Efficiency. Narrowbanding / Local Level Set Projections

Size: px
Start display at page:

Download "Efficiency. Narrowbanding / Local Level Set Projections"

Transcription

1 Efficiency Narrowbanding / Local Level Set Projections

2 Reducing the Cost of Level Set Methods Solve Hamilton-Jacobi equation only in a band near interface Computational detail: handling stencils near edge of band Narrowbanding uses low order accurate reconstruction whenever errors are detected Local level set modifies Hamiltonian near edge of band Data structure detail: handling merging and breaking of interface 24 Oct 04 Ian Mitchell (UBC Computer Science) 22

3 Projective Overapproximation Overapproximate reachable set of high dimensional system as the intersection of reachable sets for lower dimensional projections [Mitchell & Tomlin, 2002] Example: rotation of sphere about z-axis 24 Oct 04 Ian Mitchell (UBC Computer Science) 23

4 Computing with Projections Forward and backward reachable sets for finite automata Projecting into overlapping subsets of the variables, computing with BDDs [Govindaraju, Dill, Hu, Horowitz] Forward reachable sets for continuous systems Projecting into 2D subspaces, representation by polygons [Greenstreet & Mitchell] Level set algorithms for geometric optics Need multiple arrival time (viscosity solution gives first arrival time), so compute in higher dimensions and project down [Osher, Cheng, Kang, Shim & Tsai] 24 Oct 04 Ian Mitchell (UBC Computer Science) 24

5 Hamilton-Jacobi in the Projection Consider x-z projection represented by level set φ xz (x,z,t) Back projection into 3D yields a cylinder φ xz (x,y,z,t) Simple HJ PDE for this cylinder But for cylinder parallel to y-axis, p 2 = 0 What value to give free variable y in f i (x,y,z)? Treat it as a disturbance, bounded by the other projections Hamiltonian no longer depends on y, so computation can be done entirely in x-z space on φ xz (x,z,t) xz 24 Oct 04 Ian Mitchell (UBC Computer Science) 25

6 Projective Collision Avoidance Work strictly in relative x-y plane Treat relative heading ψ [ 0, 2π ] as a disturbance input Compute time: 40 seconds in 2D vs 20 minutes in 3D Compare overapproximative prism (mesh) to true set (solid) 24 Oct 04 Ian Mitchell (UBC Computer Science) 26

7 Projection Choices Poorly chosen projections may lead to large overapproximations Projections need not be along coordinate axes Number of projections is not constrained by number of dimensions poor projections good projections 24 Oct 04 Ian Mitchell (UBC Computer Science) 27

8 Hybrid System Reach Sets Combining Continuous and Discrete Evolution

9 Why Hybrid Systems? Computers are increasingly interacting with external world Flexibility of such combinations yields huge design space Design methods and tools targeted (mostly) at either continuous or discrete systems Example: aircraft flight control systems seven mode collision avoidance protocol 24 Oct 04 Ian Mitchell (UBC Computer Science) 29

10 Discrete modes and transitions Continuous evolution within each mode Hybrid Automata arc1 σ 1 = initiate maneuver t = π/4 x& = f (, ) A x υ straight2 x& = f (, ) S x υ t = T arc2 x& = f (, ) A x υ straight1 x& = f (, ) S x υ q 2 q 3 q 4 t = π/2 q 1 straight4 x& = f (, ) S x υ t = π/4 arc3 x& = f (, ) A x υ t = T straight3 x& = f (, ) S x υ q 7 q 6 q 5 x1 v + v cosψ fs x = v sinψ 2 dynamics in straight modes x v + v cosψ x x = 2 v sinψ + x1 dynamics in arc modes 24 Oct 04 Ian Mitchell (UBC Computer Science) 30 f A 1 2

11 Seven Mode Safety Analysis unsafe set without maneuver safe unsafe set with choice to maneuver or not? unsafe? unsafe set with maneuver 24 Oct 04 Ian Mitchell (UBC Computer Science) 31

12 Seven Mode Safety Analysis Ability to choose maneuver start time further reduces unsafe set safe with switch unsafe with or without switch [Tomlin, Mitchell & Ghosh, 2001] safe without switch unsafe to switch 24 Oct 04 Ian Mitchell (UBC Computer Science) 32

13 Reach-Avoid Operator Compute set of states which reaches G(0) without entering E G(0) E Reach-Avoid Set G(t) Formulated as a constrained Hamilton-Jacobi equation or variational inequality [Mitchell & Tomlin, 2000] Level set can represent often odd shape of reach-avoid sets 24 Oct 04 Ian Mitchell (UBC Computer Science) 34

14 Application: Discrete Abstractions It can be easier to analyze discrete automata than hybrid automata or continuous systems Use reachable set information to abstract away continuous details q u q 5 q 5 safe at present always safe safe to σ 1 q s SAFE q 3 q 4 q 2 q 1 q 3 safe at present will become unsafe safe to σ 1 q 4 safe at present always safe unsafe to σ 1 controlled transition (σ 1 ) forced transition q 1 safe at present will become unsafe unsafe to σ 1 q 2 unsafe at present will become unsafe unsafe to σ 1 q u UNSAFE 24 Oct 04 Ian Mitchell (UBC Computer Science) 35

15 Application: Cockpit Display Analysis Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same Pilot s cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated controllable TOGA envelope intersection flare flaps extended minimum thrust existing interface TOGA flaps retracted maximum thrust flare flaps extended minimum thrust rollout flaps extended reverse thrust revised interface TOGA flaps retracted maximum thrust rollout slow TOGA controllable flare envelope flaps extended flaps extended 24 Oct 04 Ian Mitchell (UBC Computer reverse Science) thrust maximum thrust 36

16 Application: Aircraft Autolander Airplane must stay within safe flight envelope during landing Bounds on velocity (V), flight path angle (γ), height (z) Control over engine thrust (T), angle of attack (α), flap settings Model flap settings as discrete modes of hybrid automata Terms in continuous dynamics may depend on flap setting [Mitchell, Bayen & Tomlin, 2001] L z d dt 1 V m [ T cos α D( α, V ) mg sin γ ] γ = 1 ( mv ) [ T sin α + L( α, V ) mg cos γ ] z V sinγ D T V α γ body frame wind frame inertial frame mg 24 Oct 04 Ian Mitchell (UBC Computer Science) 37

17 Landing Example: Discrete Model Flap dynamics version Pilot can choose one of three flap deflections Thirty seconds for zero to full deflection deflect 0u 25d 50d retract Implemented version Instant switches between fixed deflections Additional timed modes to remove Zeno behavior 0u 25d 0t 25t 50d controlled forced initial 50t 24 Oct 04 Ian Mitchell (UBC Computer Science) 38

18 Landing Example: No Mode Switches Safe sets Envelopes 24 Oct 04 Ian Mitchell (UBC Computer Science) 39

19 Landing Example: Mode Switches Safe sets Envelopes 24 Oct 04 Ian Mitchell (UBC Computer Science) 40

20 Landing Example: Synthesizing Control For states at the boundary of the safe set, results of reach-avoid computation determine What continuous inputs (if any) maintain safety What discrete jumps (if any) are safe to perform Level set values & gradients provide all relevant data 24 Oct 04 Ian Mitchell (UBC Computer Science) 41

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

Hamilton-Jacobi Equations for Optimal Control and Reachability

Hamilton-Jacobi Equations for Optimal Control and Reachability Hamilton-Jacobi Equations for Optimal Control and Reachability Ian Mitchell Department of Computer Science The University of British Columbia Outline Dynamic programming for discrete time optimal Hamilton-Jacobi

More information

Ian Mitchell. Department of Computer Science The University of British Columbia

Ian Mitchell. Department of Computer Science The University of British Columbia CPSC 542D: Level Set Methods Dynamic Implicit Surfaces and the Hamilton-Jacobi Equation or What Water Simulation, Robot Path Planning and Aircraft Collision Avoidance Have in Common Ian Mitchell Department

More information

Reach Sets and the Hamilton-Jacobi Equation

Reach Sets and the Hamilton-Jacobi Equation Reach Sets and the Hamilton-Jacobi Equation Ian Mitchell Department of Computer Science The University of British Columbia Joint work with Alex Bayen, Meeko Oishi & Claire Tomlin (Stanford) research supported

More information

A Toolbox of Level Set Methods

A Toolbox of Level Set Methods A Toolbox of Level Set Methods Ian Mitchell Department of Computer Science University of British Columbia http://www.cs.ubc.ca/~mitchell mitchell@cs.ubc.ca research supported by the Natural Science and

More information

Numerical Methods for (Time-Dependent) HJ PDEs

Numerical Methods for (Time-Dependent) HJ PDEs Numerical Methods for (Time-Dependent) HJ PDEs Ian Mitchell Department of Computer Science The University of British Columbia research supported by National Science and Engineering Research Council of

More information

Computational Techniques for the Verification of Hybrid Systems

Computational Techniques for the Verification of Hybrid Systems Computational Techniques for the Verification of Hybrid Systems CLAIRE J. TOMLIN, IAN MITCHELL, ALEXANDRE M. BAYEN, AND MEEKO OISHI Invited Paper Hybrid system theory lies at the intersection of the fields

More information

Model-Based Design and Decision Control

Model-Based Design and Decision Control Model-Based Design and Decision Control Jonathan Sprinkle and Diyang Chu September 24, 2009 Sprinkle, Chu Model-Based Design and Decision Control 1 Joint Work!!! This work is not done in a vacuum, and

More information

Polytopic Approximations of Reachable Sets applied to Linear Dynamic Games and to a Class of Nonlinear Systems

Polytopic Approximations of Reachable Sets applied to Linear Dynamic Games and to a Class of Nonlinear Systems 1 Polytopic Approximations of Reachable Sets applied to Linear Dynamic Games and to a Class of Nonlinear Systems Inseok Hwang 1, Dušan M. Stipanović 2, and Claire J. Tomlin 3 1 Assistant Professor, School

More information

Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets

Validating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets alidating a Hamilton-Jacobi Approximation to Hybrid System Reachable Sets Ian Mitchell 1, Alexandre M. Bayen 2, and Claire J. Tomlin 2 1 Scientific Computing and Computational Mathematics Program, Gates

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces

Chapter 6. Curves and Surfaces. 6.1 Graphs as Surfaces Chapter 6 Curves and Surfaces In Chapter 2 a plane is defined as the zero set of a linear function in R 3. It is expected a surface is the zero set of a differentiable function in R n. To motivate, graphs

More information

Applications of Polytopic Approximations of Reachable Sets to Linear Dynamic Games and a Class of Nonlinear Systems 1

Applications of Polytopic Approximations of Reachable Sets to Linear Dynamic Games and a Class of Nonlinear Systems 1 Applications of Polytopic Approximations of Reachable Sets to Linear Dynamic Games and a Class of Nonlinear Systems 1 Inseok Hwang 2,Dušan M. Stipanović 3, and Claire J. Tomlin 4 Hybrid Systems Laboratory

More information

Value function and optimal trajectories for a control problem with supremum cost function and state constraints

Value function and optimal trajectories for a control problem with supremum cost function and state constraints Value function and optimal trajectories for a control problem with supremum cost function and state constraints Hasnaa Zidani ENSTA ParisTech, University of Paris-Saclay joint work with: A. Assellaou,

More information

!"#$"%"& When can a UAV get smart with its operator, and say 'NO!'? Jerry Ding**, Jonathan Sprinkle*, Claire J. Tomlin**, S.

!#$%& When can a UAV get smart with its operator, and say 'NO!'? Jerry Ding**, Jonathan Sprinkle*, Claire J. Tomlin**, S. Arizona s First University. When can a UAV get smart with its operator, and say 'NO!'? Jerry Ding**, Jonathan Sprinkle*, Claire J. Tomlin**, S. Shankar Sastry**!"#$"%"&!"#"$"%"&"'"("$")"*""+",""-"."/"$","+"'"#"$".!"#"$"%"&"'"("$")"*""+",""-"."/"$","+"'"#"$".

More information

Coordination and control of multiple agents have received great attention over the last few years. 1 5

Coordination and control of multiple agents have received great attention over the last few years. 1 5 AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005, San Francisco, California AIAA 2005-6239 Control Strategies in Multi-Player Pursuit and Evasion Game Jung Soon Jang and

More information

Lecture 9: Reachability

Lecture 9: Reachability Lecture 9: Reachability Outline of Lecture Reachability General Transition Systems Algorithms for Reachability Safety through Reachability Backward Reachability Algorithm Given hybrid automaton H : set

More information

Computer Vision cmput 428/615

Computer Vision cmput 428/615 Computer Vision cmput 428/615 Basic 2D and 3D geometry and Camera models Martin Jagersand The equation of projection Intuitively: How do we develop a consistent mathematical framework for projection calculations?

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

Unit Maps: Grade 8 Math

Unit Maps: Grade 8 Math Real Number Relationships 8.3 Number and operations. The student represents and use real numbers in a variety of forms. Representation of Real Numbers 8.3A extend previous knowledge of sets and subsets

More information

This document contains the draft version of the following paper:

This document contains the draft version of the following paper: This document contains the draft version of the following paper: M. Karnik, S.K. Gupta, and E.B. Magrab. Geometric algorithms for containment analysis of rotational parts. Computer Aided Design, 37(2):213-230,

More information

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Oliver Meister, Roland Wittmann

PSE Game Physics. Session (3) Springs, Ropes, Linear Momentum and Rotations. Oliver Meister, Roland Wittmann PSE Game Physics Session (3) Springs, Ropes, Linear Momentum and Rotations Oliver Meister, Roland Wittmann 08.05.2015 Session (3) Springs, Ropes, Linear Momentum and Rotations, 08.05.2015 1 Outline Springs

More information

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals)

MA 243 Calculus III Fall Assignment 1. Reading assignments are found in James Stewart s Calculus (Early Transcendentals) MA 43 Calculus III Fall 8 Dr. E. Jacobs Assignments Reading assignments are found in James Stewart s Calculus (Early Transcendentals) Assignment. Spheres and Other Surfaces Read. -. and.6 Section./Problems

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University

Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization. M2DO Lab 1,2. 1 Cardiff University Theoretical Background for OpenLSTO v0.1: Open Source Level Set Topology Optimization M2DO Lab 1,2 1 Cardiff University 2 University of California, San Diego November 2017 A brief description of theory

More information

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations

The Level Set Method. Lecture Notes, MIT J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations The Level Set Method Lecture Notes, MIT 16.920J / 2.097J / 6.339J Numerical Methods for Partial Differential Equations Per-Olof Persson persson@mit.edu March 7, 2005 1 Evolving Curves and Surfaces Evolving

More information

FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS. Quadrotor. Motion Planning Algorithms. Academic Year

FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS. Quadrotor. Motion Planning Algorithms. Academic Year FACOLTÀ DI INGEGNERIA DELL INFORMAZIONE ELECTIVE IN ROBOTICS Quadrotor Motion Planning Algorithms Prof. Marilena Vendittelli Prof. Jean-Paul Laumond Jacopo Capolicchio Riccardo Spica Academic Year 2010-2011

More information

Intersection of an Oriented Box and a Cone

Intersection of an Oriented Box and a Cone Intersection of an Oriented Box and a Cone David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

COMPUTER AIDED ENGINEERING DESIGN (BFF2612)

COMPUTER AIDED ENGINEERING DESIGN (BFF2612) COMPUTER AIDED ENGINEERING DESIGN (BFF2612) BASIC MATHEMATICAL CONCEPTS IN CAED by Dr. Mohd Nizar Mhd Razali Faculty of Manufacturing Engineering mnizar@ump.edu.my COORDINATE SYSTEM y+ y+ z+ z+ x+ RIGHT

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER

DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER DYNAMICS OF A VORTEX RING AROUND A MAIN ROTOR HELICOPTER Katarzyna Surmacz Instytut Lotnictwa Keywords: VORTEX RING STATE, HELICOPTER DESCENT, NUMERICAL ANALYSIS, FLOW VISUALIZATION Abstract The main goal

More information

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology

Panagiotis Tsiotras. Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Panagiotis Tsiotras Dynamics and Control Systems Laboratory Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology ICRAT 12 Tutotial on Methods for Optimal Trajectory Design

More information

9. Three Dimensional Object Representations

9. Three Dimensional Object Representations 9. Three Dimensional Object Representations Methods: Polygon and Quadric surfaces: For simple Euclidean objects Spline surfaces and construction: For curved surfaces Procedural methods: Eg. Fractals, Particle

More information

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0

MATH 31A HOMEWORK 9 (DUE 12/6) PARTS (A) AND (B) SECTION 5.4. f(x) = x + 1 x 2 + 9, F (7) = 0 FROM ROGAWSKI S CALCULUS (2ND ED.) SECTION 5.4 18.) Express the antiderivative F (x) of f(x) satisfying the given initial condition as an integral. f(x) = x + 1 x 2 + 9, F (7) = 28.) Find G (1), where

More information

Online safety calculations for glide-slope recapture

Online safety calculations for glide-slope recapture Innovations Syst Softw Eng (2005) DOI 10.1007/s11334-005-0017-x ORIGINAL PAPER Jonathan Sprinkle Aaron D. Ames J. Mikael Eklund Ian M. Mitchell S. Shankar Sastry Online safety calculations for glide-slope

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Using Hybrid-System Verification Tools in the Design of Simplex-Based Systems. Scott D. Stoller

Using Hybrid-System Verification Tools in the Design of Simplex-Based Systems. Scott D. Stoller Using Hybrid-System Verification Tools in the Design of Simplex-Based Systems Scott D. Stoller 2014 Annual Safe and Secure Systems and Software Symposium (S5) 1 Simplex Architecture Simplex Architecture

More information

ROC-HJ: Reachability analysis and Optimal Control problems - Hamilton-Jacobi equations

ROC-HJ: Reachability analysis and Optimal Control problems - Hamilton-Jacobi equations ROC-HJ: Reachability analysis and Optimal Control problems - Hamilton-Jacobi equations Olivier Bokanowski, Anna Désilles, Hasnaa Zidani February 2013 1 Introduction The software ROC-HJ is a C++ library

More information

Elements of three dimensional geometry

Elements of three dimensional geometry Lecture No-3 Elements of three dimensional geometr Distance formula in three dimension Let P( x1, 1, z1) and Q( x2, 2, z 2) be two points such that PQ is not parallel to one of the 2 2 2 coordinate axis

More information

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field

Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Level Set Methods Overview Level set methods Formulation of Interface Propagation Boundary Value PDE Initial Value PDE Motion in an externally generated velocity field Convection Upwind ddifferencingi

More information

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8)

Prentice Hall Mathematics: Course Correlated to: Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) Massachusetts State Learning Standards Curriculum Frameworks (Grades 7-8) NUMBER SENSE AND OPERATIONS 8.N.1 8.N.2 8.N.3 8.N.4 8.N.5 8.N.6 8.N.7 8.N.8 Compare, order, estimate, and translate among integers,

More information

Rectangular Coordinates in Space

Rectangular Coordinates in Space Rectangular Coordinates in Space Philippe B. Laval KSU Today Philippe B. Laval (KSU) Rectangular Coordinates in Space Today 1 / 11 Introduction We quickly review one and two-dimensional spaces and then

More information

Level Set Methods and Fast Marching Methods

Level Set Methods and Fast Marching Methods Level Set Methods and Fast Marching Methods I.Lyulina Scientific Computing Group May, 2002 Overview Existing Techniques for Tracking Interfaces Basic Ideas of Level Set Method and Fast Marching Method

More information

Curve and Surface Basics

Curve and Surface Basics Curve and Surface Basics Implicit and parametric forms Power basis form Bezier curves Rational Bezier Curves Tensor Product Surfaces ME525x NURBS Curve and Surface Modeling Page 1 Implicit and Parametric

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Tutorial 9 - Fast Marching Methods

Tutorial 9 - Fast Marching Methods 236861 Numerical Geometry of Images Tutorial 9 Fast Marching Methods c 2012 Why measure distances? Shape analysis Image analysis Registration Morphology Navigation And many other uses.. There are many

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Auckland University 15th September 2004; Version 1.1 Design Intent

More information

18.02 Final Exam. y = 0

18.02 Final Exam. y = 0 No books, notes or calculators. 5 problems, 50 points. 8.0 Final Exam Useful formula: cos (θ) = ( + cos(θ)) Problem. (0 points) a) (5 pts.) Find the equation in the form Ax + By + z = D of the plane P

More information

Birkdale High School - Higher Scheme of Work

Birkdale High School - Higher Scheme of Work Birkdale High School - Higher Scheme of Work Module 1 - Integers and Decimals Understand and order integers (assumed) Use brackets and hierarchy of operations (BODMAS) Add, subtract, multiply and divide

More information

11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS

11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS 11.2 Rectangular Coordinates in Three Dimensions Contemporary Calculus 1 11.2 RECTANGULAR COORDINATES IN THREE DIMENSIONS In this section we move into 3 dimensional space. First we examine the 3 dimensional

More information

HPISD Eighth Grade Math

HPISD Eighth Grade Math HPISD Eighth Grade Math The student uses mathematical processes to: acquire and demonstrate mathematical understanding Apply mathematics to problems arising in everyday life, society, and the workplace.

More information

MATH 2023 Multivariable Calculus

MATH 2023 Multivariable Calculus MATH 2023 Multivariable Calculus Problem Sets Note: Problems with asterisks represent supplementary informations. You may want to read their solutions if you like, but you don t need to work on them. Set

More information

Design Intent of Geometric Models

Design Intent of Geometric Models School of Computer Science Cardiff University Design Intent of Geometric Models Frank C. Langbein GR/M78267 GR/S69085/01 NUF-NAL 00638/G Massey University 22nd September 2004; Version 1.0 Design Intent

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Homework 1 - Solutions 3. 2 Homework 2 - Solutions 13 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Homework - Solutions 3 2 Homework 2 - Solutions 3 3 Homework 3 - Solutions 9 MATH 32B-2 (8) (L) G. Liu / (TA) A. Zhou Calculus

More information

Chapter 26 Geometrical Optics

Chapter 26 Geometrical Optics Chapter 26 Geometrical Optics 26.1 The Reflection of Light 26.2 Forming Images With a Plane Mirror 26.3 Spherical Mirrors 26.4 Ray Tracing and the Mirror Equation 26.5 The Refraction of Light 26.6 Ray

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

1 Classification of Shell Forms

1 Classification of Shell Forms Proceedings of the 5 th International Conference on Computation of Shell and Spatial Structures June 1-4, 2005 Salzburg, Austria E. Ramm, W.A. Wall, K.-U. Bletzinger, M. Bischoff (eds.) www.iassiacm2005.de

More information

5. GENERALIZED INVERSE SOLUTIONS

5. GENERALIZED INVERSE SOLUTIONS 5. GENERALIZED INVERSE SOLUTIONS The Geometry of Generalized Inverse Solutions The generalized inverse solution to the control allocation problem involves constructing a matrix which satisfies the equation

More information

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability

7 Fractions. Number Sense and Numeration Measurement Geometry and Spatial Sense Patterning and Algebra Data Management and Probability 7 Fractions GRADE 7 FRACTIONS continue to develop proficiency by using fractions in mental strategies and in selecting and justifying use; develop proficiency in adding and subtracting simple fractions;

More information

Geodesics in heat: A new approach to computing distance

Geodesics in heat: A new approach to computing distance Geodesics in heat: A new approach to computing distance based on heat flow Diana Papyan Faculty of Informatics - Technische Universität München Abstract In this report we are going to introduce new method

More information

Math 2260 Exam #1 Practice Problem Solutions

Math 2260 Exam #1 Practice Problem Solutions Math 6 Exam # Practice Problem Solutions. What is the area bounded by the curves y x and y x + 7? Answer: As we can see in the figure, the line y x + 7 lies above the parabola y x in the region we care

More information

MODELING OF EMBEDDED HUMAN SYSTEMS

MODELING OF EMBEDDED HUMAN SYSTEMS AFRL-OSR-VA-TR-2013-0422 MODELING OF EMBEDDED HUMAN SYSTEMS Jonathan Sprinkle University of Arizona JULY 2013 Final Report DISTRIBUTION A: Approved for public release. AIR FORCE RESEARCH LABORATORY AF

More information

Hybrid Simulation of Wake Vortices during Landing HPCN-Workshop 2014

Hybrid Simulation of Wake Vortices during Landing HPCN-Workshop 2014 Hybrid Simulation of Wake Vortices during Landing HPCN-Workshop 2014 A. Stephan 1, F. Holzäpfel 1, T. Heel 1 1 Institut für Physik der Atmosphäre, DLR, Oberpfaffenhofen, Germany Aircraft wake vortices

More information

Recovering Primitives in 3D CAD meshes

Recovering Primitives in 3D CAD meshes Recovering Primitives in 3D CAD / R.Bénière 1/17 Recovering Primitives in 3D CAD meshes Roseline Bénière G. Subsol, G. Gesquière, F. Le Breton and W. Puech LIRMM, Montpellier, France C4W, Montpellier,

More information

Geometric Queries for Ray Tracing

Geometric Queries for Ray Tracing CSCI 420 Computer Graphics Lecture 16 Geometric Queries for Ray Tracing Ray-Surface Intersection Barycentric Coordinates [Angel Ch. 11] Jernej Barbic University of Southern California 1 Ray-Surface Intersections

More information

Nine Weeks: Mathematical Process Standards

Nine Weeks: Mathematical Process Standards HPISD Grade 7 TAG 7/8 Math Nine Weeks: 1 2 3 4 Mathematical Process Standards Apply mathematics to problems arising in everyday life, society, and the workplace. 8.1A Use a problem solving model that incorporates

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints:

Math 209 (Fall 2007) Calculus III. Solution #5. 1. Find the minimum and maximum values of the following functions f under the given constraints: Math 9 (Fall 7) Calculus III Solution #5. Find the minimum and maximum values of the following functions f under the given constraints: (a) f(x, y) 4x + 6y, x + y ; (b) f(x, y) x y, x + y 6. Solution:

More information

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals

MATH 234. Excercises on Integration in Several Variables. I. Double Integrals MATH 234 Excercises on Integration in everal Variables I. Double Integrals Problem 1. D = {(x, y) : y x 1, 0 y 1}. Compute D ex3 da. Problem 2. Find the volume of the solid bounded above by the plane 3x

More information

CS205b/CME306. Lecture 9

CS205b/CME306. Lecture 9 CS205b/CME306 Lecture 9 1 Convection Supplementary Reading: Osher and Fedkiw, Sections 3.3 and 3.5; Leveque, Sections 6.7, 8.3, 10.2, 10.4. For a reference on Newton polynomial interpolation via divided

More information

Geometry: Concept Categories Concept Category 1 (CC1): Transformations & Basic Definitions

Geometry: Concept Categories Concept Category 1 (CC1): Transformations & Basic Definitions Concept Category 1 (CC1): Transformations & Basic Definitions Concept Category 2 (CC2): Triangles (Similarity and Properties) Concept Category 3 (CC3): Triangle Trigonometry Concept Category 4 (CC4): Triangle

More information

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees

Geometry Vocabulary. acute angle-an angle measuring less than 90 degrees Geometry Vocabulary acute angle-an angle measuring less than 90 degrees angle-the turn or bend between two intersecting lines, line segments, rays, or planes angle bisector-an angle bisector is a ray that

More information

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION

BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION BACK AND FORTH ERROR COMPENSATION AND CORRECTION METHODS FOR REMOVING ERRORS INDUCED BY UNEVEN GRADIENTS OF THE LEVEL SET FUNCTION TODD F. DUPONT AND YINGJIE LIU Abstract. We propose a method that significantly

More information

Solid surface modeling in AutoCAD

Solid surface modeling in AutoCAD Solid surface modeling in AutoCAD Introduction into 3D modeling Managing views of 3D model Coordinate Systems 1 3D model advantages ability to view the whole model looking inside the model collision checking

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is.

3. Draw the orthographic projection (front, right, and top) for the following solid. Also, state how many cubic units the volume is. PAP Geometry Unit 7 Review Name: Leave your answers as exact answers unless otherwise specified. 1. Describe the cross sections made by the intersection of the plane and the solids. Determine if the shape

More information

the straight line in the xy plane from the point (0, 4) to the point (2,0)

the straight line in the xy plane from the point (0, 4) to the point (2,0) Math 238 Review Problems for Final Exam For problems #1 to #6, we define the following paths vector fields: b(t) = the straight line in the xy plane from the point (0, 4) to the point (2,0) c(t) = the

More information

Applications of Guidance

Applications of Guidance Chapter 1 Applications of Guidance Module 11: Lecture 34 PN Based Impact Angle Constrained Guidance Keywords. Impact Angle Control, Orientation Guidance 1.1 PN Based Impact Angle Constrained Guidance In

More information

Design and Analysis of Control Bay Used in Guided Missile

Design and Analysis of Control Bay Used in Guided Missile Design and Analysis of Control Bay Used in Guided Missile Ragam Prashanth 1, D.Muppala 2, Nirmith Mishra 3 1PG Student, Department of Aerospace, MLR Inst of Tech and Management, Hyderabad, Telangana, India

More information

Answer Key: Three-Dimensional Cross Sections

Answer Key: Three-Dimensional Cross Sections Geometry A Unit Answer Key: Three-Dimensional Cross Sections Name Date Objectives In this lesson, you will: visualize three-dimensional objects from different perspectives be able to create a projection

More information

Dynamic Collision Detection

Dynamic Collision Detection Distance Computation Between Non-Convex Polyhedra June 17, 2002 Applications Dynamic Collision Detection Applications Dynamic Collision Detection Evaluating Safety Tolerances Applications Dynamic Collision

More information

Intersecting Simple Surfaces. Dr. Scott Schaefer

Intersecting Simple Surfaces. Dr. Scott Schaefer Intersecting Simple Surfaces Dr. Scott Schaefer 1 Types of Surfaces Infinite Planes Polygons Convex Ray Shooting Winding Number Spheres Cylinders 2/66 Infinite Planes Defined by a unit normal n and a point

More information

V = 2πx(1 x) dx. x 2 dx. 3 x3 0

V = 2πx(1 x) dx. x 2 dx. 3 x3 0 Wednesday, September 3, 215 Page 462 Problem 1 Problem. Use the shell method to set up and evaluate the integral that gives the volume of the solid generated by revolving the region (y = x, y =, x = 2)

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I

Massachusetts Institute of Technology. Department of Computer Science and Electrical Engineering /6.866 Machine Vision Quiz I Massachusetts Institute of Technology Department of Computer Science and Electrical Engineering 6.801/6.866 Machine Vision Quiz I Handed out: 2004 Oct. 21st Due on: 2003 Oct. 28th Problem 1: Uniform reflecting

More information

Term Key topics What most pupils will learn (prior assessment may alter starting point & content) How might this learning be extended?

Term Key topics What most pupils will learn (prior assessment may alter starting point & content) How might this learning be extended? Learning overview for: Mathematics Term Key topics What most pupils will learn (prior assessment may alter starting point & content) Number Factors, multiples and primes HCF and LCM Calculate with negative

More information

points are stationed arbitrarily close to one corner of the square ( n+1

points are stationed arbitrarily close to one corner of the square ( n+1 1 Intro We ve seen previously that we can construct networks based on the regular triangular, rectangular and hexagonal lattices where the total network length is linear in n and the R-statistic for the

More information

Mathematics in Orbit

Mathematics in Orbit Mathematics in Orbit Dan Kalman American University Slides and refs at www.dankalman.net Outline Basics: 3D geospacial models Keyhole Problem: Related Rates! GPS: space-time triangulation Sensor Diagnosis:

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

DD2429 Computational Photography :00-19:00

DD2429 Computational Photography :00-19:00 . Examination: DD2429 Computational Photography 202-0-8 4:00-9:00 Each problem gives max 5 points. In order to pass you need about 0-5 points. You are allowed to use the lecture notes and standard list

More information

SPECIAL TECHNIQUES-II

SPECIAL TECHNIQUES-II SPECIAL TECHNIQUES-II Lecture 19: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Method of Images for a spherical conductor Example :A dipole near aconducting sphere The

More information

Licom Systems Ltd., Training Course Notes. 3D Surface Creation

Licom Systems Ltd., Training Course Notes. 3D Surface Creation , Training Course Notes Work Volume and Work Planes...........................1 Overview..........................................1 Work Volume....................................1 Work Plane......................................1

More information

(Refer Slide Time: 00:01:27 min)

(Refer Slide Time: 00:01:27 min) Computer Aided Design Prof. Dr. Anoop Chawla Department of Mechanical engineering Indian Institute of Technology, Delhi Lecture No. # 01 An Introduction to CAD Today we are basically going to introduce

More information

Middle School Math Course 3

Middle School Math Course 3 Middle School Math Course 3 Correlation of the ALEKS course Middle School Math Course 3 to the Texas Essential Knowledge and Skills (TEKS) for Mathematics Grade 8 (2012) (1) Mathematical process standards.

More information

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize.

Lecture notes on the simplex method September We will present an algorithm to solve linear programs of the form. maximize. Cornell University, Fall 2017 CS 6820: Algorithms Lecture notes on the simplex method September 2017 1 The Simplex Method We will present an algorithm to solve linear programs of the form maximize subject

More information

Double Integrals, Iterated Integrals, Cross-sections

Double Integrals, Iterated Integrals, Cross-sections Chapter 14 Multiple Integrals 1 ouble Integrals, Iterated Integrals, Cross-sections 2 ouble Integrals over more general regions, efinition, Evaluation of ouble Integrals, Properties of ouble Integrals

More information

PATCH TEST OF HEXAHEDRAL ELEMENT

PATCH TEST OF HEXAHEDRAL ELEMENT Annual Report of ADVENTURE Project ADV-99- (999) PATCH TEST OF HEXAHEDRAL ELEMENT Yoshikazu ISHIHARA * and Hirohisa NOGUCHI * * Mitsubishi Research Institute, Inc. e-mail: y-ishi@mri.co.jp * Department

More information

Interactive Math Glossary Terms and Definitions

Interactive Math Glossary Terms and Definitions Terms and Definitions Absolute Value the magnitude of a number, or the distance from 0 on a real number line Addend any number or quantity being added addend + addend = sum Additive Property of Area the

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information