectral imaging using a single bucket detector Liheng Bian 1, Jinli Suo 1,, Guohai Situ 2, Ziwei Li 1, Jingtao Fan 1, Feng Chen 1 and Qionghai Dai 1 1 Department of Automation,

More information

Wavelength scanning interferometry for measuring transparent films of the fusion targets

Wavelength scanning interferometry for measuring transparent films of the fusion targets Wavelength scanning interferometry for measuring transparent films of the fusion targets F. Gao *, X. Jiang, H. Muhamedsalih and H. Martin Centre for precision Technologies, University of Huddersfield,

More information

ratio of the volume under the 2D MTF of a lens to the volume under the 2D MTF of a diffraction limited

ratio of the volume under the 2D MTF of a lens to the volume under the 2D MTF of a diffraction limited SUPPLEMENTARY FIGURES.9 Strehl ratio (a.u.).5 Singlet Doublet 2 Incident angle (degree) 3 Supplementary Figure. Strehl ratio of the singlet and doublet metasurface lenses. Strehl ratio is the ratio of

More information

Progress of the Thomson Scattering Experiment on HSX

Progress of the Thomson Scattering Experiment on HSX Progress of the Thomson Scattering Experiment on HSX K. Zhai, F.S.B. Anderson, D.T. Anderson HSX Plasma Laboratory, UW-Madison Bill Mason PSL, UW-Madison, The Thomson scattering system being constructed

More information

Intermediate Physics PHYS102

Intermediate Physics PHYS102 Intermediate Physics PHYS102 Dr Richard H. Cyburt Assistant Professor of Physics My office: 402c in the Science Building My phone: (304) 384-6006 My email: rcyburt@concord.edu My webpage: www.concord.edu/rcyburt

More information

ECEN 4606, UNDERGRADUATE OPTICS LAB

ECEN 4606, UNDERGRADUATE OPTICS LAB ECEN 4606, UNDERGRADUATE OPTICS LAB Lab 5: Interferometry and Coherence SUMMARY: In this lab you will use interference of a temporally coherent (very narrow temporal frequency bandwidth) laser beam to

More information

Microscopy. Marc McGuigan North Quincy High School Thursday, May 11, 2006

Microscopy. Marc McGuigan North Quincy High School Thursday, May 11, 2006 Microscopy Marc McGuigan North Quincy High School Thursday, May 11, 006 Outline Activity Introduction Electromagnetic Spectrum Visible Light Light Microscope AFM Scanning Electron Microscopy Near-Field

More information

Physical & Electromagnetic Optics: Diffraction Gratings

Physical & Electromagnetic Optics: Diffraction Gratings 31/05/2018 Physical & Electromagnetic Optics: Diffraction Gratings Optical Engineering Prof. Elias N. Glytsis School of Electrical & Computer Engineering National Technical University of Athens Multiple

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 37 Interference Spring 2016 Semester Matthew Jones Multiple Beam Interference In many situations, a coherent beam can interfere with itself multiple times Consider

More information

Section 2 PROGRESS IN LASER FUSION

Section 2 PROGRESS IN LASER FUSION Section 2 PROGRESS IN LASER FUSION 2.A Optical Fiducials for X-Ray Streak Cameras X-ray streak cameras are the primary instruments for studying the transient nature of laser-produced plasmas. However,

More information

ihr Series horiba.com/osd Research Grade Spectrometers Simply the best imaging spectrometers with no compromise

ihr Series horiba.com/osd Research Grade Spectrometers Simply the best imaging spectrometers with no compromise ihr Series Research Grade Spectrometers Simply the best imaging spectrometers with no compromise horiba.com/osd Unmatched Flexibility in Applications HORIBA Scientific s Optical Spectroscopy Division

More information

Chapter 22. Reflection and Refraction of Light

Chapter 22. Reflection and Refraction of Light Chapter 22 Reflection and Refraction of Light Nature of Light Light has a dual nature. Particle Wave Wave characteristics will be discussed in this chapter. Reflection Refraction These characteristics

More information

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE

UNIT VI OPTICS ALL THE POSSIBLE FORMULAE 58 UNIT VI OPTICS ALL THE POSSIBLE FORMULAE Relation between focal length and radius of curvature of a mirror/lens, f = R/2 Mirror formula: Magnification produced by a mirror: m = - = - Snell s law: 1

More information

Chapter 35 &36 Physical Optics

Chapter 35 &36 Physical Optics Chapter 35 &36 Physical Optics Physical Optics Phase Difference & Coherence Thin Film Interference 2-Slit Interference Single Slit Interference Diffraction Patterns Diffraction Grating Diffraction & Resolution

More information

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane.

Winmeen Tnpsc Group 1 & 2 Self Preparation Course Physics UNIT 9. Ray Optics. surface at the point of incidence, all lie in the same plane. Laws of reflection Physics UNIT 9 Ray Optics The incident ray, the reflected ray and the normal drawn to the reflecting surface at the point of incidence, all lie in the same plane. The angle of incidence

More information

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38

Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Ch. 22 Properties of Light HW# 1, 5, 7, 9, 11, 15, 19, 22, 29, 37, 38 Brief History of the Nature of Light Up until 19 th century, light was modeled as a stream of particles. Newton was a proponent of

More information

Particle Image Velocimetry for Fluid Dynamics Measurements

Particle Image Velocimetry for Fluid Dynamics Measurements Particle Image Velocimetry for Fluid Dynamics Measurements Lyes KADEM, Ph.D; Eng kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE Concordia University Presentation - A bit of history

More information

IMAGING SPECTROMETER DATA CORRECTION

IMAGING SPECTROMETER DATA CORRECTION S E S 2 0 0 5 Scientific Conference SPACE, ECOLOGY, SAFETY with International Participation 10 13 June 2005, Varna, Bulgaria IMAGING SPECTROMETER DATA CORRECTION Valentin Atanassov, Georgi Jelev, Lubomira

More information

Physics 202, Lecture 23

Physics 202, Lecture 23 Physics 202, Lecture 23 Today s Topics Lights and Laws of Geometric Optics Nature of Light Reflection and Refraction Law of Reflection Law of Refraction Index of Reflection, Snell s Law Total Internal

More information

Dr. Quantum. General Physics 2 Light as a Wave 1

Dr. Quantum. General Physics 2 Light as a Wave 1 Dr. Quantum General Physics 2 Light as a Wave 1 The Nature of Light When studying geometric optics, we used a ray model to describe the behavior of light. A wave model of light is necessary to describe

More information

WHITE PAPER. Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials

WHITE PAPER. Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Application of Imaging Sphere for BSDF Measurements of Arbitrary Materials Abstract BSDF measurements are broadly applicable to

More information

EM Waves Practice Problems

EM Waves Practice Problems PSI AP Physics 2 Name 1. Sir Isaac Newton was one of the first physicists to study light. What properties of light did he explain by using the particle model? 2. Who was the first person who was credited

More information

Metallic Transmission Screen for Sub-wavelength Focusing

Metallic Transmission Screen for Sub-wavelength Focusing Metallic Transmission Screen for Sub-wavelength Focusing A.M.H. Wong, C.D. Sarris and G.V. leftheriades Abstract: A simple metallic transmission screen is proposed that is capable of focusing an incident

More information

Single Photon Interference Christopher Marsh Jaime Vela

Single Photon Interference Christopher Marsh Jaime Vela Single Photon Interference Christopher Marsh Jaime Vela Abstract The purpose of this experiment was to study the dual wave-particle nature of light. Using a Mach-Zehnder and double slit interferometer,

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer The Michelson interferometer uses the interference of two reflected waves The third, beamsplitting, mirror is partially reflecting ( half silvered, except it s a thin Aluminum

More information

Wallace Hall Academy

Wallace Hall Academy Wallace Hall Academy CfE Higher Physics Unit 2 - Waves Notes Name 1 Waves Revision You will remember the following equations related to Waves from National 5. d = vt f = n/t v = f T=1/f They form an integral

More information