Graph-Based SLAM and Open Source Tools. Giorgio Grisetti

Size: px
Start display at page:

Download "Graph-Based SLAM and Open Source Tools. Giorgio Grisetti"

Transcription

1 Graph-Based SLAM and Open Source Tools Giorgio Grisetti

2 SLAM SLAM= Simultaneous Localization and Mapping Estimate: the map of the environment the trajectory of a moving device using a sequence of sensor measurements.

3 SLAM SLAM= Simultaneous Localization and Mapping Estimate: these quantities the map of the environment are correlated the trajectory of a moving device using a sequence of sensor measurements.

4 Why SLAM is so Important? Most applications require to localize a device in a map. A map cannot always be provided. Do SLAM! industrial applications Google street view service robotics autonomous cars

5 History 1960 Bundle Adjustment (~10 images) 1970 Recursive Partitioning (~1000 images) time and size of the environment 1990 (SLAM is born) 1993 Scan-Matching, Iconic maps 1997 Graph-SLAM 2000 Modern Sparse Matrix Techniques for BA 2002 FastSLAM 2003 ESDF, Treemap, TJTF 2005 SAM 2006 Appearance-Based Localization 2006 Efficient Graph-Based SLAM Towards the unification of SfM and SLAM

6 Graph-based SLAM in a Nutshell Node: robot position and sensor measurement. Edge: spatial transformation between nodes depends on the matching of scans

7 Graph-based SLAM in a Nutshell Node: robot position and sensor measurement. Edge: spatial transformation between nodes depends on the matching of scans

8 Graph-based SLAM in a Nutshell The graph abstracts away the measurements The most likely is trajectory obtained by optimization.

9 Graph-based SLAM in a Nutshell The graph abstracts away the measurements The most likely is trajectory obtained by optimization. like this

10 Graph-based SLAM in a Nutshell and thus the map.

11 An Example using Lasers

12 ... or Vision

13 Front-end and Back-end Front-end: extracts constraints from the sensor data Back-end: optimizes the pose-graph to reduce the error caused by the constraints raw data graph construction (front-end) node positions edges graph optimization (back-and) Insight: intermediate solutions are needed to make good data associations

14 How Does the Graph Look Like? It has n nodes x=x 1:n Each node x i is a 2D or 3D transformation representing the pose of the robot at time t i. There is a constraint e ij between the node x i and the node x j if either the robot observed the same part of the environment from both x i and x j and, via this common observation it constructs a virtual measurement about the position of x j seen from. Or the positions are subsequent in time and there is an odometry measurement between the two.

15 How Does the Graph Look Like? It has n nodes x=x 1:n Each node x i is a 2D or 3D transformation representing the pose of the robot at time t i. There is a constraint e ij between the node x i and the node x j if either the robot observed the same part of the environment from both x i and x j and, via this common observation it constructs a virtual measurement about the position of x j seen from. Or the positions are subsequent in time and there is an odometry measurement between the two. Measurement from x i x i x j Measurement from x J

16 How Does the Graph Look Like? It has n nodes x=x 1:n Each node x i is a 2D or 3D transformation representing the pose of the robot at time t i. x i x j There is a constraint e ij between the node x i and the node x j if either the robot observed the same part of the environment from both x i and x j and, via this common observation it constructs a virtual measurement about the position of x j seen from. Or the positions are subsequent in time and there is an odometry measurement between the two. The edge represents the position of x j seen from x i, based on the observations

17 How Does the Graph Look Like? It has n nodes x=x 1:n Each node x i is a 2D or 3D transformation representing the pose of the robot at time t i. There is a constraint e ij between the node x i and the node x j if either the robot observed the same part of the environment from both x i and x j and, via this common observation it constructs a virtual measurement about the position of x j seen from. Or the positions are subsequent in time and there is an odometry measurement between the two. x i X i+1 The edge represents the odometry measurement

18 Pose Graph The input for the optimization procedure is a graph annotated as follows: observation of from edge Goal: nodes error Find the assignment of poses to the nodes of the graph which minimizes the negative log likelihood of the observations:

19 OpenSLAM.org A platform to share SLAM code Research Oriented Not only full solutions, also subsystems can be uploaded Enables for comparative experiments As a SLAM user Provide a set of mapping systems to people interested in developing high level applications Reference implementations Promoting the use of SLAM technologies in industrial contexts As a SLAM developer Benchmarking/comparison Improving and extending the existing solutions

20 Open Source Tools For 3D Full Solutions 6 DoF SLAM system [Nuechter et al.] (laser-only) PTAM [Klein et al.] (camera-only) VSLAM stack in ROS (stereo + mono camera) Bundler [Snavely et al.] (unordered set of uncalibrated images) Back Ends g2o [Kuemmerle et al.] SAM [Kaess et al.] Hogman [Grisetti et al.] (only pose graphs) SBA [] Front ends PCL [Rusu et al.] (a veeeery general library on point clouds) FAB-Map [Cummings et al.] (Loop Closing on images) on

21 Some Applications

22 Conclusions SLAM is an active field The graph-based formulation allows for an efficient and intuitive formulation of the problem There are open source solutions to approach SLAM and all its subproblems Some of them are available on

Least Squares and SLAM Pose-SLAM

Least Squares and SLAM Pose-SLAM Least Squares and SLAM Pose-SLAM Giorgio Grisetti Part of the material of this course is taken from the Robotics 2 lectures given by G.Grisetti, W.Burgard, C.Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms

L15. POSE-GRAPH SLAM. NA568 Mobile Robotics: Methods & Algorithms L15. POSE-GRAPH SLAM NA568 Mobile Robotics: Methods & Algorithms Today s Topic Nonlinear Least Squares Pose-Graph SLAM Incremental Smoothing and Mapping Feature-Based SLAM Filtering Problem: Motion Prediction

More information

Practical Course WS 2010 Simultaneous Localization and Mapping

Practical Course WS 2010 Simultaneous Localization and Mapping Practical Course WS 2010 Simultaneous Localization and Mapping Cyrill Stachniss University of Freiburg, Germany Topics of this Course SLAM - simultaneous localization and mapping What does the world look

More information

Graph-Based SLAM (Chap. 15) Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Graph-Based SLAM (Chap. 15) Graph-Based SLAM (Chap.

Graph-Based SLAM (Chap. 15) Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Graph-Based SLAM (Chap. 15) Graph-Based SLAM (Chap. Robot Mapping Hierarchical Pose-Graphs for Online Mapping Graph-Based SLAM (Chap. 15)! Constraints connect the poses of the robot while it is moving! Constraints are inherently uncertain Cyrill Stachniss

More information

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz

Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares. Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz Advanced Techniques for Mobile Robotics Graph-based SLAM using Least Squares Wolfram Burgard, Cyrill Stachniss, Kai Arras, Maren Bennewitz SLAM Constraints connect the poses of the robot while it is moving

More information

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 7: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 7: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. Hierarchical Pose-Graphs for Online Mapping. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping Hierarchical Pose-Graphs for Online Mapping Gian Diego Tipaldi, Wolfram Burgard 1 Graph-Based SLAM Measurements connect the poses of the robot while it is moving Measurements are inherently

More information

TORO - Efficient Constraint Network Optimization for SLAM

TORO - Efficient Constraint Network Optimization for SLAM TORO - Efficient Constraint Network Optimization for SLAM Cyrill Stachniss Joint work with Giorgio Grisetti and Wolfram Burgard Special thanks to and partial slide courtesy of: Diego Tipaldi, Edwin Olson,

More information

g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard

g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard g2o: A General Framework for Graph Optimization Rainer Kümmerle Giorgio Grisetti Hauke Strasdat Kurt Konolige Wolfram Burgard Graph-Based SLAM Constraints connect the poses of the robot while it is moving

More information

Augmented Reality, Advanced SLAM, Applications

Augmented Reality, Advanced SLAM, Applications Augmented Reality, Advanced SLAM, Applications Prof. Didier Stricker & Dr. Alain Pagani alain.pagani@dfki.de Lecture 3D Computer Vision AR, SLAM, Applications 1 Introduction Previous lectures: Basics (camera,

More information

Improving Initial Estimations for Structure from Motion Methods

Improving Initial Estimations for Structure from Motion Methods Improving Initial Estimations for Structure from Motion Methods University of Bonn Outline Motivation Computer-Vision Basics Stereo Vision Bundle Adjustment Feature Matching Global Initial Estimation Component

More information

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss

Robot Mapping. Least Squares Approach to SLAM. Cyrill Stachniss Robot Mapping Least Squares Approach to SLAM Cyrill Stachniss 1 Three Main SLAM Paradigms Kalman filter Particle filter Graphbased least squares approach to SLAM 2 Least Squares in General Approach for

More information

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General

Graphbased. Kalman filter. Particle filter. Three Main SLAM Paradigms. Robot Mapping. Least Squares Approach to SLAM. Least Squares in General Robot Mapping Three Main SLAM Paradigms Least Squares Approach to SLAM Kalman filter Particle filter Graphbased Cyrill Stachniss least squares approach to SLAM 1 2 Least Squares in General! Approach for

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing

IROS 05 Tutorial. MCL: Global Localization (Sonar) Monte-Carlo Localization. Particle Filters. Rao-Blackwellized Particle Filters and Loop Closing IROS 05 Tutorial SLAM - Getting it Working in Real World Applications Rao-Blackwellized Particle Filters and Loop Closing Cyrill Stachniss and Wolfram Burgard University of Freiburg, Dept. of Computer

More information

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping

Particle Filters. CSE-571 Probabilistic Robotics. Dependencies. Particle Filter Algorithm. Fast-SLAM Mapping CSE-571 Probabilistic Robotics Fast-SLAM Mapping Particle Filters Represent belief by random samples Estimation of non-gaussian, nonlinear processes Sampling Importance Resampling (SIR) principle Draw

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics FastSLAM Sebastian Thrun (abridged and adapted by Rodrigo Ventura in Oct-2008) The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while

More information

15 Years of Visual SLAM

15 Years of Visual SLAM 15 Years of Visual SLAM Andrew Davison Robot Vision Group and Dyson Robotics Laboratory Department of Computing Imperial College London www.google.com/+andrewdavison December 18, 2015 What Has Defined

More information

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss

Robot Mapping. TORO Gradient Descent for SLAM. Cyrill Stachniss Robot Mapping TORO Gradient Descent for SLAM Cyrill Stachniss 1 Stochastic Gradient Descent Minimize the error individually for each constraint (decomposition of the problem into sub-problems) Solve one

More information

Improving Vision-based Topological Localization by Combining Local and Global Image Features

Improving Vision-based Topological Localization by Combining Local and Global Image Features Improving Vision-based Topological Localization by Combining Local and Global Image Features Shuai Yang and Han Wang Nanyang Technological University, Singapore Introduction Self-localization is crucial

More information

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial

Bundle Adjustment. Frank Dellaert CVPR 2014 Visual SLAM Tutorial Bundle Adjustment Frank Dellaert CVPR 2014 Visual SLAM Tutorial Mo@va@on VO: just two frames - > R,t using 5- pt or 3- pt Can we do bener? SFM, SLAM - > VSLAM Later: integrate IMU, other sensors Objec@ve

More information

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1

Robot Mapping. SLAM Front-Ends. Cyrill Stachniss. Partial image courtesy: Edwin Olson 1 Robot Mapping SLAM Front-Ends Cyrill Stachniss Partial image courtesy: Edwin Olson 1 Graph-Based SLAM Constraints connect the nodes through odometry and observations Robot pose Constraint 2 Graph-Based

More information

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello

Introduction to Mobile Robotics SLAM Grid-based FastSLAM. Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello Introduction to Mobile Robotics SLAM Grid-based FastSLAM Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Diego Tipaldi, Luciano Spinello 1 The SLAM Problem SLAM stands for simultaneous localization

More information

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss

ICRA 2016 Tutorial on SLAM. Graph-Based SLAM and Sparsity. Cyrill Stachniss ICRA 2016 Tutorial on SLAM Graph-Based SLAM and Sparsity Cyrill Stachniss 1 Graph-Based SLAM?? 2 Graph-Based SLAM?? SLAM = simultaneous localization and mapping 3 Graph-Based SLAM?? SLAM = simultaneous

More information

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule:

Final project: 45% of the grade, 10% presentation, 35% write-up. Presentations: in lecture Dec 1 and schedule: Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009

Announcements. Recap Landmark based SLAM. Types of SLAM-Problems. Occupancy Grid Maps. Grid-based SLAM. Page 1. CS 287: Advanced Robotics Fall 2009 Announcements PS2: due Friday 23:59pm. Final project: 45% of the grade, 10% presentation, 35% write-up Presentations: in lecture Dec 1 and 3 --- schedule: CS 287: Advanced Robotics Fall 2009 Lecture 24:

More information

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016

Visual SLAM. An Overview. L. Freda. ALCOR Lab DIAG University of Rome La Sapienza. May 3, 2016 An Overview L. Freda ALCOR Lab DIAG University of Rome La Sapienza May 3, 2016 L. Freda (University of Rome La Sapienza ) Visual SLAM May 3, 2016 1 / 39 Outline 1 Introduction What is SLAM Motivations

More information

CVPR 2014 Visual SLAM Tutorial Efficient Inference

CVPR 2014 Visual SLAM Tutorial Efficient Inference CVPR 2014 Visual SLAM Tutorial Efficient Inference kaess@cmu.edu The Robotics Institute Carnegie Mellon University The Mapping Problem (t=0) Robot Landmark Measurement Onboard sensors: Wheel odometry Inertial

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 10 Class 2: Visual Odometry November 2nd, 2017 Today Visual Odometry Intro Algorithm SLAM Visual Odometry Input Output Images, Video Camera trajectory, motion

More information

F1/10 th Autonomous Racing. Localization. Nischal K N

F1/10 th Autonomous Racing. Localization. Nischal K N F1/10 th Autonomous Racing Localization Nischal K N System Overview Mapping Hector Mapping Localization Path Planning Control System Overview Mapping Hector Mapping Localization Adaptive Monte Carlo Localization

More information

Implementation of Odometry with EKF for Localization of Hector SLAM Method

Implementation of Odometry with EKF for Localization of Hector SLAM Method Implementation of Odometry with EKF for Localization of Hector SLAM Method Kao-Shing Hwang 1 Wei-Cheng Jiang 2 Zuo-Syuan Wang 3 Department of Electrical Engineering, National Sun Yat-sen University, Kaohsiung,

More information

CS 532: 3D Computer Vision 7 th Set of Notes

CS 532: 3D Computer Vision 7 th Set of Notes 1 CS 532: 3D Computer Vision 7 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Logistics No class on October

More information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information

Efficient SLAM Scheme Based ICP Matching Algorithm Using Image and Laser Scan Information Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain July 13-14, 2015 Paper No. 335 Efficient SLAM Scheme Based ICP Matching Algorithm

More information

Lecture 8.2 Structure from Motion. Thomas Opsahl

Lecture 8.2 Structure from Motion. Thomas Opsahl Lecture 8.2 Structure from Motion Thomas Opsahl More-than-two-view geometry Correspondences (matching) More views enables us to reveal and remove more mismatches than we can do in the two-view case More

More information

STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING

STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING STEREO IMAGE POINT CLOUD AND LIDAR POINT CLOUD FUSION FOR THE 3D STREET MAPPING Yuan Yang, Ph.D. Student Zoltan Koppanyi, Post-Doctoral Researcher Charles K Toth, Research Professor SPIN Lab The University

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds www.crs4.it/vic/ vcg.isti.cnr.it/ Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds R. Pintus, E. Gobbetti, M.Agus, R. Combet CRS4 Visual Computing M. Callieri

More information

Probabilistic Robotics. FastSLAM

Probabilistic Robotics. FastSLAM Probabilistic Robotics FastSLAM The SLAM Problem SLAM stands for simultaneous localization and mapping The task of building a map while estimating the pose of the robot relative to this map Why is SLAM

More information

Evaluation of Pose Only SLAM

Evaluation of Pose Only SLAM The 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2010, Taipei, Taiwan Evaluation of Pose Only SLAM Gibson Hu, Shoudong Huang and Gamini Dissanayake Abstract In

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10

Structure from Motion. Introduction to Computer Vision CSE 152 Lecture 10 Structure from Motion CSE 152 Lecture 10 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 8: Structure from Motion Optional: Multiple View Geometry in Computer Vision, 2nd edition, Hartley

More information

Autonomous 3D Reconstruction Using a MAV

Autonomous 3D Reconstruction Using a MAV Autonomous 3D Reconstruction Using a MAV Alexander Popov, Dimitrios Zermas and Nikolaos Papanikolopoulos Abstract An approach is proposed for high resolution 3D reconstruction of an object using a Micro

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

Final Project Report: Mobile Pick and Place

Final Project Report: Mobile Pick and Place Final Project Report: Mobile Pick and Place Xiaoyang Liu (xiaoyan1) Juncheng Zhang (junchen1) Karthik Ramachandran (kramacha) Sumit Saxena (sumits1) Yihao Qian (yihaoq) Adviser: Dr Matthew Travers Carnegie

More information

Temporally Scalable Visual SLAM using a Reduced Pose Graph

Temporally Scalable Visual SLAM using a Reduced Pose Graph Temporally Scalable Visual SLAM using a Reduced Hordur Johannsson, Michael Kaess, Maurice Fallon and John J. Leonard Abstract In this paper, we demonstrate a system for temporally scalable visual SLAM

More information

Large-Scale Robotic SLAM through Visual Mapping

Large-Scale Robotic SLAM through Visual Mapping Large-Scale Robotic SLAM through Visual Mapping Christof Hoppe, Kathrin Pirker, Matthias Ru ther and Horst Bischof Institute for Computer Graphics and Vision Graz University of Technology, Austria {hoppe,

More information

Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates

Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates Experimental Analysis of Dynamic Covariance Scaling for Robust Map Optimization Under Bad Initial Estimates Pratik Agarwal Giorgio Grisetti Gian Diego Tipaldi Luciano Spinello Wolfram Burgard Cyrill Stachniss

More information

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 8: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization Marcus A. Brubaker (Toyota Technological Institute at Chicago) Andreas Geiger (Karlsruhe Institute of Technology & MPI Tübingen) Raquel

More information

g 2 o: A General Framework for Graph Optimization

g 2 o: A General Framework for Graph Optimization 2011 IEEE International Conference on Robotics and Automation Shanghai International Conference Center May 9-13, 2011, Shanghai, China g 2 o: A General Framework for Graph Optimization Rainer Kümmerle

More information

Utility-based Map Reduction for Ground and Flight Vehicle Navigation

Utility-based Map Reduction for Ground and Flight Vehicle Navigation Utility-based Map Reduction for Ground and Flight Vehicle Navigation Theodore J. Steiner III, Jeffrey A. Hoffman June 2015 SSL # 15-15 Utility-based Map Reduction for Ground and Flight Vehicle Navigation

More information

Loop detection and extended target tracking using laser data

Loop detection and extended target tracking using laser data Licentiate seminar 1(39) Loop detection and extended target tracking using laser data Karl Granström Division of Automatic Control Department of Electrical Engineering Linköping University Linköping, Sweden

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Laser, Kinect, Gmapping, Localization, PathPlanning

Laser, Kinect, Gmapping, Localization, PathPlanning Soso s knowledge Laser, Kinect, Gmapping, Localization, PathPlanning Faculty of Information Technology, Brno University of Technology Bozetechova 2, 612 66 Brno name@fit.vutbr.cz 99.99.9999 Sensors Stereo

More information

Hybrids Mixed Approaches

Hybrids Mixed Approaches Hybrids Mixed Approaches Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why mixing? Parallel Tracking and Mapping Benefits

More information

3D Point Cloud Processing

3D Point Cloud Processing 3D Point Cloud Processing The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well as changes in intensity that give the robot a single

More information

AMR 2011/2012: Final Projects

AMR 2011/2012: Final Projects AMR 2011/2012: Final Projects 0. General Information A final project includes: studying some literature (typically, 1-2 papers) on a specific subject performing some simulations or numerical tests on an

More information

VISION FOR AUTOMOTIVE DRIVING

VISION FOR AUTOMOTIVE DRIVING VISION FOR AUTOMOTIVE DRIVING French Japanese Workshop on Deep Learning & AI, Paris, October 25th, 2017 Quoc Cuong PHAM, PhD Vision and Content Engineering Lab AI & MACHINE LEARNING FOR ADAS AND SELF-DRIVING

More information

COMPARISON OF LASER SCANNING, PHOTOGRAMMETRY AND SfM-MVS PIPELINE APPLIED IN STRUCTURES AND ARTIFICIAL SURFACES

COMPARISON OF LASER SCANNING, PHOTOGRAMMETRY AND SfM-MVS PIPELINE APPLIED IN STRUCTURES AND ARTIFICIAL SURFACES COMPARISON OF LASER SCANNING, PHOTOGRAMMETRY AND SfM-MVS PIPELINE APPLIED IN STRUCTURES AND ARTIFICIAL SURFACES 2012 ISPRS Melbourne, Com III/4, S.Kiparissi Cyprus University of Technology 1 / 28 Structure

More information

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping

AUTONOMOUS SYSTEMS. LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping AUTONOMOUS SYSTEMS LOCALIZATION, MAPPING & SIMULTANEOUS LOCALIZATION AND MAPPING Part V Mapping & Occupancy Grid Mapping Maria Isabel Ribeiro Pedro Lima with revisions introduced by Rodrigo Ventura Instituto

More information

Step-by-Step Model Buidling

Step-by-Step Model Buidling Step-by-Step Model Buidling Review Feature selection Feature selection Feature correspondence Camera Calibration Euclidean Reconstruction Landing Augmented Reality Vision Based Control Sparse Structure

More information

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss

Robot Mapping. Graph-Based SLAM with Landmarks. Cyrill Stachniss Robot Mapping Graph-Based SLAM with Landmarks Cyrill Stachniss 1 Graph-Based SLAM (Chap. 15) Use a graph to represent the problem Every node in the graph corresponds to a pose of the robot during mapping

More information

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms

L17. OCCUPANCY MAPS. NA568 Mobile Robotics: Methods & Algorithms L17. OCCUPANCY MAPS NA568 Mobile Robotics: Methods & Algorithms Today s Topic Why Occupancy Maps? Bayes Binary Filters Log-odds Occupancy Maps Inverse sensor model Learning inverse sensor model ML map

More information

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little

SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little SLAM with SIFT (aka Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks ) Se, Lowe, and Little + Presented by Matt Loper CS296-3: Robot Learning and Autonomy Brown

More information

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

GTSAM 4.0 Tutorial Theory, Programming, and Applications

GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM 4.0 Tutorial Theory, Programming, and Applications GTSAM: https://bitbucket.org/gtborg/gtsam Examples: https://github.com/dongjing3309/gtsam-examples Jing Dong 2016-11-19 License CC BY-NC-SA 3.0

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Practical Course WS12/13 Introduction to Monte Carlo Localization

Practical Course WS12/13 Introduction to Monte Carlo Localization Practical Course WS12/13 Introduction to Monte Carlo Localization Cyrill Stachniss and Luciano Spinello 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Bayes Filter

More information

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion

Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion EUDES,NAUDET,LHUILLIER,DHOME: WEIGHTED LBA & ODOMETRY FUSION 1 Weighted Local Bundle Adjustment and Application to Odometry and Visual SLAM Fusion Alexandre Eudes 12 alexandre.eudes@lasmea.univ-bpclermont.fr

More information

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory

Monocular Visual-Inertial SLAM. Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Monocular Visual-Inertial SLAM Shaojie Shen Assistant Professor, HKUST Director, HKUST-DJI Joint Innovation Laboratory Why Monocular? Minimum structural requirements Widely available sensors Applications:

More information

Temporally Scalable Visual SLAM using a Reduced Pose Graph

Temporally Scalable Visual SLAM using a Reduced Pose Graph Temporally Scalable Visual SLAM using a Reduced Pose Graph Hordur Johannsson, Michael Kaess, Maurice Fallon and John J. Leonard Abstract In this paper, we demonstrate a system for temporally scalable visual

More information

08 An Introduction to Dense Continuous Robotic Mapping

08 An Introduction to Dense Continuous Robotic Mapping NAVARCH/EECS 568, ROB 530 - Winter 2018 08 An Introduction to Dense Continuous Robotic Mapping Maani Ghaffari March 14, 2018 Previously: Occupancy Grid Maps Pose SLAM graph and its associated dense occupancy

More information

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping

Large-Scale. Point Cloud Processing Tutorial. Application: Mobile Mapping Large-Scale 3D Point Cloud Processing Tutorial 2013 Application: Mobile Mapping The image depicts how our robot Irma3D sees itself in a mirror. The laser looking into itself creates distortions as well

More information

Robotic Perception and Action: Vehicle SLAM Assignment

Robotic Perception and Action: Vehicle SLAM Assignment Robotic Perception and Action: Vehicle SLAM Assignment Mariolino De Cecco Mariolino De Cecco, Mattia Tavernini 1 CONTENTS Vehicle SLAM Assignment Contents Assignment Scenario 3 Odometry Localization...........................................

More information

Simultaneous Localization and Mapping (SLAM)

Simultaneous Localization and Mapping (SLAM) Simultaneous Localization and Mapping (SLAM) RSS Lecture 16 April 8, 2013 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 SLAM Problem Statement Inputs: No external coordinate reference Time series of

More information

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs

FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs FLaME: Fast Lightweight Mesh Estimation using Variational Smoothing on Delaunay Graphs W. Nicholas Greene Robust Robotics Group, MIT CSAIL LPM Workshop IROS 2017 September 28, 2017 with Nicholas Roy 1

More information

An Iterative Graph Optimization Approach for 2D SLAM. He Zhang, Guoliang Liu, and Zifeng Hou Lenovo Institution of Research and Development

An Iterative Graph Optimization Approach for 2D SLAM. He Zhang, Guoliang Liu, and Zifeng Hou Lenovo Institution of Research and Development An Iterative Graph Optimization Approach for 2D SLAM He Zhang, Guoliang Liu, and Zifeng Hou Lenovo Institution of Research and Development Self Introduction English name: David, Graduate student in UCAS

More information

Rigid Body Transformations

Rigid Body Transformations F1/10 th Racing Rigid Body Transformations (Or How Different sensors see the same world) By, Paritosh Kelkar Mapping the surroundings Specify destination and generate path to goal The colored cells represent

More information

Simultaneous Calibration, Localization, and Mapping

Simultaneous Calibration, Localization, and Mapping Simultaneous Calibration, Localization, and Mapping Rainer Kümmerle Giorgio Grisetti Wolfram Burgard Abstract The calibration parameters of a mobile robot play a substantial role in navigation tasks. Often

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

A Systems View of Large- Scale 3D Reconstruction

A Systems View of Large- Scale 3D Reconstruction Lecture 23: A Systems View of Large- Scale 3D Reconstruction Visual Computing Systems Goals and motivation Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)

More information

Monocular Visual Odometry

Monocular Visual Odometry Elective in Robotics coordinator: Prof. Giuseppe Oriolo Monocular Visual Odometry (slides prepared by Luca Ricci) Monocular vs. Stereo: eamples from Nature Predator Predators eyes face forward. The field

More information

Merging of 3D Visual Maps Based on Part-Map Retrieval and Path Consistency

Merging of 3D Visual Maps Based on Part-Map Retrieval and Path Consistency 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) November 3-7, 2013. Tokyo, Japan Merging of 3D Visual Maps Based on Part-Map Retrieval and Path Consistency Masahiro Tomono

More information

CS4495/6495 Introduction to Computer Vision

CS4495/6495 Introduction to Computer Vision CS4495/6495 Introduction to Computer Vision 9C-L1 3D perception Some slides by Kelsey Hawkins Motivation Why do animals, people & robots need vision? To detect and recognize objects/landmarks Is that a

More information

Geometry for Computer Vision

Geometry for Computer Vision Geometry for Computer Vision Lecture 5b Calibrated Multi View Geometry Per-Erik Forssén 1 Overview The 5-point Algorithm Structure from Motion Bundle Adjustment 2 Planar degeneracy In the uncalibrated

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Analyzing the Quality of Matched 3D Point Clouds of Objects

Analyzing the Quality of Matched 3D Point Clouds of Objects Analyzing the Quality of Matched 3D Point Clouds of Objects Igor Bogoslavskyi Cyrill Stachniss Abstract 3D laser scanners are frequently used sensors for mobile robots or autonomous cars and they are often

More information

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History

Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Revising Stereo Vision Maps in Particle Filter Based SLAM using Localisation Confidence and Sample History Simon Thompson and Satoshi Kagami Digital Human Research Center National Institute of Advanced

More information

Simultaneous Localization

Simultaneous Localization Simultaneous Localization and Mapping (SLAM) RSS Technical Lecture 16 April 9, 2012 Prof. Teller Text: Siegwart and Nourbakhsh S. 5.8 Navigation Overview Where am I? Where am I going? Localization Assumed

More information

Efficient Sparse Pose Adjustment for 2D Mapping

Efficient Sparse Pose Adjustment for 2D Mapping The 2 IEEE/RSJ International Conference on Intelligent Robots and Systems October 18-22, 2, Taipei, Taiwan Efficient Sparse Pose Adjustment for 2D Mapping Kurt Konolige Willow Garage Menlo Park, CA 9425

More information

Monocular SLAM for a Small-Size Humanoid Robot

Monocular SLAM for a Small-Size Humanoid Robot Tamkang Journal of Science and Engineering, Vol. 14, No. 2, pp. 123 129 (2011) 123 Monocular SLAM for a Small-Size Humanoid Robot Yin-Tien Wang*, Duen-Yan Hung and Sheng-Hsien Cheng Department of Mechanical

More information

Cluster-based 3D Reconstruction of Aerial Video

Cluster-based 3D Reconstruction of Aerial Video Cluster-based 3D Reconstruction of Aerial Video Scott Sawyer (scott.sawyer@ll.mit.edu) MIT Lincoln Laboratory HPEC 12 12 September 2012 This work is sponsored by the Assistant Secretary of Defense for

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.2: Visual Odometry Jürgen Sturm Technische Universität München Cascaded Control Robot Trajectory 0.1 Hz Visual

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

Robust Place Recognition for 3D Range Data based on Point Features

Robust Place Recognition for 3D Range Data based on Point Features 21 IEEE International Conference on Robotics and Automation Anchorage Convention District May 3-8, 21, Anchorage, Alaska, USA Robust Place Recognition for 3D Range Data based on Point Features Bastian

More information

Monitoring the environment with a Cloud Robotics Service

Monitoring the environment with a Cloud Robotics Service Monitoring the environment with a Cloud Robotics Service Ludovico O. Russo ludus.russo@gmail.com Outline Introduction Service Robotics Autonomous Navigation Cloud Robotics Robot Based Environmental Monitoring

More information