MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations

Size: px
Start display at page:

Download "MAC Rev.S Learning Objectives. Learning Objectives (Cont.) Module 4 Quadratic Functions and Equations"

Transcription

1 MAC 1140 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to 1. understand basic concepts about quadratic functions and their graphs.. complete the square and apply the vertex formula. 3. graph a quadratic function by hand. 4. solve applications and model data. 5. understand basic concepts about quadratic equations. 6. use factoring, the square root property, completing the square, and the quadratic formula to solve quadratic equations. 7. understand the discriminant. 8. solve problems involving quadratic equations. Rev.S10 Learning Objectives (Cont.) 9. perform arithmetic operations on complex numbers. 10. solve quadratic equations having complex solutions. 11. solve quadratic inequalities graphically. 1. solve quadratic inequalities symbolically. 13. graph functions using vertical and horizontal translations. 14. graph functions using stretching and shrinking. 15. graph functions using reflections. 16. combine transformations. Rev.S10 3 1

2 Quadratic Functions and Equations There are five sections in this module: 3.1 Quadratic Functions and Models 3. Quadratic Equations and Problem- Solving 3.3 Complex Numbers 3.4 Quadratic Inequalities 3.5 Transformations of Graphs Rev.S10 4 Let s get started by looking at some basic concepts about quadratic functions and graphs. Rev.S10 5 Quadratic Functions Recall that a linear function can be written as f(x) = ax + b (or f(x) = mx + b). The formula for a quadratic function is different from that of a linear function because it contains an x term. f(x) = 3x + 3x + 5 g(x) = 5 x Rev.S10 6

3 Quadratic Functions (Cont.) The graph of a quadratic function is a parabola a U shaped graph that opens either upward or downward. A parabola opens upward if a is positive and opens downward if a is negative. Rev.S10 7 Quadratic Functions (Cont.) The highest point on a parabola that opens downward and the lowest point on a parabola that opens upward is called the vertex. The vertical line passing through the vertex is called the axis of symmetry. The leading coefficient a controls the width of the parabola. Larger values of a result in a narrower parabola, and smaller values of a result in a wider parabola. Rev.S10 8 Example of Different Parabolas Note: A parabola opens upward if a is positive and opens downward if a is negative. Rev.S10 9 3

4 Example of Different Parabolas (Cont.) Note: The leading coefficient a controls the width of the parabola. Larger values of a result in a narrower parabola, and smaller values of a result in a wider parabola. Rev.S10 10 Graph of the Quadratic Function Now, let s use the graph of the quadratic function shown to determine the sign of the leading coefficient, its vertex, and the equation of the axis of symmetry. Leading coefficient: The graph opens downward, so the leading coefficient a is negative. Vertex: The vertex is the highest point on the graph and is located at (1, 3). Axis of symmetry: Vertical line through the vertex with equation x = 1. Rev.S10 11 Let s Look at the Vertex Form of a Quadratic Function We can write the formula f(x) = x + 10x + 3 in vertex form by completing the square. Rev.S10 1 4

5 Let s Write the Vertex Form of a Quadratic Function by Completing the Square y x x = y! 3 = x + 10x y 3 5 x 0x! + = y + = ( x + 5) y = +! ( x 5) Subtract 3 from each side. Let k = 10; add (10/) = 5. Factor perfect square trinomial. Vertex Form Rev.S10 13 How to Use Vertex Formula to Write a Quadratic Function in Vertex Form? Use the vertex formula to write f(x) = 3x 3x + 1 in vertex form. : Since a = -3, b = -3 and c = 1, we just need to substitute them into the vertex formula. Mainly, you need to know the vertex formula for x; once you have solved for x, you can solve for y. 1. Begin by finding. Find y. the vertex f! " 3! # " 3! # b $ # % = # $ % # $ " % + 1 = & ' & ' & ' 4 x =! a The vertex is:! 1 " (! 3), 7 # $ % & 4 ' =! (! 3)! 1 " 7 1 Vertex form: f ( x) = # 3$ x + % + =! & ' 4 Rev.S10 14 Example Graph the quadratic equation g(x) = 3x + 4x 49. The formula is not in vertex form, but we can find the vertex. b 4 x =! =! = 4 a (! 3) The y-coordinate of the vertex is: g (4) =! 3(4) + 4(4)! 49 =! 1 The vertex is at (4, 1). The axis of symmetry is x = 4, and the parabola opens downward because the leading coefficient is negative. Rev.S

6 Graph: g(x) = 3x + 4x 49 Table of Values Example (Cont.) x y vertex Rev.S10 16 Example of Application A junior horticulture class decides to enclose a rectangular garden, using a side of the greenhouse as one side of the rectangle. If the class has 3 feet of fence, find the dimensions of the rectangle that give the maximum area for the garden. (Think about using the vertex formula.) Let w be the width and L be the length of the rectangle. L W Because the 3-foot fence does not go along the greenhouse, if follows that W + L + W = 3 or L = 3 W Rev.S10 17 Example of Application (Cont.) The area of the garden is the length times the width. A = LW = (3! W ) W L W = 3W! W This is a parabola that opens downward, and by the vertex formula, the maximum area occurs when 3 W =! = 8 feet (! ) The corresponding length is L = 3 W = 3 (8) = 16 feet. The dimensions are 8 feet by 16 feet. Rev.S

7 Another Example A model rocket is launched with an initial velocity of v o = 150 feet per second and leaves the platform with an initial height of h o = 10 feet. a) Write a formula s(t) that models the height of the rocket after t seconds. b) How high is the rocket after 3 seconds? c) Find the maximum height of the rocket. Support your answer graphically. a) s( t) =! 16t + v o t + h o =! 16t + 150t + 10 Rev.S10 19 Another Example (Cont.) b) s (3) =! 16(3) + 150(3) + 10 = 316 The rocket is 316 feet high after 3 seconds. c) Because a is negative, the vertex is the highest point on the graph, with an t-coordinate of The y-coordinate is: b 150 t =! =! = " 4.7 a (! 16) s (4.7) =! 16(4.7) + 150(4.7) + 10 = feet The vertex is at (4.7, 361.6). Rev.S10 0 How to Solve Quadratic Equations? The are four basic symbolic strategies in which quadratic equations can be solved. Factoring Square root property Completing the square Quadratic formula Rev.S10 1 7

8 Factoring A common technique used to solve equations that is based on the zero-product property. Example x! 4x! 5 = 1 x! 4x! 6 = 0 x! x! 3 = 0 ( x )( x )! = 0 x! 3 = 0 or x + 1 = 0 x = 3 or x =! 1 Rev.S10 Square Root Property Example:! + = 16t 68 0! 16t =! 68! 68 t =! t = 4 17 t = ± 4 t " ±.1 Rev.S10 3 Completing the Square Completing the square is useful when solving quadratic equations that do not factor easily. If a quadratic equation can be written in the form where k and d are constants, then the equation can be solved using! k "! k " x + kx + = x + # $ # $. % & % & Rev.S10 4 8

9 Completing the Square (Cont.) Solve x + 6x = 7. x + 6x = 7 7 x + 3x =! 3 " 7! 3 " x + 3x + # $ = + # $ % & % &! 3 " 3 # x + $ = % & x + = ± x = ' ± = ' ± 4 Rev.S10 5 Quadratic Formula Solve the equation x! 5x! 9 = 0. Let a =, b = 5, and c = 9.! b ± b! 4ac x = a 5 ± (! 5)! 4( )(! 9) x = ( ) 5 ± 97 x = 4 Rev.S10 6 Quadratic Equations and the Discriminant Use the discriminant to determine the number of solutions to the quadratic equation b! 4ac =! 6! 4! 3 15 = 16 ( ) ( )( ) Since b! 4ac > 0, the equation has two real solutions. Rev.S10 7 9

10 Example of a Modeling a Projectile Motion The following table shows the height of a toy rocket launched in the air. t (sec) s(t) feet ( ) Height of a toy rocket 1 36 a) Use s t =! 16t + vot + ho to model the data. b) After how many seconds did the toy rocket strike the ground? Rev.S10 8 Example (Cont.) ( ) a) If t = 0, then s(0) = 1, so s t =! 16t + v0t + 1. The value of v o can be found by noting that when t =, s() = 8. Substituting gives the following result.! 16( ) + v0 ( ) + 1 = 8 v = 80 Thus s(t) = 16t + 40t + 1 models the height of the toy rocket. b) The rocket strikes the ground when s(t) = 0, or when 16t + 40t + 1 = 0.! 16t + 40t + 1 = 0 4t! 10t! 3 = 0 Using the quadratic formula, where a = 4, b = 10 and c = 3 we find that x!.8 or x! " 0.3 Only the positive solution is possible, so the toy rocket reaches the ground after approximately.8 seconds. Rev.S v = 40 0 One More Example A box is is being constructed by cutting inch squares from the corners of a rectangular sheet of metal that is 10 inches longer than it is wide. If the box has a volume of 38 cubic inches, find the dimensions of the metal sheet. Step 1: Let x be the width and x + 10 be the length. Step : Draw a picture. x - 4 x + 6 x Since the height times the width times the length must equal the volume, or 38 cubic inches, the following can be written Rev.S

11 One More Example (Cont.) ( x! 4)( x + 6) = 38 or ( x! 4)( x + 6) = 119 Step 3: Write the quadratic equation in the form ax + bx + c = 0 and factor. x + x! 4 = 119 x + x! 143 = 0 ( x + 13)( x! 11) = 0 x =! 13 or x = 11 The dimensions can not be negative, so the width is 11 inches and the length is 10 inches more, or 1 inches. Step 4: After the square inch pieces are cut out, the dimensions of the bottom of the box are 11 4 = 7 inches by 1 4 = 17 inches. The volume of the box is then x 7 x 17 = 38, which checks. Rev.S10 31 Complex Numbers A complex number can be written in standard form as a + bi, where a and b are real numbers. The real part is a and the imaginary part is b. Rev.S10 3 Examples Write each expression in standard form. Support your results using a calculator. a) ( 4 + i) + (6 3i) b) ( 9i) (4 7i) a) ( 4 + i) + (6 3i) = i 3i = i b) ( 9i) (4 7i) = 4 9i + 7i = 4 i Rev.S

12 More Examples Write each expression in standard form. Support your results using a calculator. 16 a) ( + 5i) b) 3 + i a) ( + 5i) = ( + 5i)( + 5i) = 4 10i 10i + 5i = 4 0i + 5( 1) = 1 0i b) =! 3 + i 3+ i 3" i 48 " 16i = 9 " i 48 " 16i 4 8 = = ± i Rev.S10 34 Quadratic Equations with Complex s We can use the quadratic formula to solve quadratic equations, even if the discriminant is negative. However, there are no real solutions, and the graph does not intersect the x-axis. The solutions can be expressed as imaginary numbers. Rev.S10 35 Example Solve the quadratic equation 4x 1x = 11. Rewrite the equation: 4x 1x + 11 = 0 a = 4, b = 1, c = 11! b ± b! 4ac x = a 1 ± (1)! 4(4)(11) 1 ±! 3 = 8 (4) 1 ± 4i 3 i = = ± 8 Rev.S10 36 = 1

13 Quadratic Inequality If an equals sign is replaced by >,, <, or, a quadratic inequality results. The first step in solving a quadratic inequality is to determine the x- values where equality occurs. These x-values are the boundary numbers. Let s look at a quadratic inequality graphically. The graph of a quadratic function opens either upward or downward. In this case, a = 1, parabola opens up, and we have x-intercepts: 1 and y x x =!! Rev.S10 37 Quadratic Inequality (cont.) Note the parabola lies below the x-axis between the intercepts for the equation x x = 0 s to x x < 0, is the solution set {x 1 < x < } or ( 1, ) in interval notation. s to x x > 0 include x-values either left of x = 1 or right of x =, where the parabola is above the x-axis, and thus {x x < 1 or x > }. y x x =!! Rev.S10 38 Another Example Solve the inequality. Write the solution set for each in interval notation. a) 3x + x 4 = 0 b) 3x + x 4 < 0 c) 3x + x 4 > 0 a) Factoring (3x + 4)(x 1) = 0 x = 4/3 x = 1 The solutions are 4/3 and 1. Rev.S

14 Another Example (Cont.) b) 3x + x 4 < 0 Parabola opening upward. x-intercepts are 4/3 and 1 Below the x-axis (y < 0) set: ( 4/3, 1) y < 0 c) 3x + x 4 > 0 Above the x axis (y > 0) set: (, 4/3) (1, ) y > 0 y > 0 Rev.S10 40 Solving Quadratic Inequalities in 4 Steps Rev.S10 41 Transformation of Graphs: Vertical Shifts A graph is shifted up or down. The shape of the graph is not changed only its position. Rev.S

15 Transformation of Graphs: Horizontal Shifts A graph is shifted left or right. The shape of the graph is not changed only its position. Rev.S10 43 Transformation of Graphs Rev.S10 44 Example of Transformation of Graphs Shifts can be combined to translate a graph of y = f(x) both vertically and horizontally. Shift the graph of y = x to the left 3 units and downward units. y = x y = (x + 3) y = (x + 3) Rev.S

16 Another Example Find an equation that shifts the graph of f(x) = x x + 3 left 4 units and down 3 units. To shift the graph left 4 units, replace x with (x + 4) in the formula for f(x). y = f(x + 4) = (x + 4) (x + 4) + 3 To shift the graph down 3 units, subtract 3 to the formula. y = f(x + 4) 3 = (x + 4) (x + 4) Rev.S10 46 Vertical Stretching and Shrinking Rev.S10 47 Horizontal Stretching and Shrinking Rev.S

17 Reflection of Graphs Rev.S10 49 Reflection of Graphs For the function f(x) = x + x graph its reflection across the x-axis and across the y-axis. The graph is a parabola with x-intercepts and 1. To obtain its reflection across the x-axis, graph y = f(x), or y = (x + x ). The x-intercepts have not changed. To obtain the reflection across the y-axis let y = f( x), or y = ( x) x. The x-intercepts have changed to 1 and. Rev.S10 50 Combining Transformations Transformations of graphs can be combined to create new graphs. For example the graph of y = 3(x + 3) + 1 can be obtained by performing four transformations on the graph of y = x. 1. Shift of the graph 3 units left: y = (x + 3). Vertically stretch the graph by a factor of 3: y = 3(x + 3) 3. Reflect the graph across the x-axis: y = 3(x + 3) 4. Shift the graph upward 1 unit: y = 3(x + 3) + 1 Rev.S

18 Combining Transformations (Cont.) Stretch vertically by a factor of 3 Shift to the left 3 units. y = 3(x + 3) + 1 Reflect across the x-axis. Shift upward 1 unit. Rev.S10 5 What have we learned? We have learned to 1. understand basic concepts about quadratic functions and their graphs.. complete the square and apply the vertex formula. 3. graph a quadratic function by hand. 4. solve applications and model data. 5. understand basic concepts about quadratic equations. 6. use factoring, the square root property, completing the square, and the quadratic formula to solve quadratic equations. 7. understand the discriminant. 8. solve problems involving quadratic equations. Rev.S10 53 What have we learned? (Cont.) 9. perform arithmetic operations on complex numbers. 10. solve quadratic equations having complex solutions. 11. solve quadratic inequalities graphically. 1. solve quadratic inequalities symbolically. 13. graph functions using vertical and horizontal translations. 14. graph functions using stretching and shrinking. 15. graph functions using reflections. 16. combine transformations. Rev.S

19 Credit Some of these slides have been adapted/modified in part/whole from the slides of the following textbook: Rockswold, Gary, Precalculus with Modeling and Visualization, 3th Edition Rev.S

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations

MAC Learning Objectives. Module 4. Quadratic Functions and Equations. - Quadratic Functions - Solving Quadratic Equations MAC 1105 Module 4 Quadratic Functions and Equations Learning Objectives Upon completing this module, you should be able to: 1. Understand basic concepts about quadratic functions and their graphs. 2. Complete

More information

Unit 2: Functions and Graphs

Unit 2: Functions and Graphs AMHS Precalculus - Unit 16 Unit : Functions and Graphs Functions A function is a rule that assigns each element in the domain to exactly one element in the range. The domain is the set of all possible

More information

Graphing Absolute Value Functions

Graphing Absolute Value Functions Graphing Absolute Value Functions To graph an absolute value equation, make an x/y table and plot the points. Graph y = x (Parent graph) x y -2 2-1 1 0 0 1 1 2 2 Do we see a pattern? Desmos activity: 1.

More information

Section 5: Quadratics

Section 5: Quadratics Chapter Review Applied Calculus 46 Section 5: Quadratics Quadratics Quadratics are transformations of the f ( x) x function. Quadratics commonly arise from problems involving area and projectile motion,

More information

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x

+ bx + c = 0, you can solve for x by using The Quadratic Formula. x Math 33B Intermediate Algebra Fall 01 Name Study Guide for Exam 4 The exam will be on Friday, November 9 th. You are allowed to use one 3" by 5" index card on the exam as well as a scientific calculator.

More information

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs

MAC Learning Objectives. Transformation of Graphs. Module 5 Transformation of Graphs. - A Library of Functions - Transformation of Graphs MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

MAC Module 5 Transformation of Graphs. Rev.S08

MAC Module 5 Transformation of Graphs. Rev.S08 MAC 1105 Module 5 Transformation of Graphs Learning Objectives Upon completing this module, you should be able to: 1. Recognize the characteristics common to families of functions. 2. Evaluate and graph

More information

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR

EXERCISE SET 10.2 MATD 0390 DUE DATE: INSTRUCTOR EXERCISE SET 10. STUDENT MATD 090 DUE DATE: INSTRUCTOR You have studied the method known as "completing the square" to solve quadratic equations. Another use for this method is in transforming the equation

More information

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved.

Polynomial and Rational Functions. Copyright Cengage Learning. All rights reserved. 2 Polynomial and Rational Functions Copyright Cengage Learning. All rights reserved. 2.1 Quadratic Functions Copyright Cengage Learning. All rights reserved. What You Should Learn Analyze graphs of quadratic

More information

Slide 2 / 222. Algebra II. Quadratic Functions

Slide 2 / 222. Algebra II. Quadratic Functions Slide 1 / 222 Slide 2 / 222 Algebra II Quadratic Functions 2014-10-14 www.njctl.org Slide 3 / 222 Table of Contents Key Terms Explain Characteristics of Quadratic Functions Combining Transformations (review)

More information

Chapter 3 Practice Test

Chapter 3 Practice Test 1. Complete parts a c for each quadratic function. a. Find the y-intercept, the equation of the axis of symmetry, and the x-coordinate of the vertex. b. Make a table of values that includes the vertex.

More information

Quadratic Functions. *These are all examples of polynomial functions.

Quadratic Functions. *These are all examples of polynomial functions. Look at: f(x) = 4x-7 f(x) = 3 f(x) = x 2 + 4 Quadratic Functions *These are all examples of polynomial functions. Definition: Let n be a nonnegative integer and let a n, a n 1,..., a 2, a 1, a 0 be real

More information

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS

3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS 3.1 INTRODUCTION TO THE FAMILY OF QUADRATIC FUNCTIONS Finding the Zeros of a Quadratic Function Examples 1 and and more Find the zeros of f(x) = x x 6. Solution by Factoring f(x) = x x 6 = (x 3)(x + )

More information

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31

Quadratic Functions CHAPTER. 1.1 Lots and Projectiles Introduction to Quadratic Functions p. 31 CHAPTER Quadratic Functions Arches are used to support the weight of walls and ceilings in buildings. Arches were first used in architecture by the Mesopotamians over 4000 years ago. Later, the Romans

More information

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is

171S3.3p Analyzing Graphs of Quadratic Functions. October 04, Vertex of a Parabola. The vertex of the graph of f (x) = ax 2 + bx + c is MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 3: Quadratic Functions and Equations; Inequalities 3.1 The Complex Numbers 3.2 Quadratic Equations, Functions, Zeros, and

More information

Unit 6 Quadratic Functions

Unit 6 Quadratic Functions Unit 6 Quadratic Functions 12.1 & 12.2 Introduction to Quadratic Functions What is A Quadratic Function? How do I tell if a Function is Quadratic? From a Graph The shape of a quadratic function is called

More information

CHAPTER 6 Quadratic Functions

CHAPTER 6 Quadratic Functions CHAPTER 6 Quadratic Functions Math 1201: Linear Functions is the linear term 3 is the leading coefficient 4 is the constant term Math 2201: Quadratic Functions Math 3201: Cubic, Quartic, Quintic Functions

More information

Solving Simple Quadratics 1.0 Topic: Solving Quadratics

Solving Simple Quadratics 1.0 Topic: Solving Quadratics Ns Solving Simple Quadratics 1.0 Topic: Solving Quadratics Date: Objectives: SWBAT (Solving Simple Quadratics and Application dealing with Quadratics) Main Ideas: Assignment: Square Root Property If x

More information

Algebra II Quadratic Functions

Algebra II Quadratic Functions 1 Algebra II Quadratic Functions 2014-10-14 www.njctl.org 2 Ta b le o f C o n te n t Key Terms click on the topic to go to that section Explain Characteristics of Quadratic Functions Combining Transformations

More information

Unit 1 Quadratic Functions

Unit 1 Quadratic Functions Unit 1 Quadratic Functions This unit extends the study of quadratic functions to include in-depth analysis of general quadratic functions in both the standard form f ( x) = ax + bx + c and in the vertex

More information

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0

Quadratic Equations. Learning Objectives. Quadratic Function 2. where a, b, and c are real numbers and a 0 Quadratic Equations Learning Objectives 1. Graph a quadratic function using transformations. Identify the vertex and axis of symmetry of a quadratic function 3. Graph a quadratic function using its vertex,

More information

Section 4.4: Parabolas

Section 4.4: Parabolas Objective: Graph parabolas using the vertex, x-intercepts, and y-intercept. Just as the graph of a linear equation y mx b can be drawn, the graph of a quadratic equation y ax bx c can be drawn. The graph

More information

Exploring Quadratic Graphs

Exploring Quadratic Graphs Exploring Quadratic Graphs The general quadratic function is y=ax 2 +bx+c It has one of two basic graphs shapes, as shown below: It is a symmetrical "U"-shape or "hump"-shape, depending on the sign of

More information

OpenStax-CNX module: m Quadratic Functions. OpenStax OpenStax Precalculus. Abstract

OpenStax-CNX module: m Quadratic Functions. OpenStax OpenStax Precalculus. Abstract OpenStax-CNX module: m49337 1 Quadratic Functions OpenStax OpenStax Precalculus This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 In this section, you

More information

Replacing f(x) with k f(x) and. Adapted from Walch Education

Replacing f(x) with k f(x) and. Adapted from Walch Education Replacing f(x) with k f(x) and f(k x) Adapted from Walch Education Graphing and Points of Interest In the graph of a function, there are key points of interest that define the graph and represent the characteristics

More information

Y. Butterworth Lehmann & 9.2 Page 1 of 11

Y. Butterworth Lehmann & 9.2 Page 1 of 11 Pre Chapter 9 Coverage Quadratic (2 nd Degree) Form a type of graph called a parabola Form of equation we'll be dealing with in this chapter: y = ax 2 + c Sign of a determines opens up or down "+" opens

More information

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1

Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola. Day #1 Algebra I Unit #3: Quadratic Functions Lesson #13: The Almighty Parabola Name Period Date Day #1 There are some important features about the graphs of quadratic functions we are going to explore over the

More information

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a

More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a More Ways to Solve & Graph Quadratics The Square Root Property If x 2 = a and a R, then x = ± a Example: Solve using the square root property. a) x 2 144 = 0 b) x 2 + 144 = 0 c) (x + 1) 2 = 12 Completing

More information

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables

UNIT 3 EXPRESSIONS AND EQUATIONS Lesson 3: Creating Quadratic Equations in Two or More Variables Guided Practice Example 1 Find the y-intercept and vertex of the function f(x) = 2x 2 + x + 3. Determine whether the vertex is a minimum or maximum point on the graph. 1. Determine the y-intercept. The

More information

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0

The x-intercept can be found by setting y = 0 and solving for x: 16 3, 0 y=-3/4x+4 and y=2 x I need to graph the functions so I can clearly describe the graphs Specifically mention any key points on the graphs, including intercepts, vertex, or start/end points. What is the

More information

College Pre Calculus A Period. Weekly Review Sheet # 1 Assigned: Monday, 9/9/2013 Due: Friday, 9/13/2013

College Pre Calculus A Period. Weekly Review Sheet # 1 Assigned: Monday, 9/9/2013 Due: Friday, 9/13/2013 College Pre Calculus A Name Period Weekly Review Sheet # 1 Assigned: Monday, 9/9/013 Due: Friday, 9/13/013 YOU MUST SHOW ALL WORK FOR EVERY QUESTION IN THE BOX BELOW AND THEN RECORD YOUR ANSWERS ON THE

More information

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation:

UNIT 8: SOLVING AND GRAPHING QUADRATICS. 8-1 Factoring to Solve Quadratic Equations. Solve each equation: UNIT 8: SOLVING AND GRAPHING QUADRATICS 8-1 Factoring to Solve Quadratic Equations Zero Product Property For all numbers a & b Solve each equation: If: ab 0, 1. (x + 3)(x 5) = 0 Then one of these is true:

More information

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications

Sample: Do Not Reproduce QUAD4 STUDENT PAGES. QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications Name Period Date QUADRATIC FUNCTIONS AND EQUATIONS Student Pages for Packet 4: Quadratic Functions and Applications QUAD 4.1 Vertex Form of a Quadratic Function 1 Explore how changing the values of h and

More information

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic.

Let s review some things we learned earlier about the information we can gather from the graph of a quadratic. Section 6: Quadratic Equations and Functions Part 2 Section 6 Topic 1 Observations from a Graph of a Quadratic Function Let s review some things we learned earlier about the information we can gather from

More information

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Test 3 review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Approximate the coordinates of each turning point by graphing f(x) in the standard viewing

More information

Quadratic Functions (Section 2-1)

Quadratic Functions (Section 2-1) Quadratic Functions (Section 2-1) Section 2.1, Definition of Polynomial Function f(x) = a is the constant function f(x) = mx + b where m 0 is a linear function f(x) = ax 2 + bx + c with a 0 is a quadratic

More information

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions

Chapter 2. Polynomial and Rational Functions. 2.2 Quadratic Functions Chapter 2 Polynomial and Rational Functions 2.2 Quadratic Functions 1 /27 Chapter 2 Homework 2.2 p298 1, 5, 17, 31, 37, 41, 43, 45, 47, 49, 53, 55 2 /27 Chapter 2 Objectives Recognize characteristics of

More information

9.1: GRAPHING QUADRATICS ALGEBRA 1

9.1: GRAPHING QUADRATICS ALGEBRA 1 9.1: GRAPHING QUADRATICS ALGEBRA 1 OBJECTIVES I will be able to graph quadratics: Given in Standard Form Given in Vertex Form Given in Intercept Form What does the graph of a quadratic look like? https://www.desmos.com/calculator

More information

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name

QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS ARE TO BE DONE WITHOUT A CALCULATOR. Name QUESTIONS 1 10 MAY BE DONE WITH A CALCULATOR QUESTIONS 11 5 ARE TO BE DONE WITHOUT A CALCULATOR Name 2 CALCULATOR MAY BE USED FOR 1-10 ONLY Use the table to find the following. x -2 2 5-0 7 2 y 12 15 18

More information

4.3 Quadratic functions and their properties

4.3 Quadratic functions and their properties 4.3 Quadratic functions and their properties A quadratic function is a function defined as f(x) = ax + x + c, a 0 Domain: the set of all real numers x-intercepts: Solutions of ax + x + c = 0 y-intercept:

More information

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4.

QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x p 2 16p. 3. 6x 2 13x 5 4. QUADRATIC FUNCTIONS TEST REVIEW NAME: SECTION 1: FACTORING Factor each expression completely. 1. 3x 2 48 2. 25p 2 16p 3. 6x 2 13x 5 4. 9x 2 30x + 25 5. 4x 2 + 81 6. 6x 2 14x + 4 7. 4x 2 + 20x 24 8. 4x

More information

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet

MAFS Algebra 1. Quadratic Functions. Day 17 - Student Packet MAFS Algebra 1 Quadratic Functions Day 17 - Student Packet Day 17: Quadratic Functions MAFS.912.F-IF.3.7a, MAFS.912.F-IF.3.8a I CAN graph a quadratic function using key features identify and interpret

More information

3.1 Quadratic Functions and Models

3.1 Quadratic Functions and Models 3.1 Quadratic Functions and Models Objectives: 1. Identify the vertex & axis of symmetry of a quadratic function. 2. Graph a quadratic function using its vertex, axis and intercepts. 3. Use the maximum

More information

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter.

QUADRATIC FUNCTIONS. PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. QUADRATIC FUNCTIONS PROTOTYPE: f(x) = ax 2 + bx + c. (1) The leading coefficient a 0 is called the shape parameter. SHAPE-VERTEX FORMULA One can write any quadratic function (1) as f(x) = a(x h) 2 + k,

More information

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7

Warm-Up Exercises. Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; y = 2x + 7 ANSWER ; 7 Warm-Up Exercises Find the x-intercept and y-intercept 1. 3x 5y = 15 ANSWER 5; 3 2. y = 2x + 7 7 2 ANSWER ; 7 Chapter 1.1 Graph Quadratic Functions in Standard Form A quadratic function is a function that

More information

6.4 Vertex Form of a Quadratic Function

6.4 Vertex Form of a Quadratic Function 6.4 Vertex Form of a Quadratic Function Recall from 6.1 and 6.2: Standard Form The standard form of a quadratic is: f(x) = ax 2 + bx + c or y = ax 2 + bx + c where a, b, and c are real numbers and a 0.

More information

Section 18-1: Graphical Representation of Linear Equations and Functions

Section 18-1: Graphical Representation of Linear Equations and Functions Section 18-1: Graphical Representation of Linear Equations and Functions Prepare a table of solutions and locate the solutions on a coordinate system: f(x) = 2x 5 Learning Outcome 2 Write x + 3 = 5 as

More information

F.BF.B.3: Graphing Polynomial Functions

F.BF.B.3: Graphing Polynomial Functions F.BF.B.3: Graphing Polynomial Functions 1 Given the graph of the line represented by the equation f(x) = 2x + b, if b is increased by 4 units, the graph of the new line would be shifted 4 units 1) right

More information

5.1 Introduction to the Graphs of Polynomials

5.1 Introduction to the Graphs of Polynomials Math 3201 5.1 Introduction to the Graphs of Polynomials In Math 1201/2201, we examined three types of polynomial functions: Constant Function - horizontal line such as y = 2 Linear Function - sloped line,

More information

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials

x 2 + 8x - 12 = 0 Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Aim: To review for Quadratic Function Exam #1 Homework: Study Review Materials Do Now - Solve using any strategy. If irrational, express in simplest radical form x 2 + 8x - 12 = 0 Review Topic Index 1.

More information

Quadratic Functions, Part 1

Quadratic Functions, Part 1 Quadratic Functions, Part 1 A2.F.BF.A.1 Write a function that describes a relationship between two quantities. A2.F.BF.A.1a Determine an explicit expression, a recursive process, or steps for calculation

More information

Algebra II Chapter 5

Algebra II Chapter 5 Algebra II Chapter 5 5.1 Quadratic Functions The graph of a quadratic function is a parabola, as shown at rig. Standard Form: f ( x) = ax2 + bx + c vertex: b 2a, f b 2a a < 0 graph opens down a > 0 graph

More information

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value?

But a vertex has two coordinates, an x and a y coordinate. So how would you find the corresponding y-value? We will work with the vertex, orientation, and x- and y-intercepts of these functions. Intermediate algebra Class notes More Graphs of Quadratic Functions (section 11.6) In the previous section, we investigated

More information

Final Exam Review Algebra Semester 1

Final Exam Review Algebra Semester 1 Final Exam Review Algebra 015-016 Semester 1 Name: Module 1 Find the inverse of each function. 1. f x 10 4x. g x 15x 10 Use compositions to check if the two functions are inverses. 3. s x 7 x and t(x)

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions Notes # CHAPTER : Quadratic Equations and Functions -: Exploring Quadratic Graphs A. Intro to Graphs of Quadratic Equations: = ax + bx + c A is a function that can be written in the form = ax + bx + c

More information

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations

KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Name: KEY Algebra: Unit 10 Graphing Quadratic Equations & other Relations Date: Test Bank Part I: Answer all 15 questions in this part. Each correct answer will receive credits. No partial credit will

More information

7.1A Investigating Quadratic Functions in Vertex (Standard) Form: y = a(x±p) 2 ±q. Parabolas have a, a middle point. For

7.1A Investigating Quadratic Functions in Vertex (Standard) Form: y = a(x±p) 2 ±q. Parabolas have a, a middle point. For 7.1A Investigating Quadratic Functions in Vertex (Standard) Form: y = a(x±p) ±q y x Graph y x using a table of values x -3 - -1 0 1 3 Graph Shape: the graph shape is called a and occurs when the equation

More information

Section 9.3 Graphing Quadratic Functions

Section 9.3 Graphing Quadratic Functions Section 9.3 Graphing Quadratic Functions A Quadratic Function is an equation that can be written in the following Standard Form., where a 0. Every quadratic function has a U-shaped graph called a. If the

More information

Properties of Quadratic functions

Properties of Quadratic functions Name Today s Learning Goals: #1 How do we determine the axis of symmetry and vertex of a quadratic function? Properties of Quadratic functions Date 5-1 Properties of a Quadratic Function A quadratic equation

More information

Name: Chapter 7 Review: Graphing Quadratic Functions

Name: Chapter 7 Review: Graphing Quadratic Functions Name: Chapter Review: Graphing Quadratic Functions A. Intro to Graphs of Quadratic Equations: = ax + bx+ c A is a function that can be written in the form = ax + bx+ c where a, b, and c are real numbers

More information

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them.

Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Semester 2 Review Problems will be sectioned by chapters. The chapters will be in the order by which we covered them. Chapter 9 and 10: Right Triangles and Trigonometric Ratios 1. The hypotenuse of a right

More information

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y)

A function: A mathematical relationship between two variables (x and y), where every input value (usually x) has one output value (usually y) SESSION 9: FUNCTIONS KEY CONCEPTS: Definitions & Terminology Graphs of Functions - Straight line - Parabola - Hyperbola - Exponential Sketching graphs Finding Equations Combinations of graphs TERMINOLOGY

More information

1. a. After inspecting the equation for the path of the winning throw, which way do you expect the parabola to open? Explain.

1. a. After inspecting the equation for the path of the winning throw, which way do you expect the parabola to open? Explain. Name Period Date More Quadratic Functions Shot Put Activity 3 Parabolas are good models for a variety of situations that you encounter in everyday life. Example include the path of a golf ball after it

More information

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square

QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY. 7.1 Minimum/Maximum, Recall: Completing the square CHAPTER 7 QUADRATIC FUNCTIONS: MINIMUM/MAXIMUM POINTS, USE OF SYMMETRY 7.1 Minimum/Maximum, Recall: Completing the square The completing the square method uses the formula x + y) = x + xy + y and forces

More information

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check

1. Answer: x or x. Explanation Set up the two equations, then solve each equation. x. Check Thinkwell s Placement Test 5 Answer Key If you answered 7 or more Test 5 questions correctly, we recommend Thinkwell's Algebra. If you answered fewer than 7 Test 5 questions correctly, we recommend Thinkwell's

More information

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents

Algebra I. Slide 1 / 137. Slide 2 / 137. Slide 3 / 137. Quadratic & Non-Linear Functions. Table of Contents Slide 1 / 137 Slide 2 / 137 Algebra I Quadratic & Non-Linear Functions 2015-11-04 www.njctl.org Table of Contents Slide 3 / 137 Click on the topic to go to that section Key Terms Explain Characteristics

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 7: Building Functions Instruction Prerequisite Skills This lesson requires the use of the following skills: multiplying linear expressions factoring quadratic equations finding the value of a in the vertex form of a quadratic equation

More information

Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4

Section a) f(x-3)+4 = (x 3) the (-3) in the parenthesis moves right 3, the +4 moves up 4 Section 4.3 1a) f(x-3)+4 = (x 3) 2 + 4 the (-3) in the parenthesis moves right 3, the +4 moves up 4 Answer 1a: f(x-3)+4 = (x 3) 2 + 4 The graph has the same shape as f(x) = x 2, except it is shifted right

More information

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4

3x 2 + 7x + 2. A 8-6 Factor. Step 1. Step 3 Step 4. Step 2. Step 1 Step 2 Step 3 Step 4 A 8-6 Factor. Step 1 3x 2 + 7x + 2 Step 2 Step 3 Step 4 3x 2 + 7x + 2 3x 2 + 7x + 2 Step 1 Step 2 Step 3 Step 4 Factor. 1. 3x 2 + 4x +1 = 2. 3x 2 +10x + 3 = 3. 3x 2 +13x + 4 = A 8-6 Name BDFM? Why? Factor.

More information

Things to Know for the Algebra I Regents

Things to Know for the Algebra I Regents Types of Numbers: Real Number: any number you can think of (integers, rational, irrational) Imaginary Number: square root of a negative number Integers: whole numbers (positive, negative, zero) Things

More information

Chapter 2: Polynomial and Rational Functions Power Standard #7

Chapter 2: Polynomial and Rational Functions Power Standard #7 Chapter 2: Polynomial and Rational s Power Standard #7 2.1 Quadratic s Lets glance at the finals. Learning Objective: In this lesson you learned how to sketch and analyze graphs of quadratic functions.

More information

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007

Math 135: Intermediate Algebra Homework 10 Solutions December 18, 2007 Math 135: Intermediate Algebra Homework 10 Solutions December 18, 007 Homework from: Akst & Bragg, Intermediate Algebra through Applications, 006 Edition, Pearson/Addison-Wesley Subject: Linear Systems,

More information

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background

Quadratic Functions In Standard Form In Factored Form In Vertex Form Transforming Graphs. Math Background Graphing In Standard Form In Factored Form In Vertex Form Transforming Graphs Math Background Previousl, ou Identified and graphed linear functions Applied transformations to parent functions Graphed quadratic

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form

Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Unit 3, Lesson 3.1 Creating and Graphing Equations Using Standard Form Imagine the path of a basketball as it leaves a player s hand and swooshes through the net. Or, imagine the path of an Olympic diver

More information

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education

Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Writing Equivalent Forms of Quadratic Functions Adapted from Walch Education Recall The standard form, or general form, of a quadratic function is written as f(x) = ax 2 + bx + c, where a is the coefficient

More information

Graph Quadratic Functions Using Properties *

Graph Quadratic Functions Using Properties * OpenStax-CNX module: m63466 1 Graph Quadratic Functions Using Properties * OpenStax This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this

More information

2.1 Quadraticsnts.notebook. September 10, 2018

2.1 Quadraticsnts.notebook. September 10, 2018 1 A quadratic function is a polynomial function of second degree. The graph of a quadratic function is called a parabola. 2 Standard Form: Intercept Form: Vertex Form: f(x) = a(x h) 2 + k vertex: (h, k)

More information

Working with Quadratic Functions in Standard and Vertex Forms

Working with Quadratic Functions in Standard and Vertex Forms Working with Quadratic Functions in Standard and Vertex Forms Example 1: Identify Characteristics of a Quadratic Function in Standard Form f( x) ax bx c, a 0 For the quadratic function f( x) x x 3, identify

More information

Module 1. Name: Date: Period: Find the following function values. 4. Find the following: Domain. Range. The graph is increasing over the interval

Module 1. Name: Date: Period: Find the following function values. 4. Find the following: Domain. Range. The graph is increasing over the interval Name: Date: Period: Algebra Fall Final Exam Review My Exam Date Is : Module 1 Find the following function values. f(x) = 3x + g(x) = x h(x) = x 3 1. g(f(x)). h(3) g(3) 3. g(f()) 4. Find the following:

More information

Parabolas have a, a middle point. For. In this example, the equation of the axis of symmetry is

Parabolas have a, a middle point. For. In this example, the equation of the axis of symmetry is 5.1/5.A Investigating Quadratic Functions in Standard Form: y = a(x ± h) ± k y x Graph y x using a table of values x -3 - -1 0 1 3 Graph Shape: the graph shape is called a and occurs when the equation

More information

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket

GSE Algebra 1 Name Date Block. Unit 3b Remediation Ticket Unit 3b Remediation Ticket Question: Which function increases faster, f(x) or g(x)? f(x) = 5x + 8; two points from g(x): (-2, 4) and (3, 10) Answer: In order to compare the rate of change (roc), you must

More information

This is called the vertex form of the quadratic equation. To graph the equation

This is called the vertex form of the quadratic equation. To graph the equation Name Period Date: Topic: 7-5 Graphing ( ) Essential Question: What is the vertex of a parabola, and what is its axis of symmetry? Standard: F-IF.7a Objective: Graph linear and quadratic functions and show

More information

WHAT ARE THE PARTS OF A QUADRATIC?

WHAT ARE THE PARTS OF A QUADRATIC? 4.1 Introduction to Quadratics and their Graphs Standard Form of a Quadratic: y ax bx c or f x ax bx c. ex. y x. Every function/graph in the Quadratic family originates from the parent function: While

More information

Quadratics Functions: Review

Quadratics Functions: Review Quadratics Functions: Review Name Per Review outline Quadratic function general form: Quadratic function tables and graphs (parabolas) Important places on the parabola graph [see chart below] vertex (minimum

More information

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0).

2. The diagram shows part of the graph of y = a (x h) 2 + k. The graph has its vertex at P, and passes through the point A with coordinates (1, 0). Quadratics Vertex Form 1. Part of the graph of the function y = d (x m) + p is given in the diagram below. The x-intercepts are (1, 0) and (5, 0). The vertex is V(m, ). (a) Write down the value of (i)

More information

CHAPTER 9: Quadratic Equations and Functions

CHAPTER 9: Quadratic Equations and Functions CHAPTER : Quadratic Equations and Functions Notes # -: Exploring Quadratic Graphs A. Graphing ax A is a function that can be written in the form ax bx c where a, b, and c are real numbers and a 0. Examples:

More information

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D.

Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Math 165 - Review Chapters 3 and 4 Name Remember to SHOW ALL STEPS. You must be able to solve analytically. Answers are shown after each problem under A, B, C, or D. Find the quadratic function satisfying

More information

Math 2201 Unit 4: Quadratic Functions. 16 Hours

Math 2201 Unit 4: Quadratic Functions. 16 Hours Math 2201 Unit 4: Quadratic Functions 16 Hours 6.1: Exploring Quadratic Relations Quadratic Relation: A relation that can be written in the standard form y = ax 2 + bx + c Ex: y = 4x 2 + 2x + 1 ax 2 is

More information

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form.

Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. Notes Packet on Quadratic Functions and Factoring Graphing quadratic equations in standard form, vertex form, and intercept form. A. Intro to Graphs of Quadratic Equations:! = ax + bx + c A is a function

More information

Do you need a worksheet or a copy of the teacher notes? Go to

Do you need a worksheet or a copy of the teacher notes? Go to Name Period Day Date Assignment (Due the next class meeting) Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday Friday Monday Tuesday Wednesday Thursday

More information

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas

Lesson 3.1 Vertices and Intercepts. Important Features of Parabolas Lesson 3.1 Vertices and Intercepts Name: _ Learning Objective: Students will be able to identify the vertex and intercepts of a parabola from its equation. CCSS.MATH.CONTENT.HSF.IF.C.7.A Graph linear and

More information

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice

Algebra 2CP S1 Final Exam Information. Your final exam will consist of two parts: Free Response and Multiple Choice Algebra 2CP Name Algebra 2CP S1 Final Exam Information Your final exam will consist of two parts: Free Response and Multiple Choice Part I: Free Response: Five questions, 10 points each (50 points total),

More information

A I only B II only C II and IV D I and III B. 5 C. -8

A I only B II only C II and IV D I and III B. 5 C. -8 1. (7A) Points (3, 2) and (7, 2) are on the graphs of both quadratic functions f and g. The graph of f opens downward, and the graph of g opens upward. Which of these statements are true? I. The graphs

More information

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry.

Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of symmetry. HW Worksheet Name: Graph each function. State the domain, the vertex (min/max point), the range, the x intercepts, and the axis of smmetr..) f(x)= x + - - - - x - - - - Vertex: Max or min? Axis of smmetr:.)

More information

12/11/2018 Algebra II - Semester 1 Review

12/11/2018 Algebra II - Semester 1 Review Name: Semester Review - Study Guide Score: 72 / 73 points (99%) Algebra II - Semester 1 Review Multiple Choice Identify the choice that best completes the statement or answers the question. Name the property

More information

It is than the graph of y= x if a > 1.

It is than the graph of y= x if a > 1. Chapter 8 Quadratic Functions and Equations Name: Instructor: 8.1 Quadratic Functions and Their Graphs Graphs of Quadratic Functions Basic Transformations of Graphs More About Graphing Quadratic Functions

More information

8-4 Transforming Quadratic Functions

8-4 Transforming Quadratic Functions 8-4 Transforming Quadratic Functions Warm Up Lesson Presentation Lesson Quiz Algebra 1 Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward

More information

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions.

Objective. 9-4 Transforming Quadratic Functions. Graph and transform quadratic functions. Warm Up Lesson Presentation Lesson Quiz Warm Up For each quadratic function, find the axis of symmetry and vertex, and state whether the function opens upward or downward. 1. y = x 2 + 3 2. y = 2x 2 x

More information

Algebra II Quadratic Functions and Equations - Extrema Unit 05b

Algebra II Quadratic Functions and Equations - Extrema Unit 05b Big Idea: Quadratic Functions can be used to find the maximum or minimum that relates to real world application such as determining the maximum height of a ball thrown into the air or solving problems

More information