Simultaneous equations 11 Row echelon form

Size: px
Start display at page:

Download "Simultaneous equations 11 Row echelon form"

Transcription

1 1 Simultaneous equations 11 Row echelon form J A Rossiter For a neat organisation of all videos and resources

2 Introduction 2 The previous videos demonstrated that both a matrix inverse and Cramer s rule can be used to solve linear simultaneous equations. However, both of these methods are very inefficient for large numbers of unknowns. Consequently, we need to consider more numerically efficient methods that can deal with 10s and 100s of unknowns. This video introduces the row-echelon form which is one tool used by efficient solvers.

3 Two linear simultaneous equations When solving 2 equations in 2 unknowns, the basic technique is to eliminate one variable. x + 2y = 3 Add row 1 to row 2 to eliminate x. x + 3y = 1 5y = 4 Write one of the original equations alongside the new equation and then put in matrix form. x + 2y = 3 0x + 5y = 4 This matrix is, in effect, triangular due to the zero x y = 3 4 We can now solve for y and then use this to find x. 3

4 Solving 3 equations The typical technique is to use the equations to eliminate one variable at a time, and then back substitute. x + 2y + z = 3 5x + 3y z = 1 2x + 2y 4z = 5 4x + 5y = 4 6x + 10y = 17 Add row 1 to row 2 to eliminate z. Add 4 times row 1 to row 3 to eliminate z. Subtract 2 times row 1 from row 2 to eliminate y. 4 14x = 9 We can now solve for x, use this to find y and then use both to find z.

5 3 unknowns final form Let us look at the equations we ended up with having done the variable elimination and rearrange 3 of these into matrix form. 5 x + 2y + z = 3 5x + 3y z = 1 2x + 2y 4z = 5 4x + 5y = 4 6x + 10y = 17 This matrix is triangular! x y z = x = 9

6 Triangular forms 6 Consider a set of equations represented as follows. a b c 0 e f 0 0 j x y z = k m n This matrix is upper triangular. It is now straightforward to solve for all the unknowns using a sequence. Use the 3 rd row to solve for z using: j z =n Use the 2 nd row to solve for y using: ey = m- fz Use the 1 st row to solve for x using: ax = k- by - cz

7 Proposed methodology If we can represent our linear simultaneous equations using the form AX=B where the matrix A is upper (or lower) triangular, then the equations can be solved very efficiently x y z w = Use the 4 th solve for w row to Use the 3rd row to solve for z using w. 7 Use the 2 nd row to solve for y using w, z. Use the 1 st row to solve for x using w, z y.

8 Summary observation If we can represent our linear simultaneous equations using the form AX=B where the matrix A is upper (or lower) triangular, then the equations can be solved very efficiently This is known as row-echelon form. x y z w = Efficient solvers first aim to modify the equations into row-echelon form.

9 Summary 9 This brief resource introduced the row-echelon form. If the linear simultaneous equations, in matrix form, have a triangular matrix, then the unknowns can be solved very efficiently. A popular numerical technique is to force the A matrix into triangular form; this is introduced in the next video.

10 Anthony Rossiter Department of Automatic Control and Systems Engineering University of Sheffield For a neat organisation of all videos and resources /indexwebbook.html 2018 University of Sheffield This work is licensed under the Creative Commons Attribution 2.0 UK: England & Wales Licence. To view a copy of this licence, visit or send a letter to: Creative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA. It should be noted that some of the materials contained within this resource are subject to third party rights and any copyright notices must remain with these materials in the event of reuse or repurposing. If there are third party images within the resource please do not remove or alter any of the copyright notices or website details shown below the image. (Please list details of the third party rights contained within this work. If you include your institutions logo on the cover please include reference to the fact that it is a trade mark and all copyright in that image is reserved.)

MATLAB Basics 9 loops

MATLAB Basics 9 loops 1 MATLAB Basics 9 loops Anthony Rossiter University of Sheffield For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Introduction 1. We have established

More information

MATLAB Basics 2 simple calculations and use

MATLAB Basics 2 simple calculations and use 1 MATLAB Basics 2 simple calculations and use Anthony Rossiter University of Sheffield For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Introduction

More information

MATLAB Basics 8 conditionals if statements

MATLAB Basics 8 conditionals if statements 1 MATLAB Basics 8 conditionals if statements Anthony Rossiter University of Sheffield For a neat organisation of all videos and resources http://controleducation.group.shef.ac.uk/indexwebbook.html Introduction

More information

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Matrix norms Can be defined using corresponding vector norms Two norm One norm Infinity

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Some special matrices Matlab code How many operations and memory

More information

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science

Computational Methods CMSC/AMSC/MAPL 460. Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Computational Methods CMSC/AMSC/MAPL 460 Vectors, Matrices, Linear Systems, LU Decomposition, Ramani Duraiswami, Dept. of Computer Science Zero elements of first column below 1 st row multiplying 1 st

More information

Solving Systems of Equations Using Matrices With the TI-83 or TI-84

Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Solving Systems of Equations Using Matrices With the TI-83 or TI-84 Dimensions of a matrix: The dimensions of a matrix are the number of rows by the number of columns in the matrix. rows x columns *rows

More information

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang

Maths for Signals and Systems Linear Algebra in Engineering. Some problems by Gilbert Strang Maths for Signals and Systems Linear Algebra in Engineering Some problems by Gilbert Strang Problems. Consider u, v, w to be non-zero vectors in R 7. These vectors span a vector space. What are the possible

More information

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find).

2. Use elementary row operations to rewrite the augmented matrix in a simpler form (i.e., one whose solutions are easy to find). Section. Gaussian Elimination Our main focus in this section is on a detailed discussion of a method for solving systems of equations. In the last section, we saw that the general procedure for solving

More information

Practice Test - Chapter 6

Practice Test - Chapter 6 1. Write each system of equations in triangular form using Gaussian elimination. Then solve the system. Align the variables on the left side of the equal sign. Eliminate the x-term from the 2nd equation.

More information

For example, the system. 22 may be represented by the augmented matrix

For example, the system. 22 may be represented by the augmented matrix Matrix Solutions to Linear Systems A matrix is a rectangular array of elements. o An array is a systematic arrangement of numbers or symbols in rows and columns. Matrices (the plural of matrix) may be

More information

A Poorly Conditioned System. Matrix Form

A Poorly Conditioned System. Matrix Form Possibilities for Linear Systems of Equations A Poorly Conditioned System A Poorly Conditioned System Results No solution (inconsistent) Unique solution (consistent) Infinite number of solutions (consistent)

More information

Matrices 4: use of MATLAB

Matrices 4: use of MATLAB Matrices 4: use of MATLAB Anthony Rossiter http://controleducation.group.shef.ac.uk/indexwebbook.html http://www.shef.ac.uk/acse Department of Automatic Control and Systems Engineering Introduction The

More information

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8.

Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations. Reference: Introduction to Parallel Computing Chapter 8. CZ4102 High Performance Computing Lecture 12 (Last): Parallel Algorithms for Solving a System of Linear Equations - Dr Tay Seng Chuan Reference: Introduction to Parallel Computing Chapter 8. 1 Topic Overview

More information

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix.

MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. MATH 423 Linear Algebra II Lecture 17: Reduced row echelon form (continued). Determinant of a matrix. Row echelon form A matrix is said to be in the row echelon form if the leading entries shift to the

More information

CHAPTER 5 SYSTEMS OF EQUATIONS. x y

CHAPTER 5 SYSTEMS OF EQUATIONS. x y page 1 of Section 5.1 CHAPTER 5 SYSTEMS OF EQUATIONS SECTION 5.1 GAUSSIAN ELIMINATION matrix form of a system of equations The system 2x + 3y + 4z 1 5x + y + 7z 2 can be written as Ax where b 2 3 4 A [

More information

0_PreCNotes17 18.notebook May 16, Chapter 12

0_PreCNotes17 18.notebook May 16, Chapter 12 Chapter 12 Notes BASIC MATRIX OPERATIONS Matrix (plural: Matrices) an n x m array of elements element a ij Example 1 a 21 = a 13 = Multiply Matrix by a Scalar Distribute scalar to all elements Addition

More information

Now, start over with a smarter method. But it is still heavily relied on the power of matlab. But we can see the pattern of the matrix elements.

Now, start over with a smarter method. But it is still heavily relied on the power of matlab. But we can see the pattern of the matrix elements. Instructions for starting on Project 5. Warning: many of the instructions are not that smart or efficient. It is part of a learning process. Start by introducing some data points for x and for y: octave:>

More information

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates

LARP / 2018 ACK : 1. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Triangular Factors and Row Exchanges LARP / 28 ACK :. Linear Algebra and Its Applications - Gilbert Strang 2. Autar Kaw, Transforming Numerical Methods Education for STEM Graduates Then there were three

More information

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011

Math 355: Linear Algebra: Midterm 1 Colin Carroll June 25, 2011 Rice University, Summer 20 Math 355: Linear Algebra: Midterm Colin Carroll June 25, 20 I have adhered to the Rice honor code in completing this test. Signature: Name: Date: Time: Please read the following

More information

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang

CS6015 / LARP ACK : Linear Algebra and Its Applications - Gilbert Strang Solving and CS6015 / LARP 2018 ACK : Linear Algebra and Its Applications - Gilbert Strang Introduction Chapter 1 concentrated on square invertible matrices. There was one solution to Ax = b and it was

More information

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer:

Exercise Set Decide whether each matrix below is an elementary matrix. (a) (b) (c) (d) Answer: Understand the relationships between statements that are equivalent to the invertibility of a square matrix (Theorem 1.5.3). Use the inversion algorithm to find the inverse of an invertible matrix. Express

More information

Resampling Scattered Data into a Regular Grid

Resampling Scattered Data into a Regular Grid Resampling Scattered Data into a Regular Grid Mike Bailey mjb@cs.oregonstate.edu The Problem Oftentimes data points are located irregularly, that is, they are not in nice, neat rectilinear grids. This

More information

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices

10/26/ Solving Systems of Linear Equations Using Matrices. Objectives. Matrices 6.1 Solving Systems of Linear Equations Using Matrices Objectives Write the augmented matrix for a linear system. Perform matrix row operations. Use matrices and Gaussian elimination to solve systems.

More information

State-space feedback 6 challenges of pole placement

State-space feedback 6 challenges of pole placement State-space feedbac 6 challeges of pole placemet J Rossiter Itroductio The earlier videos itroduced the cocept of state feedbac ad demostrated that it moves the poles. x u x Kx Bu It was show that whe

More information

Symbiant Tracker Auditee Guide. Version 4.4. Auditee Guide

Symbiant Tracker Auditee Guide. Version 4.4. Auditee Guide Version 4.4 Auditee Guide 1 revision 3.4 This auditee guide is for Symbiant Tracker 4.4 only (Standard and Pro) Copyright 2005 2011 Symbiant. All rights reserved. Symbiant is a Trade Mark of Credit Card

More information

Math 1B03/1ZC3 - Tutorial 3. Jan. 24th/28th, 2014

Math 1B03/1ZC3 - Tutorial 3. Jan. 24th/28th, 2014 Math 1B03/1ZC3 - Tutorial 3 Jan. 24th/28th, 2014 Tutorial Info: Website: http://ms.mcmaster.ca/ dedieula. Math Help Centre: Wednesdays 2:30-5:30pm. Email: dedieula@math.mcmaster.ca. Elementary Matrices

More information

Matrix Inverse 2 ( 2) 1 = 2 1 2

Matrix Inverse 2 ( 2) 1 = 2 1 2 Name: Matrix Inverse For Scalars, we have what is called a multiplicative identity. This means that if we have a scalar number, call it r, then r multiplied by the multiplicative identity equals r. Without

More information

Column and row space of a matrix

Column and row space of a matrix Column and row space of a matrix Recall that we can consider matrices as concatenation of rows or columns. c c 2 c 3 A = r r 2 r 3 a a 2 a 3 a 2 a 22 a 23 a 3 a 32 a 33 The space spanned by columns of

More information

Numerical Methods 5633

Numerical Methods 5633 Numerical Methods 5633 Lecture 7 Marina Krstic Marinkovic mmarina@maths.tcd.ie School of Mathematics Trinity College Dublin Marina Krstic Marinkovic 1 / 10 5633-Numerical Methods Organisational To appear

More information

6-2 Matrix Multiplication, Inverses and Determinants

6-2 Matrix Multiplication, Inverses and Determinants Find AB and BA, if possible. 4. A = B = A = ; B = A is a 2 1 matrix and B is a 1 4 matrix. Because the number of columns of A is equal to the number of rows of B, AB exists. To find the first entry of

More information

x = 12 x = 12 1x = 16

x = 12 x = 12 1x = 16 2.2 - The Inverse of a Matrix We've seen how to add matrices, multiply them by scalars, subtract them, and multiply one matrix by another. The question naturally arises: Can we divide one matrix by another?

More information

2. If x = 3, then what is the. 1. If x = 4, then what is the value of x 2? We will evaluate 1 expressions by using the order of operations.

2. If x = 3, then what is the. 1. If x = 4, then what is the value of x 2? We will evaluate 1 expressions by using the order of operations. Learning Objective We will evaluate 1 expressions by using the order of operations. Name: February 18, 2014 Per: Common Core 7.AF1.2 Activate Prior Knowledge CFU Substitution means to replace a variable

More information

Computer Packet 1 Row Operations + Freemat

Computer Packet 1 Row Operations + Freemat Computer Packet 1 Row Operations + Freemat For this packet, you will use a website to do row operations, and then learn to use a general purpose matrix calculator called FreeMat. To reach the row operations

More information

Section 3.1 Gaussian Elimination Method (GEM) Key terms

Section 3.1 Gaussian Elimination Method (GEM) Key terms Section 3.1 Gaussian Elimination Method (GEM) Key terms Rectangular systems Consistent system & Inconsistent systems Rank Types of solution sets RREF Upper triangular form & back substitution Nonsingular

More information

Independent systems consist of x

Independent systems consist of x 5.1 Simultaneous Linear Equations In consistent equations, *Find the solution to each system by graphing. 1. y Independent systems consist of x Three Cases: A. consistent and independent 2. y B. inconsistent

More information

Linear Equation Systems Iterative Methods

Linear Equation Systems Iterative Methods Linear Equation Systems Iterative Methods Content Iterative Methods Jacobi Iterative Method Gauss Seidel Iterative Method Iterative Methods Iterative methods are those that produce a sequence of successive

More information

Perspective Mappings. Contents

Perspective Mappings. Contents Perspective Mappings David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy

More information

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways.

Therefore, after becoming familiar with the Matrix Method, you will be able to solve a system of two linear equations in four different ways. Grade 9 IGCSE A1: Chapter 9 Matrices and Transformations Materials Needed: Straightedge, Graph Paper Exercise 1: Matrix Operations Matrices are used in Linear Algebra to solve systems of linear equations.

More information

Solving Systems Using Row Operations 1 Name

Solving Systems Using Row Operations 1 Name The three usual methods of solving a system of equations are graphing, elimination, and substitution. While these methods are excellent, they can be difficult to use when dealing with three or more variables.

More information

Autar Kaw Benjamin Rigsby. Transforming Numerical Methods Education for STEM Undergraduates

Autar Kaw Benjamin Rigsby.   Transforming Numerical Methods Education for STEM Undergraduates Autar Kaw Benjamin Rigsy http://nmmathforcollegecom Transforming Numerical Methods Education for STEM Undergraduates http://nmmathforcollegecom LU Decomposition is another method to solve a set of simultaneous

More information

hp calculators hp 39g+ & hp 39g/40g Using Matrices How are matrices stored? How do I solve a system of equations? Quick and easy roots of a polynomial

hp calculators hp 39g+ & hp 39g/40g Using Matrices How are matrices stored? How do I solve a system of equations? Quick and easy roots of a polynomial hp calculators hp 39g+ Using Matrices Using Matrices The purpose of this section of the tutorial is to cover the essentials of matrix manipulation, particularly in solving simultaneous equations. How are

More information

Least-Squares Fitting of Data with B-Spline Curves

Least-Squares Fitting of Data with B-Spline Curves Least-Squares Fitting of Data with B-Spline Curves David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International

More information

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012

CS485/685 Computer Vision Spring 2012 Dr. George Bebis Programming Assignment 2 Due Date: 3/27/2012 CS8/68 Computer Vision Spring 0 Dr. George Bebis Programming Assignment Due Date: /7/0 In this assignment, you will implement an algorithm or normalizing ace image using SVD. Face normalization is a required

More information

Precalculus Notes: Unit 7 Systems of Equations and Matrices

Precalculus Notes: Unit 7 Systems of Equations and Matrices Date: 7.1, 7. Solving Systems of Equations: Graphing, Substitution, Elimination Syllabus Objectives: 8.1 The student will solve a given system of equations or system of inequalities. Solution of a System

More information

Chapter LU Decomposition More Examples Electrical Engineering

Chapter LU Decomposition More Examples Electrical Engineering Chapter 4.7 LU Decomposition More Examples Electrical Engineering Example Three-phase loads e common in AC systems. When the system is balanced the analysis can be simplified to a single equivalent rcuit

More information

Solutions for Operations Research Final Exam

Solutions for Operations Research Final Exam Solutions for Operations Research Final Exam. (a) The buffer stock is B = i a i = a + a + a + a + a + a 6 + a 7 = + + + + + + =. And the transportation tableau corresponding to the transshipment problem

More information

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions:

Matrices. A Matrix (This one has 2 Rows and 3 Columns) To add two matrices: add the numbers in the matching positions: Matrices A Matrix is an array of numbers: We talk about one matrix, or several matrices. There are many things we can do with them... Adding A Matrix (This one has 2 Rows and 3 Columns) To add two matrices:

More information

Objectives and Homework List

Objectives and Homework List MAC 1140 Objectives and Homework List Each objective covered in MAC1140 is listed below. Along with each objective is the homework list used with MyMathLab (MML) and a list to use with the text (if you

More information

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx

FreeMat Tutorial. 3x + 4y 2z = 5 2x 5y + z = 8 x x + 3y = -1 xx 1 of 9 FreeMat Tutorial FreeMat is a general purpose matrix calculator. It allows you to enter matrices and then perform operations on them in the same way you would write the operations on paper. This

More information

From Raw Data to Meaningful Features

From Raw Data to Meaningful Features From Raw Data to Meaningful Features Andreas Damianou University of Sheffield, UK Summer School on Machine Learning and Data Science 27 June, 2016 Makerere University, Uganda Working with data Data-science:

More information

Answers to practice questions for Midterm 1

Answers to practice questions for Midterm 1 Answers to practice questions for Midterm Paul Hacking /5/9 (a The RREF (reduced row echelon form of the augmented matrix is So the system of linear equations has exactly one solution given by x =, y =,

More information

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes.

The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. The real voyage of discovery consists not in seeking new landscapes, but in having new eyes. - Marcel Proust University of Texas at Arlington Camera Calibration (or Resectioning) CSE 4392-5369 Vision-based

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Probably the simplest kind of problem. Occurs in many contexts, often as part of larger problem. Symbolic manipulation packages can do linear algebra "analytically" (e.g. Mathematica,

More information

Camera Model and Calibration

Camera Model and Calibration Camera Model and Calibration Lecture-10 Camera Calibration Determine extrinsic and intrinsic parameters of camera Extrinsic 3D location and orientation of camera Intrinsic Focal length The size of the

More information

Finite Math - J-term Homework. Section Inverse of a Square Matrix

Finite Math - J-term Homework. Section Inverse of a Square Matrix Section.5-77, 78, 79, 80 Finite Math - J-term 017 Lecture Notes - 1/19/017 Homework Section.6-9, 1, 1, 15, 17, 18, 1, 6, 9, 3, 37, 39, 1,, 5, 6, 55 Section 5.1-9, 11, 1, 13, 1, 17, 9, 30 Section.5 - Inverse

More information

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License.

Creative Commons Attribution-NonCommercial-ShareAlike 2.5 License. Open Curaçao? 2010 10 07 Presentation during BPM Seminar Small Scale Renewable Energy: solutions on the horizon Curaçao, 2005-2010 Suares & Co NV This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike

More information

Using Weighted Least Squares to Model Data Accurately. Linear algebra has applications across many, if not all, mathematical topics.

Using Weighted Least Squares to Model Data Accurately. Linear algebra has applications across many, if not all, mathematical topics. Veronica Dean-Perry Maria Novozhenya Using Weighted Least Squares to Model Data Accurately Linear algebra has applications across many, if not all, mathematical topics. These days, every industry uses

More information

5.3 Linear Function Graphs

5.3 Linear Function Graphs 5.3 Linear Function Graphs Learning Objectives Recognize and use function notation. Graph a linear function. Change slope and intercepts of function graphs. Analyze graphs of real-world functions. Introduction

More information

Solving Algebraic Equations

Solving Algebraic Equations Lesson 4. Solving Algebraic Equations 3 3 3 3 3 8 8 4 Add 3 to both sides. Divide both sides by. 4 gives the solution of the equation 3. Check: Substitute 4 for x into the original equation. 3 4 3 When

More information

Revision Topic 11: Straight Line Graphs

Revision Topic 11: Straight Line Graphs Revision Topic : Straight Line Graphs The simplest way to draw a straight line graph is to produce a table of values. Example: Draw the lines y = x and y = 6 x. Table of values for y = x x y - - - - =

More information

DAY 28 - ARITHMETIC SEQUENCES

DAY 28 - ARITHMETIC SEQUENCES DAY 28 - ARITHMETIC SEQUENCES ARITHMETIC SEQUENCE An ARITHMETIC SEQUENCE is where the rule of the pattern is always ADDED. The rule is called the COMMON DIFFERENCE ARITHMETIC SEQUENCE You can use the following

More information

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29

Numerical Methods for PDEs : Video 9: 2D Finite Difference February 14, Equations / 29 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference Equations February 4, 205 22.520 Numerical Methods for PDEs Video 9 2D Finite Difference February 4, Equations 205 / 29 Thought Experiment

More information

SCIE 4101, Spring Math Review Packet #4 Algebra II (Part 1) Notes

SCIE 4101, Spring Math Review Packet #4 Algebra II (Part 1) Notes SCIE 4101, Spring 011 Miller Math Review Packet #4 Algebra II (Part 1) Notes Matrices A matrix is a rectangular arra of numbers. The order of a matrix refers to the number of rows and columns the matrix

More information

Equations and Problem Solving with Fractions. Variable. Expression. Equation. A variable is a letter used to represent a number.

Equations and Problem Solving with Fractions. Variable. Expression. Equation. A variable is a letter used to represent a number. MAT 040: Basic Math Equations and Problem Solving with Fractions Variable A variable is a letter used to represent a number. Expression An algebraic expression is a combination of variables and/or numbers

More information

Precalculus An Investigation of Functions

Precalculus An Investigation of Functions Precalculus An Investigation of Functions David Lippman Melonie Rasmussen Edition 1.3 This book is also available to read free online at http://www.opentextbookstore.com/precalc/ If you want a printed

More information

Interlude: Solving systems of Equations

Interlude: Solving systems of Equations Interlude: Solving systems of Equations Solving Ax = b What happens to x under Ax? The singular value decomposition Rotation matrices Singular matrices Condition number Null space Solving Ax = 0 under

More information

Pe h-ōe-jī Unicode Correspondence Table

Pe h-ōe-jī Unicode Correspondence Table Pe h-ōe-jī Correspondence Table This document contains the code points and font examples for characters needed to write Pe h-ōe-jī for Taiwanese (Hoklo). Standard latin capital and small letters are not

More information

Honors Advanced Math More on Determinants, Transformations and Systems 14 May 2013

Honors Advanced Math More on Determinants, Transformations and Systems 14 May 2013 Honors Advanced Math Name: More on Determinants, Transformations and Sstems 14 Ma 013 Directions: The following problems are designed to help develop connections between determinants, sstems of equations

More information

All images are degraded

All images are degraded Lecture 7 Image Relaxation: Restoration and Feature Extraction ch. 6 of Machine Vision by Wesley E. Snyder & Hairong Qi Spring 2018 16-725 (CMU RI) : BioE 2630 (Pitt) Dr. John Galeotti The content of these

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 1 Don t you just invert

More information

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction

UNIT 5 QUADRATIC FUNCTIONS Lesson 1: Interpreting Structure in Expressions Instruction Prerequisite Skills This lesson requires the use of the following skills: translating verbal expressions to algebraic expressions evaluating expressions following the order of operations adding and subtracting

More information

Curriculum Map: Mathematics

Curriculum Map: Mathematics Curriculum Map: Mathematics Course: Honors Advanced Precalculus and Trigonometry Grade(s): 11-12 Unit 1: Functions and Their Graphs This chapter will develop a more complete, thorough understanding of

More information

Pipeline Computations Pipelined Addition & System of Linear Equations. CS370 Parallel Processing Spring 2014

Pipeline Computations Pipelined Addition & System of Linear Equations. CS370 Parallel Processing Spring 2014 Pipeline Computations Pipelined Addition & System of Linear Equations CS370 Parallel Processing Spring 2014 1 Pipelining Introduction to pipelining Instruction pipeline vs. software pipeline RISC pipeline

More information

3. Replace any row by the sum of that row and a constant multiple of any other row.

3. Replace any row by the sum of that row and a constant multiple of any other row. Math Section. Section.: Solving Systems of Linear Equations Using Matrices As you may recall from College Algebra or Section., you can solve a system of linear equations in two variables easily by applying

More information

MATH ALGEBRA AND FUNCTIONS 5 Performance Objective Task Analysis Benchmarks/Assessment Students:

MATH ALGEBRA AND FUNCTIONS 5 Performance Objective Task Analysis Benchmarks/Assessment Students: Students: 1. Use information taken from a graph or Which table, a or b, matches the linear equation to answer questions about a graph? problem situation. y 1. Students use variables in simple expressions,

More information

Math Precalculus (12H/4H) Review. CHSN Review Project

Math Precalculus (12H/4H) Review. CHSN Review Project Math Precalculus (12H/4H) Review CHSN Review Project Contents Functions 3 Polar and Complex Numbers 9 Sequences and Series 15 This review guide was written by Dara Adib. Prateek Pratel checked the Polar

More information

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6:

Module 1: Introduction to Finite Difference Method and Fundamentals of CFD Lecture 6: file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_1.htm 1 of 1 6/20/2012 12:24 PM The Lecture deals with: ADI Method file:///d:/chitra/nptel_phase2/mechanical/cfd/lecture6/6_2.htm 1 of 2 6/20/2012

More information

KINETICS CALCS AND GRAPHS INSTRUCTIONS

KINETICS CALCS AND GRAPHS INSTRUCTIONS KINETICS CALCS AND GRAPHS INSTRUCTIONS 1. Open a new Excel or Google Sheets document. I will be using Google Sheets for this tutorial, but Excel is nearly the same. 2. Enter headings across the top as

More information

What are advanced filters? Lecture 19 Write Your Own ITK Filters, Part2. Different output size. Details, details. Changing the input requested region

What are advanced filters? Lecture 19 Write Your Own ITK Filters, Part2. Different output size. Details, details. Changing the input requested region What are advanced filters? Lecture 19 Write Your Own ITK Filters, Part2 More than one input Support progress methods Output image is a different size than input Multi-threaded Methods in Medical Image

More information

Practice Test - Chapter 3. Solve each system of equations by using either substitution or elimination.

Practice Test - Chapter 3. Solve each system of equations by using either substitution or elimination. Solve each system of equations by using either substitution or elimination. 3. 1. Substitute x + 4 for y in the second equation and solve for x. Multiply the first and the second equation by 4 and 5 then

More information

February 01, Matrix Row Operations 2016 ink.notebook. 6.6 Matrix Row Operations. Page 49 Page Row operations

February 01, Matrix Row Operations 2016 ink.notebook. 6.6 Matrix Row Operations. Page 49 Page Row operations 6.6 Matrix Row Operations 2016 ink.notebook Page 49 Page 50 6.6 Row operations (Solve Systems with Matrices) Lesson Objectives Page 51 Standards Lesson Notes Page 52 6.6 Matrix Row Operations Press the

More information

Humanoid Robotics. Least Squares. Maren Bennewitz

Humanoid Robotics. Least Squares. Maren Bennewitz Humanoid Robotics Least Squares Maren Bennewitz Goal of This Lecture Introduction into least squares Use it yourself for odometry calibration, later in the lecture: camera and whole-body self-calibration

More information

Matrices. Matrices. A matrix is a 2D array of numbers, arranged in rows that go across and columns that go down: 4 columns. Mike Bailey.

Matrices. Matrices. A matrix is a 2D array of numbers, arranged in rows that go across and columns that go down: 4 columns. Mike Bailey. Matrices 1 Matrices 2 A matrix is a 2D array of numbers, arranged in rows that go across and columns that go down: A column: This work is licensed under a Creative Commons Attribution-NonCommercial- NoDerivatives

More information

Example: A Four-Node Network

Example: A Four-Node Network Node Network Flows Flow of material, energy, money, information, etc., from one place to another arc 6 Node Node arc 6 Node Node 5 Node 6 8 Goal: Ship All of the Over the Network to Meet All of the 6 6

More information

MITOCW ocw f99-lec07_300k

MITOCW ocw f99-lec07_300k MITOCW ocw-18.06-f99-lec07_300k OK, here's linear algebra lecture seven. I've been talking about vector spaces and specially the null space of a matrix and the column space of a matrix. What's in those

More information

Solve the matrix equation AX B for X by using A.(1-3) Use the Inverse Matrix Calculator Link to check your work

Solve the matrix equation AX B for X by using A.(1-3) Use the Inverse Matrix Calculator Link to check your work Name: Math 1324 Activity 9(4.6)(Due by Oct. 20) Dear Instructor or Tutor, These problems are designed to let my students show me what they have learned and what they are capable of doing on their own.

More information

How to create an order in Online Business Account (OBA)

How to create an order in Online Business Account (OBA) How to create an order in Online Business Account (OBA) How to create an order With Online Business Account, creating an order is easy to do: 1. Select the correct mailing option to reflect whether you

More information

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}.

September 18, B Math Test Chapter 1 Name: x can be expressed as: {y y 0, y R}. September 8, 208 62B Math Test Chapter Name: Part : Objective Questions [ mark each, total 2 marks]. State whether each of the following statements is TRUE or FALSE a) The mapping rule (x, y) (-x, y) represents

More information

Math 13 Chapter 3 Handout Helene Payne. Name: 1. Assign the value to the variables so that a matrix equality results.

Math 13 Chapter 3 Handout Helene Payne. Name: 1. Assign the value to the variables so that a matrix equality results. Matrices Name:. Assign the value to the variables so that a matrix equality results. [ [ t + 5 4 5 = 7 6 7 x 3. Are the following matrices equal, why or why not? [ 3 7, 7 4 3 4 3. Let the matrix A be defined

More information

Lab 1 - Worksheet Spring 2013

Lab 1 - Worksheet Spring 2013 Math 300 UMKC Lab 1 - Worksheet Spring 2013 Learning Objectives: 1. How to use Matlab as a calculator 2. Learn about Matlab built in functions 3. Matrix and Vector arithmetics 4. MATLAB rref command 5.

More information

Symmetric Key Algorithms. Definition. A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting.

Symmetric Key Algorithms. Definition. A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting. Symmetric Key Algorithms Definition A symmetric key algorithm is an encryption algorithm where the same key is used for encrypting and decrypting. 1 Block cipher and stream cipher There are two main families

More information

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms

Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms Iterative Algorithms I: Elementary Iterative Methods and the Conjugate Gradient Algorithms By:- Nitin Kamra Indian Institute of Technology, Delhi Advisor:- Prof. Ulrich Reude 1. Introduction to Linear

More information

Online Technology Guide for Elementary Linear Algebra, 6e Larson/Falvo

Online Technology Guide for Elementary Linear Algebra, 6e Larson/Falvo Online Technology Guide for Elementary Linear Algebra, e Larson/Falvo Computer Software Programs and Graphing Utilities Introduction to MATLAB............................................... Introduction

More information

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4

7.3 3-D Notes Honors Precalculus Date: Adapted from 11.1 & 11.4 73 3-D Notes Honors Precalculus Date: Adapted from 111 & 114 The Three-Variable Coordinate System I Cartesian Plane The familiar xy-coordinate system is used to represent pairs of numbers (ordered pairs

More information

(Sparse) Linear Solvers

(Sparse) Linear Solvers (Sparse) Linear Solvers Ax = B Why? Many geometry processing applications boil down to: solve one or more linear systems Parameterization Editing Reconstruction Fairing Morphing 2 Don t you just invert

More information

Mark Scheme Sample Assessment Material (SAM2)

Mark Scheme Sample Assessment Material (SAM2) Scheme Sample Assessment Material (SAM) IGCSE IGCSE ICT () Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH General ing Guidance All candidates

More information

Teaching Manual Math 2131

Teaching Manual Math 2131 Math 2131 Linear Algebra Labs with MATLAB Math 2131 Linear algebra with Matlab Teaching Manual Math 2131 Contents Week 1 3 1 MATLAB Course Introduction 5 1.1 The MATLAB user interface...........................

More information

MA/CSSE 473 Day 20. Recap: Josephus Problem

MA/CSSE 473 Day 20. Recap: Josephus Problem MA/CSSE 473 Day 2 Finish Josephus Transform and conquer Gaussian Elimination LU-decomposition AVL Tree Maximum height 2-3 Trees Student questions? Recap: Josephus Problem n people, numbered 1 n, are in

More information

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo

Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo 1 Name Number of Regions An Introduction to the TI-Nspire CAS Student Worksheet Created by Melissa Sutherland, State University of New York at Geneseo Below you will find copies of the notes provided on

More information