Applications of Differentiation

Size: px
Start display at page:

Download "Applications of Differentiation"

Transcription

1 Contents 1 Applications of Differentiation 1.1 Tangents and Normals 1. Maima and Minima The Newton-Raphson Method Curvature Differentiation of Vectors Case Stud: Comple Impedance 60 Learning outcomes In this Workbook ou will learn to appl our knowledge of differentiation to solve some basic problems connected with curves. First ou will learn how to obtain the equation of the tangent line and the normal line to an point of interest on a curve. Secondl, ou will learn how to find the positions of maima and minima on a given curve. Thirdl, ou will learn how, given an approimate position of the root of a function, a better estimate of the position can be obtained using the Newton-Raphson technique. Lastl ou will learn how to characterise how sharpl a curve is turning b calculating its curvature.

2 Tangents and Normals 1.1 Introduction In this Section we see how the equations of the tangent line and the normal line at a particular point on the curve = f() can be obtained. The equations of tangent and normal lines are often written as = m + c, = n + d respectivel. We shall show that the product of their gradients m and n is such that mn is 1 which is the condition for perpendicularit. Prerequisites Before starting this Section ou should... Learning Outcomes On completion ou should be able to... be able to differentiate standard functions understand the geometrical interpretation of a derivative know the trigonometric epansions of sin(a + B), cos(a + B) obtain the condition that two given lines are perpendicular obtain the equation of the tangent line to a curve obtain the equation of the normal line to a curve HELM (008): Workbook 1: Applications of Differentiation

3 1. Perpendicular lines One form for the equation of a straight line is = m + c where m and c are constants. We remember that m is the gradient of the line and its value is the tangent of the angle θ that the line makes with the positive -ais. The constant c is the value obtained where the line intersects the -ais. See Figure 1: c = m + c m = tan θ θ Figure 1 If we have a second line, with equation = n + d then, unless m = n, the two lines will intersect at one point. These are drawn together in Figure. The second line makes an angle ψ with the positive -ais. c = m + c θ = n + d n = tan ψ ψ Figure A simple question to ask is what is the relation between m and n if the lines are perpendicular? If the lines are perpendicular, as shown in Figure, the angles θ and ψ must satisf the relation: ψ θ = 90 c θ ψ Figure HELM (008): Section 1.1: Tangents and Normals

4 This is true since the angles in a triangle add up to 180. According to the figure the three angles are 90, θ and 180 ψ. Therefore 180 = 90 + θ + (180 ψ) impling ψ θ = 90 In this special case that the lines are perpendicular or normal to each other the relation between the gradients m and n is easil obtained. In this deduction we use the following basic trigonometric relations and identities: sin(a B) sin A cos B cos A sin B cos(a B) cos A cos B + sin A sin B Now tan A sin A cos A sin 90 = 1 cos 90 = 0 m = tan θ = tan(ψ 90 o ) (see Figure ) = sin(ψ 90o ) cos(ψ 90 o ) = cos ψ sin ψ = 1 tan ψ = 1 n So mn = 1 Ke Point 1 Two straight lines = m + c, = n + d are perpendicular if m = 1 n or equivalentl mn = 1 This result assumes that neither of the lines are parallel to the -ais or to the -ais, as in such cases one gradient will be zero and the other infinite. Eercise Which of the following pairs of lines are perpendicular? (a) = + 1, = + 1 (b) + 1 = 0, + = 0 (c) = 8 +, = (a) perpendicular (b) not perpendicular (c) perpendicular 4 HELM (008): Workbook 1: Applications of Differentiation

5 . Tangents and normals to a curve As we know, the relationship between an independent variable and a dependent variable is denoted b = f() As we also know, the geometrical interpretation of this relation takes the form of a curve in an plane as illustrated in Figure 4. = f() Figure 4 We know how to calculate a value of given a value of. We can either do this graphicall (which is inaccurate) or else use the function itself. So, at an value of 0 the corresponding value is 0 where 0 = f( 0 ) Let us eamine the curve in the neighbourhood of the point ( 0, 0 ). constructions of interest the tangent line at ( 0, 0 ) the normal line at ( 0, 0 ) These are shown in Figure 5. There are two important tangent line 0 θ 0 ψ normal line Figure 5 We note the geometricall obvious fact: the tangent and normal lines at an given point on a curve are perpendicular to each other. HELM (008): Section 1.1: Tangents and Normals 5

6 Task The curve = is drawn below. On this graph draw the tangent line and the normal line at the point ( 0 = 1, 0 = 1): 1 1 tangent line 1 θ 1 ψ normal line From our graph, estimate the values of θ and ψ in degrees. (You will need a protractor.) θ ψ θ 6.4 o ψ 15.4 o Returning to the curve = f() : we know, from the geometrical interpretation of the derivative that d = tan θ (the notation d means evaluate d at the value = 0) Here θ is the angle the tangent line to the curve = f() makes with the positive -ais. This is highlighted in Figure 6: = f() d = tan θ θ 0 Figure 6 6 HELM (008): Workbook 1: Applications of Differentiation

7 . The tangent line to a curve Let the equation of the tangent line to the curve = f() at the point ( 0, 0 ) be: = m + c where m and c are constants to be found. The line just touches the curve = f() at the point ( 0, 0 ) so, at this point both must have the same value for the derivative. That is: m = d Since we know (in an particular case) f() and the value 0 we can readil calculate the value for m. The value of c is found b using the fact that the tangent line and the curve pass through the same point ( 0, 0 ). 0 = m 0 + c and 0 = f( 0 ) Thus m 0 + c = f( 0 ) leading to c = f( 0 ) m 0 Ke Point The equation of the tangent line to the curve = f() at the point ( 0, 0 ) is = m + c where m = d and c = f( 0 ) m 0 Alternativel, the equation is 0 = m( 0 ) where m = d and 0 = f( 0 ) Eample 1 Find the equation of the tangent line to the curve = at the point (1,1). Solution Method 1 Here f() = and 0 = 1 thus d = m = d = Also c = f( 0 ) m 0 = f(1) m = 1 = 1. The tangent line has equation = 1. Method 0 = f( 0 ) = f(1) = 1 = 1 The tangent line has equation 1 = ( 1) = 1 HELM (008): Section 1.1: Tangents and Normals 7

8 Task Find the equation of the tangent line to the curve = e at the point = 0. The curve and the line are displaed in the following figure: tangent line First specif 0 and f: 0 = f() = 0 = 0 f() = e Now obtain the values of d and f( 0 ) m 0 : d = f( 0 ) m 0 = d = e d = 1 and f (0) 1(0) = e 0 0 = 1 0 Now obtain the equation of the tangent line: = = HELM (008): Workbook 1: Applications of Differentiation

9 Task Find the equation of the tangent line to the curve = sin at the point = π 4 and find where the tangent line intersects the -ais. See the following figure: tangent line First specif 0 and f: 0 = f() = 0 = π 4 f() = sin Now obtain the values of d and f( 0 ) m 0 correct to d.p.: d = f( 0 ) m 0 = d = cos d ( π ) 4 and f mπ 4 = sin π 4 Now obtain the equation of the tangent line: = π 4 = cos π 4 = =.1 ( ) π 4 = 1 + π 4 =.7 to d.p. = (4 + π) so = (to d.p.) HELM (008): Section 1.1: Tangents and Normals 9

10 Where does the line intersect the -ais? = When = = 0 = 1.1 to d.p. 4. The normal line to a curve We have alread noted that, at an point ( 0, 0 ) on a curve = f(), the tangent and normal lines are perpendicular. Thus if the equations of the tangent and normal lines are, respectivel = m + c = n + d then m = 1 n or, equivalentl n = 1 m. We have also noted, for the tangent line m = d so n can easil be obtained. To find d, we again use the fact that the normal line = n + d and the curve have a point in common: 0 = n 0 + d and 0 = f( 0 ) so n 0 + d = f( 0 ) leading to d = f( 0 ) n 0. Task Find the equation of the normal line to curve = sin at the point = π 4. [The equation of the tangent line was found in the previous Task.] First find the value of m: m = d π 4 = m = Hence find the value of n: n = nm = 1 n = 10 HELM (008): Workbook 1: Applications of Differentiation

11 The equation of the normal line is = + d. Now find the value of d to d.p.. (Remember the normal line must pass through the curve at the point = π 4.) ( π ) + d = sin π 4 4 d = 1 π Now obtain the equation of the normal line to d.p.: = = The curve and the normal line are shown in the following figure: normal line Task Find the equation of the normal line to the curve = at = 1. First find f(), 0, d, m, n: f() =, 0 = 1, 1 d = = m = and n = 1 1 HELM (008): Section 1.1: Tangents and Normals 11

12 Now use the propert that the normal line = n + d and the curve = pass through the point (1, 1) to find d and so obtain the equation of the normal line: d = = 1 = n + d d = 1 n = = 4. Thus the equation of the normal line is = The curve and the normal line through (1, 1) are shown below: normal line Eercises 1. Find the equations of the tangent and normal lines to the following curves at the points indicated (a) = 4 +, (1, ) (b) = 1, (, ) What would be obtained if the point was (1, 0)? (c) = 1/, (1, 1). Find the value of a if the two curves = e and = e a are to intersect at right-angles. 1 HELM (008): Workbook 1: Applications of Differentiation

13 s 1. (a) f() = 4 + d = 4 + 4, d = 8 =1 tangent line = 8 + c. This passes through (1, ) so = 8 5 normal line = d. This passes through (1, ) so = (b) f() = 1 d = 1 d = 1 = ( ) tangent line = + c. This passes through, so = + ( ) normal line = + d. This passes through, so =. At (1, 0) the tangent line is = 1 and the gradient is infinite (the line is vertical), and the normal line is = 0. (c) f() = 1 d = 1 1 d = 1 =1 tangent line: = 1 + c. This passes through (1, 1) so = normal line: = + d. This passes through (1, 1) so = +.. The curves will intersect at right-angles if their tangent lines, at the point of intersection, are perpendicular. Point of intersection: e = e a i.e. = a = 0 (a = 1 not sensible) The tangent line to = e a is = m + c where The tangent line to = e is = k + g where m = ae a =0 = a k = e =0 = 1 These two lines are perpendicular if a( 1) = 1 i.e. a = 1. = e = e HELM (008): Section 1.1: Tangents and Normals 1

2.3. One-to-One and Inverse Functions. Introduction. Prerequisites. Learning Outcomes

2.3. One-to-One and Inverse Functions. Introduction. Prerequisites. Learning Outcomes One-to-One and Inverse Functions 2. Introduction In this Section we eamine more terminolog associated with functions. We eplain one-to-one and man-to-one functions and show how the rule associated with

More information

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is

dt Acceleration is the derivative of velocity with respect to time. If a body's position at time t is S = f(t), the body's acceleration at time t is APPLICATIN F DERIVATIVE INTRDUCTIN In this section we eamine some applications in which derivatives are used to represent and interpret the rates at which things change in the world around us. Let S be

More information

Integrating ICT into mathematics at KS4&5

Integrating ICT into mathematics at KS4&5 Integrating ICT into mathematics at KS4&5 Tom Button tom.button@mei.org.uk www.mei.org.uk/ict/ This session will detail the was in which ICT can currentl be used in the teaching and learning of Mathematics

More information

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2.

(ii) Use Simpson s rule with two strips to find an approximation to Use your answers to parts (i) and (ii) to show that ln 2. C umerical Methods. June 00 qu. 6 (i) Show by calculation that the equation tan = 0, where is measured in radians, has a root between.0 and.. [] Use the iteration formula n+ = tan + n with a suitable starting

More information

Def.: a, b, and c are called the for the line L. x = y = z =

Def.: a, b, and c are called the for the line L. x = y = z = Bob Brown, CCBC Dundalk Math 253 Calculus 3, Chapter Section 5 Completed Lines in Space Eercise : Consider the vector v = Sketch and describe the following set: t v ta, tb, tc : t a, b, c. Let P =,,. Sketch

More information

TANGENTS AND NORMALS

TANGENTS AND NORMALS Mathematics Revision Guides Tangents and Normals Page 1 of 8 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edecel: C OCR: C1 OCR MEI: C TANGENTS AND NORMALS Version : 1 Date:

More information

Worksheet A GRAPHS OF FUNCTIONS

Worksheet A GRAPHS OF FUNCTIONS C GRAPHS F FUNCTINS Worksheet A Sketch and label each pair of graphs on the same set of aes showing the coordinates of any points where the graphs intersect. Write down the equations of any asymptotes.

More information

4.7 INVERSE TRIGONOMETRIC FUNCTIONS

4.7 INVERSE TRIGONOMETRIC FUNCTIONS Section 4.7 Inverse Trigonometric Functions 4 4.7 INVERSE TRIGONOMETRIC FUNCTIONS NASA What ou should learn Evaluate and graph the inverse sine function. Evaluate and graph the other inverse trigonometric

More information

Focusing properties of spherical and parabolic mirrors

Focusing properties of spherical and parabolic mirrors Physics 5B Winter 008 Focusing properties of spherical and parabolic mirrors 1 General considerations Consider a curved mirror surface that is constructed as follows Start with a curve, denoted by y()

More information

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx.

The Quadratic function f(x) = x 2 2x 3. y y = x 2 2x 3. We will now begin to study the graphs of the trig functions, y = sinx, y = cosx and y = tanx. Chapter 7 Trigonometric Graphs Introduction We have alread looked at the graphs of various functions : The Linear function f() = The Quadratic function f() = The Hperbolic function f() = = = = We will

More information

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7)

y = f(x) x (x, f(x)) f(x) g(x) = f(x) + 2 (x, g(x)) 0 (0, 1) 1 3 (0, 3) 2 (2, 3) 3 5 (2, 5) 4 (4, 3) 3 5 (4, 5) 5 (5, 5) 5 7 (5, 7) 0 Relations and Functions.7 Transformations In this section, we stud how the graphs of functions change, or transform, when certain specialized modifications are made to their formulas. The transformations

More information

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section.

Education Resources. This section is designed to provide examples which develop routine skills necessary for completion of this section. Education Resources Trigonometry Higher Mathematics Supplementary Resources Section A This section is designed to provide examples which develop routine skills necessary for completion of this section.

More information

4.1 Angles and Angle Measure. 1, multiply by

4.1 Angles and Angle Measure. 1, multiply by 4.1 Angles and Angle Measure Angles can be measured in degrees or radians. Angle measures without units are considered to be in radians. Radian: One radian is the measure of the central angle subtended

More information

IB SL REVIEW and PRACTICE

IB SL REVIEW and PRACTICE IB SL REVIEW and PRACTICE Topic: CALCULUS Here are sample problems that deal with calculus. You ma use the formula sheet for all problems. Chapters 16 in our Tet can help ou review. NO CALCULATOR Problems

More information

STRAND G: Relations, Functions and Graphs

STRAND G: Relations, Functions and Graphs UNIT G Using Graphs to Solve Equations: Tet STRAND G: Relations, Functions and Graphs G Using Graphs to Solve Equations Tet Contents * * Section G. Solution of Simultaneous Equations b Graphs G. Graphs

More information

Module 2, Section 2 Graphs of Trigonometric Functions

Module 2, Section 2 Graphs of Trigonometric Functions Principles of Mathematics Section, Introduction 5 Module, Section Graphs of Trigonometric Functions Introduction You have studied trigonometric ratios since Grade 9 Mathematics. In this module ou will

More information

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane?

3. The three points (2, 4, 1), (1, 2, 2) and (5, 2, 2) determine a plane. Which of the following points is in that plane? Math 4 Practice Problems for Midterm. A unit vector that is perpendicular to both V =, 3, and W = 4,, is (a) V W (b) V W (c) 5 6 V W (d) 3 6 V W (e) 7 6 V W. In three dimensions, the graph of the equation

More information

Unit 2: Function Transformation Chapter 1

Unit 2: Function Transformation Chapter 1 Basic Transformations Reflections Inverses Unit 2: Function Transformation Chapter 1 Section 1.1: Horizontal and Vertical Transformations A of a function alters the and an combination of the of the graph.

More information

Graphing square root functions. What would be the base graph for the square root function? What is the table of values?

Graphing square root functions. What would be the base graph for the square root function? What is the table of values? Unit 3 (Chapter 2) Radical Functions (Square Root Functions Sketch graphs of radical functions b appling translations, stretches and reflections to the graph of Analze transformations to identif the of

More information

MATH STUDENT BOOK. 12th Grade Unit 7

MATH STUDENT BOOK. 12th Grade Unit 7 MATH STUDENT BOOK 1th Grade Unit 7 Unit 7 POLAR COORDINATES MATH 107 POLAR COORDINATES INTRODUCTION 1. POLAR EQUATIONS 5 INTRODUCTION TO POLAR COORDINATES 5 POLAR EQUATIONS 1 POLAR CURVES 19 POLAR FORMS

More information

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2

of Straight Lines 1. The straight line with gradient 3 which passes through the point,2 Learning Enhancement Team Model answers: Finding Equations of Straight Lines Finding Equations of Straight Lines stud guide The straight line with gradient 3 which passes through the point, 4 is 3 0 Because

More information

Transformations using matrices

Transformations using matrices Transformations using matrices 6 sllabusref eferenceence Core topic: Matrices and applications In this cha 6A 6B 6C 6D 6E 6F 6G chapter Geometric transformations and matri algebra Linear transformations

More information

Math 20C. Lecture Examples.

Math 20C. Lecture Examples. Math 0C. Lecture Eamples. (8/30/08) Section 14.1, Part 1. Functions of two variables Definition 1 A function f of the two variables and is a rule = f(,) that assigns a number denoted f(,), to each point

More information

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y

Functions Review Packet from November Questions. 1. The diagrams below show the graphs of two functions, y = f(x), and y = g(x). y y Functions Review Packet from November Questions. The diagrams below show the graphs of two functions, = f(), and = g()..5 = f( ) = g( ).5 6º 8º.5 8º 6º.5 State the domain and range of the function f; the

More information

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks.

9.1 Exercises. Section 9.1 The Square Root Function 879. In Exercises 1-10, complete each of the following tasks. Section 9. The Square Root Function 879 9. Eercises In Eercises -, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete the

More information

ADDITIONAL MATHEMATICS

ADDITIONAL MATHEMATICS 00-CE A MATH HONG KONG EXAMINATIONS AUTHORITY HONG KONG CERTIFICATE OF EDUCATION EXAMINATION 00 ADDITIONAL MATHEMATICS 8.0 am.00 am ½ hours This paper must be answered in English. Answer ALL questions

More information

Lines and Their Slopes

Lines and Their Slopes 8.2 Lines and Their Slopes Linear Equations in Two Variables In the previous chapter we studied linear equations in a single variable. The solution of such an equation is a real number. A linear equation

More information

Section A Transformations of Graphs Grade A*

Section A Transformations of Graphs Grade A* Name: Teacher Assessment Section A Grade A*. The diagram shows the graph of = for. 5 5 5 Each of the graphs below is a transformation of this graph. Write down the equation of each graph. 5 (a) 5 (b) 5

More information

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson

UNIT NUMBER 5.2. GEOMETRY 2 (The straight line) A.J.Hobson JUST THE MATHS UNIT NUMBER 5.2 GEOMETRY 2 (The straight line) b A.J.Hobson 5.2.1 Preamble 5.2.2 Standard equations of a straight line 5.2. Perpendicular straight lines 5.2.4 Change of origin 5.2.5 Exercises

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY

MATHEMATICS FOR ENGINEERING TRIGONOMETRY MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL SOME MORE RULES OF TRIGONOMETRY This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves

More information

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas

Introduction to Trigonometric Functions. Peggy Adamson and Jackie Nicholas Mathematics Learning Centre Introduction to Trigonometric Functions Pegg Adamson and Jackie Nicholas c 998 Universit of Sdne Acknowledgements A significant part of this manuscript has previousl appeared

More information

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1)

Unit 4 Trigonometry. Study Notes 1 Right Triangle Trigonometry (Section 8.1) Unit 4 Trigonometr Stud Notes 1 Right Triangle Trigonometr (Section 8.1) Objective: Evaluate trigonometric functions of acute angles. Use a calculator to evaluate trigonometric functions. Use trigonometric

More information

Essential Question What are the characteristics of the graph of the tangent function?

Essential Question What are the characteristics of the graph of the tangent function? 8.5 Graphing Other Trigonometric Functions Essential Question What are the characteristics of the graph of the tangent function? Graphing the Tangent Function Work with a partner. a. Complete the table

More information

4.6 Graphs of Other Trigonometric Functions

4.6 Graphs of Other Trigonometric Functions .6 Graphs of Other Trigonometric Functions Section.6 Graphs of Other Trigonometric Functions 09 Graph of the Tangent Function Recall that the tangent function is odd. That is, tan tan. Consequentl, the

More information

Calculus II (Math 122) Final Exam, 11 December 2013

Calculus II (Math 122) Final Exam, 11 December 2013 Name ID number Sections B Calculus II (Math 122) Final Exam, 11 December 2013 This is a closed book exam. Notes and calculators are not allowed. A table of trigonometric identities is attached. To receive

More information

Directional Derivatives as Vectors

Directional Derivatives as Vectors Directional Derivatives as Vectors John Ganci 1 Al Lehnen 2 1 Richland College Dallas, TX jganci@dcccd.edu 2 Madison Area Technical College Madison, WI alehnen@matcmadison.edu Statement of problem We are

More information

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26

TABLE OF CONTENTS CHAPTER 1 LIMIT AND CONTINUITY... 26 TABLE OF CONTENTS CHAPTER LIMIT AND CONTINUITY... LECTURE 0- BASIC ALGEBRAIC EXPRESSIONS AND SOLVING EQUATIONS... LECTURE 0- INTRODUCTION TO FUNCTIONS... 9 LECTURE 0- EXPONENTIAL AND LOGARITHMIC FUNCTIONS...

More information

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative

Section 1.6: Graphs of Functions, from College Algebra: Corrected Edition by Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Section.6: Graphs of Functions, from College Algebra: Corrected Edition b Carl Stitz, Ph.D. and Jeff Zeager, Ph.D. is available under a Creative Commons Attribution-NonCommercial-ShareAlike.0 license.

More information

Coordinate geometry Straight lines are an important part of our environment. We play sport on courts with parallel and perpendicular lines, and

Coordinate geometry Straight lines are an important part of our environment. We play sport on courts with parallel and perpendicular lines, and Number and Algebra Coordinate geometr Straight lines are an important part of our environment. We pla sport on courts with parallel and perpendicular lines, and skscrapers would not be standing without

More information

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral

1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral 1. Use the Trapezium Rule with five ordinates to find an approximate value for the integral Show your working and give your answer correct to three decimal places. 2 2.5 3 3.5 4 When When When When When

More information

AQA GCSE Further Maths Topic Areas

AQA GCSE Further Maths Topic Areas AQA GCSE Further Maths Topic Areas This document covers all the specific areas of the AQA GCSE Further Maths course, your job is to review all the topic areas, answering the questions if you feel you need

More information

Inclination of a Line

Inclination of a Line 0_00.qd 78 /8/05 Chapter 0 8:5 AM Page 78 Topics in Analtic Geometr 0. Lines What ou should learn Find the inclination of a line. Find the angle between two lines. Find the distance between a point and

More information

Contents. How You May Use This Resource Guide

Contents. How You May Use This Resource Guide Contents How You Ma Use This Resource Guide ii 0 Trigonometric Formulas, Identities, and Equations Worksheet 0.: Graphical Analsis of Trig Identities.............. Worksheet 0.: Verifing Trigonometric

More information

Transformations. which the book introduces in this chapter. If you shift the graph of y 1 x to the left 2 units and up 3 units, the

Transformations. which the book introduces in this chapter. If you shift the graph of y 1 x to the left 2 units and up 3 units, the CHAPTER 8 Transformations Content Summar In Chapter 8, students continue their work with functions, especiall nonlinear functions, through further stud of function graphs. In particular, the consider three

More information

Course I. Lesson 5 Trigonometric Functions (II) 5A Radian Another Unit of Angle Graphs of Trigonometric Functions

Course I. Lesson 5 Trigonometric Functions (II) 5A Radian Another Unit of Angle Graphs of Trigonometric Functions Course I Lesson 5 Trigonometric Functions (II) 5A Radian Another Unit of Angle Graphs of Trigonometric Functions Radian Degree ( ) Angle of /0 of one circle 0 is a familiar number in astronom. ( ne ear

More information

Proving Trigonometric Identities

Proving Trigonometric Identities MHF 4UI Unit 7 Day Proving Trigonometric Identities An identity is an epression which is true for all values in the domain. Reciprocal Identities csc θ sin θ sec θ cos θ cot θ tan θ Quotient Identities

More information

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313

WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #1313 WRITING AND GRAPHING LINEAR EQUATIONS ON A FLAT SURFACE #11 SLOPE is a number that indicates the steepness (or flatness) of a line, as well as its direction (up or down) left to right. SLOPE is determined

More information

PAST QUESTIONS ON INTEGRATION PAPER 1

PAST QUESTIONS ON INTEGRATION PAPER 1 PAST QUESTIONS ON INTEGRATION PAPER 1 1. Q9 Nov 2001 2. Q11 Nov 2001 3. The diagram shows the curve y = and the line y = x intersecting at O and P. Find the coordinates of P, [1] the area of the shaded

More information

a 2 + 2a - 6 r r 2 To draw quadratic graphs, we shall be using the method we used for drawing the straight line graphs.

a 2 + 2a - 6 r r 2 To draw quadratic graphs, we shall be using the method we used for drawing the straight line graphs. Chapter 12: Section 12.1 Quadratic Graphs x 2 + 2 a 2 + 2a - 6 r r 2 x 2 5x + 8 2 2 + 9 + 2 All the above equations contain a squared number. The are therefore called quadratic expressions or quadratic

More information

20 Calculus and Structures

20 Calculus and Structures 0 Calculus and Structures CHAPTER FUNCTIONS Calculus and Structures Copright LESSON FUNCTIONS. FUNCTIONS A function f is a relationship between an input and an output and a set of instructions as to how

More information

4. Two Dimensional Transformations

4. Two Dimensional Transformations 4. Two Dimensional Transformations CS362 Introduction to Computer Graphics Helena Wong, 2 In man applications, changes in orientations, sizes, and shapes are accomplished with geometric transformations

More information

3.5 Write and Graph Equations

3.5 Write and Graph Equations .5 Write and Graph Equations of Lines Goal p Find equations of lines. Your Notes VOCABULARY Slope-intercept form Standard form Eample Write an equation of a line from a graph Write an equation of the line

More information

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications.

PATTERNS AND ALGEBRA. He opened mathematics to many discoveries and exciting applications. PATTERNS AND ALGEBRA The famous French philosopher and mathematician René Descartes (596 65) made a great contribution to mathematics in 67 when he published a book linking algebra and geometr for the

More information

9 CARTESIAN SYSTEM OF COORDINATES You must have searched for our seat in a cinema hall, a stadium, or a train. For eample, seat H-4 means the fourth seat in the H th row. In other words, H and 4 are the

More information

You will need to use a calculator for this worksheet A (1, 1)

You will need to use a calculator for this worksheet A (1, 1) C Worksheet A y You will need to use a calculator for this worksheet y = B A (, ) O The diagram shows the curve y = which passes through the point A (, ) and the point B. a Copy and complete the table

More information

3.2 Polynomial Functions of Higher Degree

3.2 Polynomial Functions of Higher Degree 71_00.qp 1/7/06 1: PM Page 6 Section. Polnomial Functions of Higher Degree 6. Polnomial Functions of Higher Degree What ou should learn Graphs of Polnomial Functions You should be able to sketch accurate

More information

Section 4.2 Graphing Lines

Section 4.2 Graphing Lines Section. Graphing Lines Objectives In this section, ou will learn to: To successfull complete this section, ou need to understand: Identif collinear points. The order of operations (1.) Graph the line

More information

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation

3.9 Differentials. Tangent Line Approximations. Exploration. Using a Tangent Line Approximation 3.9 Differentials 3 3.9 Differentials Understand the concept of a tangent line approimation. Compare the value of the differential, d, with the actual change in,. Estimate a propagated error using a differential.

More information

SLOPE A MEASURE OF STEEPNESS through 7.1.5

SLOPE A MEASURE OF STEEPNESS through 7.1.5 SLOPE A MEASURE OF STEEPNESS 7.1. through 7.1.5 Students have used the equation = m + b throughout this course to graph lines and describe patterns. When the equation is written in -form, the m is the

More information

MATHEMATICS Curriculum Grades 10 to 12

MATHEMATICS Curriculum Grades 10 to 12 MATHEMATICS Curriculum Grades 10 to 12 Grade 10 Number systems Algebraic Expressions expressions Products (Ch. 1) Factorisation Term 1 Exponents (Ch. 2) Number patterns (Ch. 3) (CH.4) Notation, rules,

More information

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards

Chapter 1 Notes, Calculus I with Precalculus 3e Larson/Edwards Contents 1.1 Functions.............................................. 2 1.2 Analzing Graphs of Functions.................................. 5 1.3 Shifting and Reflecting Graphs..................................

More information

Rational functions and graphs. Section 2: Graphs of rational functions

Rational functions and graphs. Section 2: Graphs of rational functions Rational functions and graphs Section : Graphs of rational functions Notes and Eamples These notes contain subsections on Graph sketching Turning points and restrictions on values Graph sketching You can

More information

STRAND I: Geometry and Trigonometry. UNIT 37 Further Transformations: Student Text Contents. Section Reflections. 37.

STRAND I: Geometry and Trigonometry. UNIT 37 Further Transformations: Student Text Contents. Section Reflections. 37. MEP Jamaica: STRN I UNIT 7 Further Transformations: Student Tet ontents STRN I: Geometr and Trigonometr Unit 7 Further Transformations Student Tet ontents Section 7. Reflections 7. Rotations 7. Translations

More information

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes

Jim Lambers MAT 169 Fall Semester Lecture 33 Notes Jim Lambers MAT 169 Fall Semester 2009-10 Lecture 33 Notes These notes correspond to Section 9.3 in the text. Polar Coordinates Throughout this course, we have denoted a point in the plane by an ordered

More information

The Sine and Cosine Functions

The Sine and Cosine Functions Lesson -5 Lesson -5 The Sine and Cosine Functions Vocabular BIG IDEA The values of cos and sin determine functions with equations = sin and = cos whose domain is the set of all real numbers. From the eact

More information

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite.

( ) 2. Integration. 1. Calculate (a) x2 (x 5) dx (b) y = x 2 6x. 2. Calculate the shaded area in the diagram opposite. Integration 1. Calculate (a) ( 5) d (b) 4 + 3 1 d (c) ( ) + d 1 = 6. Calculate the shaded area in the diagram opposite. 3. The diagram shows part of the graph of = 7 10. 5 = + 0 4. Find the area between

More information

13 Trigonometric Graphs

13 Trigonometric Graphs Trigonometric Graphs Concepts: Period The Graph of the sin, cos, tan, csc, sec, and cot Functions Appling Graph Transformations to the Graphs of the sin, cos, tan, csc, sec, and cot Functions Using Graphical

More information

Introduction to Homogeneous Transformations & Robot Kinematics

Introduction to Homogeneous Transformations & Robot Kinematics Introduction to Homogeneous Transformations & Robot Kinematics Jennifer Ka, Rowan Universit Computer Science Department Januar 25. Drawing Dimensional Frames in 2 Dimensions We will be working in -D coordinates,

More information

Edexcel Core Mathematics 4 Integration

Edexcel Core Mathematics 4 Integration Edecel Core Mathematics 4 Integration Edited by: K V Kumaran kumarmaths.weebly.com Integration It might appear to be a bit obvious but you must remember all of your C work on differentiation if you are

More information

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS

GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS GRAPHS AND GRAPHICAL SOLUTION OF EQUATIONS 1.1 DIFFERENT TYPES AND SHAPES OF GRAPHS: A graph can be drawn to represent are equation connecting two variables. There are different tpes of equations which

More information

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1]

[ ] [ ] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D. φ = cos 1 1/ φ = tan 1 [ 2 /1] Orthogonal Transformation of Cartesian Coordinates in 2D & 3D A vector is specified b its coordinates, so it is defined relative to a reference frame. The same vector will have different coordinates in

More information

Section 1.4 Limits involving infinity

Section 1.4 Limits involving infinity Section. Limits involving infinit (/3/08) Overview: In later chapters we will need notation and terminolog to describe the behavior of functions in cases where the variable or the value of the function

More information

Chapter 1. Limits and Continuity. 1.1 Limits

Chapter 1. Limits and Continuity. 1.1 Limits Chapter Limits and Continuit. Limits The its is the fundamental notion of calculus. This underling concept is the thread that binds together virtuall all of the calculus ou are about to stud. In this section,

More information

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations

Transformations of Functions. 1. Shifting, reflecting, and stretching graphs Symmetry of functions and equations Chapter Transformations of Functions TOPICS.5.. Shifting, reflecting, and stretching graphs Smmetr of functions and equations TOPIC Horizontal Shifting/ Translation Horizontal Shifting/ Translation Shifting,

More information

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1]

(ii) Explain how the trapezium rule could be used to obtain a more accurate estimate of the area. [1] C Integration. June 00 qu. Use the trapezium rule, with strips each of width, to estimate the area of the region bounded by the curve y = 7 +, the -ais, and the lines = and = 0. Give your answer correct

More information

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models

Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometry (3ed, Addison Wesley, 2007) 58 Chapter 1 Graphs, Functions, and Models Beecher J.A, Penna J.A., Bittinger M.L. Algebra and Trigonometr (ed, Addison Wesle, 007) 8 Chapter Graphs, Functions, and Models.. Introduction Polnomial to Functions Graphing and Modeling Plot points.

More information

8.6 Three-Dimensional Cartesian Coordinate System

8.6 Three-Dimensional Cartesian Coordinate System SECTION 8.6 Three-Dimensional Cartesian Coordinate Sstem 69 What ou ll learn about Three-Dimensional Cartesian Coordinates Distance and Midpoint Formulas Equation of a Sphere Planes and Other Surfaces

More information

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9).

9-1 GCSE Maths. GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). 9-1 GCSE Maths GCSE Mathematics has a Foundation tier (Grades 1 5) and a Higher tier (Grades 4 9). In each tier, there are three exams taken at the end of Year 11. Any topic may be assessed on each of

More information

is a plane curve and the equations are parametric equations for the curve, with parameter t.

is a plane curve and the equations are parametric equations for the curve, with parameter t. MATH 2412 Sections 6.3, 6.4, and 6.5 Parametric Equations and Polar Coordinates. Plane Curves and Parametric Equations Suppose t is contained in some interval I of the real numbers, and = f( t), = gt (

More information

Tangent line problems

Tangent line problems You will find lots of practice problems and homework problems that simply ask you to differentiate. The following examples are to illustrate some of the types of tangent line problems that you may come

More information

Section 9.3: Functions and their Graphs

Section 9.3: Functions and their Graphs Section 9.: Functions and their Graphs Graphs provide a wa of displaing, interpreting, and analzing data in a visual format. In man problems, we will consider two variables. Therefore, we will need to

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 9 ARAMETRIC EQUATIONS AND OLAR COORDINATES So far we have described plane curves b giving as a function of f or as a function of t or b giving a relation between and that defines implicitl as a function

More information

AQA GCSE Maths - Higher Self-Assessment Checklist

AQA GCSE Maths - Higher Self-Assessment Checklist AQA GCSE Maths - Higher Self-Assessment Checklist Number 1 Use place value when calculating with decimals. 1 Order positive and negative integers and decimals using the symbols =,, , and. 1 Round to

More information

PARAMETRIC EQUATIONS AND POLAR COORDINATES

PARAMETRIC EQUATIONS AND POLAR COORDINATES 10 PARAMETRIC EQUATIONS AND POLAR COORDINATES PARAMETRIC EQUATIONS & POLAR COORDINATES A coordinate system represents a point in the plane by an ordered pair of numbers called coordinates. PARAMETRIC EQUATIONS

More information

1.3 Introduction to Functions

1.3 Introduction to Functions . Introduction to Functions. Introduction to Functions One of the core concepts in College Algebra is the function. There are man was to describe a function and we begin b defining a function as a special

More information

The Straight Line. m is undefined. Use. Show that mab

The Straight Line. m is undefined. Use. Show that mab The Straight Line What is the gradient of a horizontal line? What is the equation of a horizontal line? So the equation of the x-axis is? What is the gradient of a vertical line? What is the equation of

More information

TEST AND TEST ANSWER KEYS

TEST AND TEST ANSWER KEYS PART II TEST AND TEST ANSWER KEYS Houghton Mifflin Compan. All rights reserved. Test Bank.................................................... 6 Chapter P Preparation for Calculus............................

More information

Chapter12. Coordinate geometry

Chapter12. Coordinate geometry Chapter1 Coordinate geometr Contents: A The Cartesian plane B Plotting points from a table of values C Linear relationships D Plotting graphs of linear equations E Horizontal and vertical lines F Points

More information

Math : Differentiation

Math : Differentiation EP-Program - Strisuksa School - Roi-et Math : Differentiation Dr.Wattana Toutip - Department of Mathematics Khon Kaen University 00 :Wattana Toutip wattou@kku.ac.th http://home.kku.ac.th/wattou. Differentiation

More information

Now each of you should be familiar with inverses from your previous mathematical

Now each of you should be familiar with inverses from your previous mathematical 5. Inverse Functions TOOTLIFTST: Knowledge of derivatives of basic functions, including power, eponential, logarithmic, trigonometric, and inverse trigonometric functions. Now each of you should be familiar

More information

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3

6. f(x) = x f(x) = x f(x) = x f(x) = 3 x. 10. f(x) = x + 3 Section 9.1 The Square Root Function 879 9.1 Eercises In Eercises 1-, complete each of the following tasks. i. Set up a coordinate sstem on a sheet of graph paper. Label and scale each ais. ii. Complete

More information

science. In this course we investigate problems both algebraically and graphically.

science. In this course we investigate problems both algebraically and graphically. Section. Graphs. Graphs Much of algebra is concerned with solving equations. Man algebraic techniques have been developed to provide insights into various sorts of equations and those techniques are essential

More information

Polar Functions Polar coordinates

Polar Functions Polar coordinates 548 Chapter 1 Parametric, Vector, and Polar Functions 1. What ou ll learn about Polar Coordinates Polar Curves Slopes of Polar Curves Areas Enclosed b Polar Curves A Small Polar Galler... and wh Polar

More information

Contents 20. Trigonometric Formulas, Identities, and Equations

Contents 20. Trigonometric Formulas, Identities, and Equations Contents 20. Trigonometric Formulas, Identities, and Equations 2 20.1 Basic Identities............................... 2 Using Graphs to Help Verify Identities................... 2 Example 20.1................................

More information

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45

Polar Coordinates. Chapter 10: Parametric Equations and Polar coordinates, Section 10.3: Polar coordinates 27 / 45 : Given any point P = (x, y) on the plane r stands for the distance from the origin (0, 0). θ stands for the angle from positive x-axis to OP. Polar coordinate: (r, θ) Chapter 10: Parametric Equations

More information

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks)

2. Find the equation of the normal to the curve with equation y = x at the point (1, 2). (Total 4 marks) CHAPTER 3 REVIEW FOR SLs ONLY 1. Find the coordinates of the point on the graph of = 2 at which the tangent is parallel to the line = 5. (Total 4 marks) 2. Find the equation of the normal to the curve

More information

SLOPE A MEASURE OF STEEPNESS through 2.1.4

SLOPE A MEASURE OF STEEPNESS through 2.1.4 SLOPE A MEASURE OF STEEPNESS 2.1.2 through 2.1.4 Students used the equation = m + b to graph lines and describe patterns in previous courses. Lesson 2.1.1 is a review. When the equation of a line is written

More information

What is log a a equal to?

What is log a a equal to? How would you differentiate a function like y = sin ax? What is log a a equal to? How do you prove three 3-D points are collinear? What is the general equation of a straight line passing through (a,b)

More information

Graphing Systems of Linear Inequalities in Two Variables

Graphing Systems of Linear Inequalities in Two Variables 5.5 Graphing Sstems of Linear Inequalities in Two Variables 5.5 OBJECTIVES 1. Graph a sstem of linear inequalities in two variables 2. Solve an application of a sstem of linear inequalities In Section

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information