Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn

Size: px
Start display at page:

Download "Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn"

Transcription

1 Continuous and Discrete Optimization Methods in Computer Vision Daniel Cremers Department of Computer Science University of Bonn Oxford, August

2 Segmentation by Energy Minimization Given an image, minimize the energy Blake, Zisserman 87, Mumford, Shah 89, Ising 27, Potts 59, Geman, Geman 84 boundary length 2

3 Continuous Versus Discrete Optimization Min. cut Max. flow Osher, Sethian, J. of Comp. Phys. 88 Ford, Fulkerson 59 Greig et al. 89 Boykov, Kolmogorov 02 3

4 Level Set Formulation of Mumford-Shah Chan & Vese 99 4

5 Level Set Segmentation in Feature Space efficient coarse-to-fine scheme Brox, Weickert 04, 06 5

6 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization Convex 3D reconstruction Markerless human motion capture 6

7 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture Cremers CVPR 03, Cremers & Soatto IJCV 05 7

8 Motion 8

9 Motion-based Image Segmentation 1. assumption: Intensity of moving points is preserved. Problem underconstrained (aperture problem). 2. assumption: Velocity in each region is a Gaussian-distributed random variable Minimize Segmentation & Motion Cremers CVPR 03, Cremers & Soatto IJCV 05 9

10 Motion Competition Motion Estimation Segmentation 10

11 Motion Competition via Level Sets Cremers, Yuille, 04 11

12 Motion Competition via Level Sets What is moving? 12

13 Motion Competition via Level Sets Cremers, Yuille, 04 13

14 Motion Competition via Level Sets Cremers, Soatto, IJCV 05: Piecewise Parametric Motion 14

15 Motion Competition via Graph Cuts piecewise constant piecewise affine Schoenemann & Cremers, DAGM 06 up to 30 fps 15

16 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture Wedel, Schoenemann, Brox, Cremers DAGM 07 16

17 WarpCut: Obstacle Segmentation Segmentation of obstacles in monocular video 17

18 WarpCut: Obstacle Segmentation Local scale changes depend on distance from the camera. 18

19 WarpCut: Obstacle Segmentation Competing hypotheses: Obstacle or road? 19

20 WarpCut: Obstacle Segmentation Wedel, Schoenemann, Brox, Cremers DAGM 07 20

21 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture 21

22 Statistical Priors for Image Segmentation initial contour no prior with prior with prior with prior scale invariance Cremers, Kohlberger, Schnörr, ECCV 2002 Daniel Cremers Continuous and Discrete Optimization in Computer Vision 22

23 Statistical Learning of Familiar Shapes Cremers, Osher, Soatto, IJCV 06 Rosenblatt 56, Parzen 62 23

24 Statistical Learning of Implicit Shapes Without statistical prior Cremers, Osher, Soatto, IJCV 06 With statistical prior Sequence data courtesy of Alessandro Bissacco. 24

25 Statistical Priors for Image Segmentation Purely geometric prior Nonparametric prior Cremers, Osher, Soatto, IJCV 06 25

26 Dynamical Models for Implicit Shapes Training sequence 26

27 Dynamical Models for Implicit Shapes 1. Dimensionality reduction by PCA (Leventon et al. 00, Tsai et al. 01): mean eigen modes 2. Autoregressive model for the shape vectors: 3. Synthesized sequence of shape vectors and embedding functions: mean transition matrices Gaussian noise Cremers, IEEE Trans. on PAMI 06 27

28 Statistically Sampled Embedding Functions Cremers, IEEE Trans. on PAMI 06 28

29 Dynamical Models for Implicit Shapes 1. Low-dim. representation via PCA (Leventon et al. 00, Tsai et al. 01): 2. Autoregressive model for the shape coefficients: 3. Synthesize shape vectors and embedding surfaces: 29

30 Dynamical Models for Implicit Shapes 1. Low-dim. representation via PCA (Leventon et al. 00, Tsai et al. 01): 2. Autoregressive model for the shape coefficients: 3. Synthesize shape vectors and embedding surfaces: 30

31 Dynamical Priors for Level Set Segmentation Bayesian Aposteriori Maximization: Image formation model (color, texture, motion, ) Dynamical shape model Optimization by gradient descent: 31

32 Dynamical Priors for Level Set Segmentation Input sequence with 90% uniform noise 32

33 Dynamical Priors for Level Set Segmentation Cremers, IEEE Trans. on PAMI 06 33

34 Dynamical Priors for Level Set Segmentation Pure deformation model Cremers, IEEE Trans. on PAMI 06 34

35 Dynamical Priors for Level Set Segmentation Model of joint deformation and transformation Cremers, IEEE Trans. on PAMI 06 35

36 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture Schoenemann & Cremers ICCV 07 36

37 Limitations of Previous Approaches Local optimization Simple geometric distances Little generalization Requires large training sets Point correspondence, Missing parts, Stretching/shrinking,... Combinatorial problem Goal: Combinatorial solution for joint segmentation and alignment 37

38 The Product Space of Image and Template Each node of the graph represents an image pixel and a point on the template. All template points S are allowed to stretch over at most K image pixels. 38

39 The Product Space of Image and Template Each node of the graph represents an image pixel and a point on the template. All template points S are allowed to stretch over at most K image pixels. A cycle in this graph defines an assignment of template points to image pixels. 39

40 Segmentation & Alignment by Energy Min. Data term Alignment with template Stretching cost Favors strong gradients. Favors minimal stretching / shrinking. 40

41 Segmentation with a Single Template Template Segmentation results Optimization by Minimum Ratio Cycles on GPU: ~15 sec / frame 41

42 Rotational Invariance No rotational invariance Rotational invariance 42

43 Tracking Input sequence Globally optimal segmentations 43

44 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR 07 44

45 3D Reconstruction 45

46 Probabilistic Formulation 46

47 Probabilistic Formulation Kolev, Brox, Cremers DAGM 06 47

48 Continuous Convex Formulation Introduce binary variable: Relax binary constraint: weighted TV norm Convex functional optimized over a convex set. Solution of binary-valued problem by thresholding. Global minima by gradient descent (or SOR). Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR 07 48

49 Multiview 3D Reconstruction Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR 07 49

50 Comparison Level sets Continuous Local optima Convex formulation Continuous Global optima* Graph cuts Discrete Global optima* Memory limitations Metrication errors * for certain cost functionals only 50

51 Metrication Errors in Discrete Energies Synthetic data: blank out data term in upper octant Discrete graph cut optimization Continuous convex optimization Kolev, Klodt, Brox, Esedoglu & Cremers EMMCVPR 07 51

52 Overview Motion segmentation Obstacle segmentation Prior shape knowledge Shape priors in global optimization 3D reconstruction: a convex formulation Markerless human motion capture Brox et al. DAGM 2005 Brox, Rosenhahn, Cremers & Seidel, ECCV 06 52

53 Human Motion Tracking 53

54 Human Motion Tracking Brox et al. DAGM 2005 Brox, Rosenhahn, Cremers & Seidel, ECCV 06 54

55 Coupled Segmentation and 3D Tracking Brox et al. DAGM 2005 Brox, Rosenhahn, Cremers & Seidel, ECCV 06 55

56 3D Tracking with Statistical Priors T. Brox, B. Rosenhahn, U. Kersting, D. Cremers, DAGM 06 56

57 Human Motion Tracking T. Brox, B. Rosenhahn, U. Kersting, D. Cremers, DAGM 06 57

58 Summary Motion competition Obstacle segmentation Dynamical shape priors 3D reconstruction Human motion tracking 58

59 Announcement: IPAM Workshop Boykov, Cremers, Darbon, Ishikawa, Kolmogorov, Osher: IPAM Workshop on Graph Cuts and Related Discrete or Continuous Optimization Problems, Feb

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts

Graph Cuts vs. Level Sets. part I Basics of Graph Cuts ECCV 2006 tutorial on Graph Cuts vs. Level Sets part I Basics of Graph Cuts Yuri Boykov University of Western Ontario Daniel Cremers University of Bonn Vladimir Kolmogorov University College London Graph

More information

Kernel Density Estimation and Intrinsic Alignment for Knowledge-driven Segmentation: Teaching Level Sets to Walk

Kernel Density Estimation and Intrinsic Alignment for Knowledge-driven Segmentation: Teaching Level Sets to Walk C. Rasmussen et al. (Eds.), Pattern Recognition, Tübingen, Sept. 2004. LNCS Vol. 3175, pp. 36 44. c Springer Kernel Density Estimation and Intrinsic Alignment for Knowledge-driven Segmentation: Teaching

More information

Optical Flow and Dense Correspondence. Daniel Cremers Computer Science & Mathematics TU Munich

Optical Flow and Dense Correspondence. Daniel Cremers Computer Science & Mathematics TU Munich Optical Flow and Dense Correspondence Computer Science & Mathematics TU Munich Correspondence Problems in Vision 2 Shape Similarity & Shape Matching 3 Overview Optical Flow Estimation Dense Elastic Shape

More information

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts

Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts Discrete Optimization Methods in Computer Vision CSE 6389 Slides by: Boykov Modified and Presented by: Mostafa Parchami Basic overview of graph cuts [Yuri Boykov, Olga Veksler, Ramin Zabih, Fast Approximation

More information

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada

Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher. Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Yunyun Yang, Chunming Li, Chiu-Yen Kao and Stanley Osher Speaker: Chiu-Yen Kao (Math Department, The Ohio State University) BIRS, Banff, Canada Outline Review of Region-based Active Contour Models Mumford

More information

Dynamic Shape Tracking via Region Matching

Dynamic Shape Tracking via Region Matching Dynamic Shape Tracking via Region Matching Ganesh Sundaramoorthi Asst. Professor of EE and AMCS KAUST (Joint work with Yanchao Yang) The Problem: Shape Tracking Given: exact object segmentation in frame1

More information

Shape Prior Segmentation of Multiple Objects with Graph Cuts

Shape Prior Segmentation of Multiple Objects with Graph Cuts Shape Prior Segmentation of Multiple Objects with Graph Cuts Nhat Vu and B.S. Manjunath Department of Electrical and Computer Engineering University of California, Santa Barbara, CA 93106-9560 {nhat,manj}@ece.ucsb.edu

More information

Optimizing Parametric Total Variation Models

Optimizing Parametric Total Variation Models Optimizing Parametric Total Variation Models Strandmark, Petter; Kahl, Fredrik; Overgaard, Niels Christian Published in: [Host publication title missing] DOI:.9/ICCV.9.5459464 9 Link to publication Citation

More information

Segmentation with non-linear constraints on appearance, complexity, and geometry

Segmentation with non-linear constraints on appearance, complexity, and geometry IPAM February 2013 Western Univesity Segmentation with non-linear constraints on appearance, complexity, and geometry Yuri Boykov Andrew Delong Lena Gorelick Hossam Isack Anton Osokin Frank Schmidt Olga

More information

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence

Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Interactive Image Segmentation Using Level Sets and Dempster-Shafer Theory of Evidence Björn Scheuermann and Bodo Rosenhahn Leibniz Universität Hannover, Germany {scheuermann,rosenhahn}@tnt.uni-hannover.de

More information

Supervised texture detection in images

Supervised texture detection in images Supervised texture detection in images Branislav Mičušík and Allan Hanbury Pattern Recognition and Image Processing Group, Institute of Computer Aided Automation, Vienna University of Technology Favoritenstraße

More information

Segmentation with non-linear regional constraints via line-search cuts

Segmentation with non-linear regional constraints via line-search cuts Segmentation with non-linear regional constraints via line-search cuts Lena Gorelick 1, Frank R. Schmidt 2, Yuri Boykov 1, Andrew Delong 1, and Aaron Ward 1 1 University of Western Ontario, Canada 2 Université

More information

Level Set Evolution without Reinitilization

Level Set Evolution without Reinitilization Level Set Evolution without Reinitilization Outline Parametric active contour (snake) models. Concepts of Level set method and geometric active contours. A level set formulation without reinitialization.

More information

Active contours for multi-region image segmentation with a single level set function

Active contours for multi-region image segmentation with a single level set function Active contours for multi-region image segmentation with a single level set function Anastasia Dubrovina, Guy Rosman and Ron Kimmel Computer Science Department, Technion - IIT, Haifa, Israel {nastyad,

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Matching Non-rigidly Deformable Shapes Across Images: A Globally Optimal Solution

Matching Non-rigidly Deformable Shapes Across Images: A Globally Optimal Solution IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2008, Anchorage, Alaska. c IEEE. Matching Non-rigidly Deformable Shapes Across Images: A Globally Optimal Solution Thomas Schoenemann

More information

Region Based Image Segmentation using a Modified Mumford-Shah Algorithm

Region Based Image Segmentation using a Modified Mumford-Shah Algorithm Region Based Image Segmentation using a Modified Mumford-Shah Algorithm Jung-ha An and Yunmei Chen 2 Institute for Mathematics and its Applications (IMA), University of Minnesota, USA, 2 Department of

More information

Image Processing with Nonparametric Neighborhood Statistics

Image Processing with Nonparametric Neighborhood Statistics Image Processing with Nonparametric Neighborhood Statistics Ross T. Whitaker Scientific Computing and Imaging Institute School of Computing University of Utah PhD Suyash P. Awate University of Pennsylvania,

More information

Segmentation and Tracking of Partial Planar Templates

Segmentation and Tracking of Partial Planar Templates Segmentation and Tracking of Partial Planar Templates Abdelsalam Masoud William Hoff Colorado School of Mines Colorado School of Mines Golden, CO 800 Golden, CO 800 amasoud@mines.edu whoff@mines.edu Abstract

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

Part II: Modeling Aspects

Part II: Modeling Aspects Yosemite test sequence Illumination changes Motion discontinuities Variational Optical Flow Estimation Part II: Modeling Aspects Discontinuity Di ti it preserving i smoothness th tterms Robust data terms

More information

Deep Learning Shape Priors for Object Segmentation

Deep Learning Shape Priors for Object Segmentation 2013 IEEE Conference on Computer Vision and Pattern Recognition Deep Learning Shape Priors for Object Segmentation Fei Chen a,c Huimin Yu a,b Roland Hu a Xunxun Zeng d a Department of Information Science

More information

Variational Space-Time Motion Segmentation

Variational Space-Time Motion Segmentation B. Triggs and A. Zisserman (Eds.), IEEE Intl. Conf. on Computer Vision (ICCV), Nice, Oct. 2003, Vol 2, 886 892. Variational Space-Time Motion Segmentation aniel Cremers and Stefano Soatto epartment of

More information

Tracking with Active Contours Using Dynamically Updated Shape Information

Tracking with Active Contours Using Dynamically Updated Shape Information Tracking with Active Contours Using Dynamically Updated Shape Information Abstract An active contour based tracking framework is described that generates and integrates dynamic shape information without

More information

Introduction à la vision artificielle X

Introduction à la vision artificielle X Introduction à la vision artificielle X Jean Ponce Email: ponce@di.ens.fr Web: http://www.di.ens.fr/~ponce Planches après les cours sur : http://www.di.ens.fr/~ponce/introvis/lect10.pptx http://www.di.ens.fr/~ponce/introvis/lect10.pdf

More information

Notes 9: Optical Flow

Notes 9: Optical Flow Course 049064: Variational Methods in Image Processing Notes 9: Optical Flow Guy Gilboa 1 Basic Model 1.1 Background Optical flow is a fundamental problem in computer vision. The general goal is to find

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 145 Level Set Segmentation with Multiple Regions Thomas Brox and Joachim Weickert Saarbrücken

More information

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava 3D Computer Vision Dense 3D Reconstruction II Prof. Didier Stricker Christiano Gava Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Non-Parametric Single View Reconstruction of Curved Objects using Convex Optimization

Non-Parametric Single View Reconstruction of Curved Objects using Convex Optimization Non-Parametric Single View Reconstruction of Curved Objects using Convex Optimization M. R. Oswald, E. Töppe 1, K. Kolev and D. Cremers Computer Science Department, University of Bonn, Germany. Abstract.

More information

Interactive Graph Cut Based Segmentation With Shape Priors

Interactive Graph Cut Based Segmentation With Shape Priors Interactive Graph Cut Based Segmentation With Shape Priors Daniel Freedman and Tao Zhang Computer Science Department, Rensselaer Polytechnic Institute, Troy, NY 1180 Abstract Interactive or semi-automatic

More information

A Unifying View of Contour Length Bias Correction

A Unifying View of Contour Length Bias Correction A Unifying View of Contour Length Bias Correction Christina Pavlopoulou Stella X. Yu Computer Science Department Boston College, Chestnut Hill, MA 9, USA {pavlo,syu}@cs.bc.edu Abstract. Original active

More information

A Survey of Image Segmentation Based On Multi Region Level Set Method

A Survey of Image Segmentation Based On Multi Region Level Set Method A Survey of Image Segmentation Based On Multi Region Level Set Method Suraj.R 1, Sudhakar.K 2 1 P.G Student, Computer Science and Engineering, Hindusthan College Of Engineering and Technology, Tamilnadu,

More information

Mathematics in Image Processing

Mathematics in Image Processing Mathematics in Image Processing Michal Šorel Department of Image Processing Institute of Information Theory and Automation (ÚTIA) Academy of Sciences of the Czech Republic http://zoi.utia.cas.cz/ Mathematics

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi 1, Francois de Sorbier 1 and Hideo Saito 1 1 Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi,

More information

N-View Human Silhouette Segmentation in Cluttered, Partially Changing Environments

N-View Human Silhouette Segmentation in Cluttered, Partially Changing Environments N-View Human Silhouette Segmentation in Cluttered, Partially Changing Environments Tobias Feldmann 1, Björn Scheuermann 2, Bodo Rosenhahn 2, and Annika Wörner 1 1 Karlsruhe Institute of Technology (KIT),

More information

Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation

Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation Multiphase Dynamic Labeling for Variational Recognition-Driven Image Segmentation Daniel Cremers 1, Nir Sochen 2, and Christoph Schnörr 3 1 Department of Computer Science University of California, Los

More information

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H.

Nonrigid Surface Modelling. and Fast Recovery. Department of Computer Science and Engineering. Committee: Prof. Leo J. Jia and Prof. K. H. Nonrigid Surface Modelling and Fast Recovery Zhu Jianke Supervisor: Prof. Michael R. Lyu Committee: Prof. Leo J. Jia and Prof. K. H. Wong Department of Computer Science and Engineering May 11, 2007 1 2

More information

SIMULTANEOUS IMAGE DE-NOISING AND REGISTRATION USING GRAPH CUTS: APPLICATION TO CORRUPTED MEDICAL IMAGES. Herve Lombaert, Farida Cheriet

SIMULTANEOUS IMAGE DE-NOISING AND REGISTRATION USING GRAPH CUTS: APPLICATION TO CORRUPTED MEDICAL IMAGES. Herve Lombaert, Farida Cheriet SIMULTANEOUS IMAGE DE-NOISING AND REGISTRATION USING GRAPH CUTS: APPLICATION TO CORRUPTED MEDICAL IMAGES Herve Lombaert, Farida Cheriet École Polytechnique de Montréal, Montréal Québec, Canada ABSTRACT

More information

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey

Extract Object Boundaries in Noisy Images using Level Set. Literature Survey Extract Object Boundaries in Noisy Images using Level Set by: Quming Zhou Literature Survey Submitted to Professor Brian Evans EE381K Multidimensional Digital Signal Processing March 15, 003 Abstract Finding

More information

Active Contours for Multi-region Image Segmentation with a Single Level Set Function

Active Contours for Multi-region Image Segmentation with a Single Level Set Function Active Contours for Multi-region Image Segmentation with a Single Level Set Function Anastasia Dubrovina, Guy Rosman, and Ron Kimmel Computer Science Department, Technion - IIT, Haifa, Israel {nastyad,rosman,ron}@cs.technion.ac.il

More information

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing

Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Image Segmentation Using Iterated Graph Cuts Based on Multi-scale Smoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200,

More information

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models

Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Automated Segmentation Using a Fast Implementation of the Chan-Vese Models Huan Xu, and Xiao-Feng Wang,,3 Intelligent Computation Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Science,

More information

Image Segmentation by Branch-and-Mincut

Image Segmentation by Branch-and-Mincut Image Segmentation by Branch-and-Mincut Victor Lempitsky, Andrew Blake, and Carsten Rother Microsoft Research Cambridge Abstract. Efficient global optimization techniques such as graph cut exist for energies

More information

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems

EECS 442 Computer vision. Stereo systems. Stereo vision Rectification Correspondence problem Active stereo vision systems EECS 442 Computer vision Stereo systems Stereo vision Rectification Correspondence problem Active stereo vision systems Reading: [HZ] Chapter: 11 [FP] Chapter: 11 Stereo vision P p p O 1 O 2 Goal: estimate

More information

Lecture 16: Object recognition: Part-based generative models

Lecture 16: Object recognition: Part-based generative models Lecture 16: Object recognition: Part-based generative models Professor Stanford Vision Lab 1 What we will learn today? Introduction Constellation model Weakly supervised training One-shot learning (Problem

More information

Shape Analysis. Erkut Erdem. BIL717, April 2012!

Shape Analysis. Erkut Erdem. BIL717, April 2012! Shape Analysis Erkut Erdem BIL717, April 2012! Introduction Shape is the primary source of visual information Objects can be immediately recognized and classified based on their shapes Other visual clues

More information

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges

Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Level Sets & Snakes Snakes, Active Contours, and Segmentation Introduction and Classical Active Contours Active Contours Without Edges Scale Space and PDE methods in image analysis and processing - Arjan

More information

Computer Vision II Lecture 4

Computer Vision II Lecture 4 Computer Vision II Lecture 4 Color based Tracking 29.04.2014 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Single-Object Tracking Background modeling

More information

From Photohulls to Photoflux Optimization

From Photohulls to Photoflux Optimization 1 From Photohulls to Photoflux Optimization Yuri Boykov Computer Science Department University of Western Ontario London, ON, Canada Victor Lempitsky Department of Mathematics Moscow State University Moscow,

More information

A Bottom Up Algebraic Approach to Motion Segmentation

A Bottom Up Algebraic Approach to Motion Segmentation A Bottom Up Algebraic Approach to Motion Segmentation Dheeraj Singaraju and RenéVidal Center for Imaging Science, Johns Hopkins University, 301 Clark Hall, 3400 N. Charles St., Baltimore, MD, 21218, USA

More information

Image segmentation with a statistical shape prior

Image segmentation with a statistical shape prior Image segmentation with a statistical shape prior Arturo Mendoza Quispe & Caroline Petitjean October 26, 2015 Shape prior based image segmentation Foulonneau 04 Sans a priori Avec a priori Etyngier 07

More information

Part-based models. Lecture 10

Part-based models. Lecture 10 Part-based models Lecture 10 Overview Representation Location Appearance Generative interpretation Learning Distance transforms Other approaches using parts Felzenszwalb, Girshick, McAllester, Ramanan

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 19: Graph Cuts source S sink T Readings Szeliski, Chapter 11.2 11.5 Stereo results with window search problems in areas of uniform texture Window-based matching

More information

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences

Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Probabilistic Tracking and Reconstruction of 3D Human Motion in Monocular Video Sequences Presentation of the thesis work of: Hedvig Sidenbladh, KTH Thesis opponent: Prof. Bill Freeman, MIT Thesis supervisors

More information

Various Methods for Medical Image Segmentation

Various Methods for Medical Image Segmentation Various Methods for Medical Image Segmentation From Level Set to Convex Relaxation Doyeob Yeo and Soomin Jeon Computational Mathematics and Imaging Lab. Department of Mathematical Sciences, KAIST Hansang

More information

CS 664 Segmentation. Daniel Huttenlocher

CS 664 Segmentation. Daniel Huttenlocher CS 664 Segmentation Daniel Huttenlocher Grouping Perceptual Organization Structural relationships between tokens Parallelism, symmetry, alignment Similarity of token properties Often strong psychophysical

More information

Dr. Ulas Bagci

Dr. Ulas Bagci Lecture 9: Deformable Models and Segmentation CAP-Computer Vision Lecture 9-Deformable Models and Segmentation Dr. Ulas Bagci bagci@ucf.edu Lecture 9: Deformable Models and Segmentation Motivation A limitation

More information

Computer Vision I - Filtering and Feature detection

Computer Vision I - Filtering and Feature detection Computer Vision I - Filtering and Feature detection Carsten Rother 30/10/2015 Computer Vision I: Basics of Image Processing Roadmap: Basics of Digital Image Processing Computer Vision I: Basics of Image

More information

Multi-Object Tracking Through Clutter Using Graph Cuts

Multi-Object Tracking Through Clutter Using Graph Cuts Multi-Object Tracking Through Clutter Using Graph Cuts James Malcolm Yogesh Rathi Allen Tannenbaum School of Electrical and Computer Engineering Georgia Institute of Technology, Atlanta, Georgia 30332-0250

More information

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley

Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction CVPR 2017 Tutorial Christian Häne UC Berkeley Dense Multi-View Reconstruction Goal: 3D Model from Images (Depth

More information

Prior-based Segmentation by Projective Registration and Level Sets

Prior-based Segmentation by Projective Registration and Level Sets Prior-based Segmentation by Projective Registration and Level Sets Tammy Riklin-Raviv Faculty of Engineering Tel-Aviv University, Israel tammy@eng.tau.ac.il Nahum Kiryati Faculty of Engineering Tel-Aviv

More information

Solving Vision Tasks with variational methods on the GPU

Solving Vision Tasks with variational methods on the GPU Solving Vision Tasks with variational methods on the GPU Horst Bischof Inst. f. Computer Graphics and Vision Graz University of Technology Joint work with Thomas Pock, Markus Unger, Arnold Irschara and

More information

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint

Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Active Geodesics: Region-based Active Contour Segmentation with a Global Edge-based Constraint Vikram Appia Anthony Yezzi Georgia Institute of Technology, Atlanta, GA, USA. Abstract We present an active

More information

Optical flow and tracking

Optical flow and tracking EECS 442 Computer vision Optical flow and tracking Intro Optical flow and feature tracking Lucas-Kanade algorithm Motion segmentation Segments of this lectures are courtesy of Profs S. Lazebnik S. Seitz,

More information

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering

CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu. Lectures 21 & 22 Segmentation and clustering CSE 473/573 Computer Vision and Image Processing (CVIP) Ifeoma Nwogu Lectures 21 & 22 Segmentation and clustering 1 Schedule Last class We started on segmentation Today Segmentation continued Readings

More information

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 74 3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 1 Tushar Jadhav, 2 Kulbir Singh, 3 Aditya Abhyankar 1 Research scholar, 2 Professor, 3 Dean 1 Department of Electronics & Telecommunication,Thapar

More information

Geometrical Modeling of the Heart

Geometrical Modeling of the Heart Geometrical Modeling of the Heart Olivier Rousseau University of Ottawa The Project Goal: Creation of a precise geometrical model of the heart Applications: Numerical calculations Dynamic of the blood

More information

TOOLS FOR ANALYZING SHAPES OF CURVES AND SURFACES. ANUJ SRIVASTAVA Department of Statistics Florida State University

TOOLS FOR ANALYZING SHAPES OF CURVES AND SURFACES. ANUJ SRIVASTAVA Department of Statistics Florida State University TOOLS FOR ANALYZING SHAPES OF CURVES AND SURFACES ANUJ SRIVASTAVA Department of Statistics Florida State University 1 MURI: INTGERATED FUSION AND SENSOR MANAGEMENT FOR ATE Innovative Front-End Processing

More information

Fast Approximate Energy Minimization via Graph Cuts

Fast Approximate Energy Minimization via Graph Cuts IEEE Transactions on PAMI, vol. 23, no. 11, pp. 1222-1239 p.1 Fast Approximate Energy Minimization via Graph Cuts Yuri Boykov, Olga Veksler and Ramin Zabih Abstract Many tasks in computer vision involve

More information

Multi-Label Moves for Multi-Label Energies

Multi-Label Moves for Multi-Label Energies Multi-Label Moves for Multi-Label Energies Olga Veksler University of Western Ontario some work is joint with Olivier Juan, Xiaoqing Liu, Yu Liu Outline Review multi-label optimization with graph cuts

More information

Dictionary Based Image Segmentation

Dictionary Based Image Segmentation Downloaded from orbit.dtu.dk on: Sep 14, 2018 Dictionary Based Image Segmentation Dahl, Anders Bjorholm; Dahl, Vedrana Andersen Published in: Image Analysis Link to article, DOI: 10.1007/978-3-319-19665-7_3

More information

A Probabilistic Level Set Formulation for Interactive Organ Segmentation

A Probabilistic Level Set Formulation for Interactive Organ Segmentation A Probabilistic Level Set Formulation for Interactive Organ Segmentation Daniel Cremers a, Oliver Fluck b, Mikael Rousson b and Shmuel Aharon b a University of Bonn, Computer Vision and Pattern Recognition

More information

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects

Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Dense 3D Modelling and Monocular Reconstruction of Deformable Objects Anastasios (Tassos) Roussos Lecturer in Computer Science, University of Exeter Research Associate, Imperial College London Overview

More information

Geodesic Active Contours with Combined Shape and Appearance Priors

Geodesic Active Contours with Combined Shape and Appearance Priors Geodesic Active Contours with Combined Shape and Appearance Priors Rami Ben-Ari 1 and Dror Aiger 1,2 1 Orbotech LTD, Yavneh, Israel 2 Ben Gurion University, Be er Sheva, Israel {rami-ba,dror-ai}@orbotech.com

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

A Region Merging Prior for Variational Level Set Image Segmentation Ismail Ben Ayed, Member, IEEE, and Amar Mitiche, Member, IEEE

A Region Merging Prior for Variational Level Set Image Segmentation Ismail Ben Ayed, Member, IEEE, and Amar Mitiche, Member, IEEE IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 12, DECEMBER 2008 2301 A Region Merging Prior for Variational Level Set Image Segmentation Ismail Ben Ayed, Member, IEEE, and Amar Mitiche, Member, IEEE

More information

Normalized cuts and image segmentation

Normalized cuts and image segmentation Normalized cuts and image segmentation Department of EE University of Washington Yeping Su Xiaodan Song Normalized Cuts and Image Segmentation, IEEE Trans. PAMI, August 2000 5/20/2003 1 Outline 1. Image

More information

Evaluation and comparison of interest points/regions

Evaluation and comparison of interest points/regions Introduction Evaluation and comparison of interest points/regions Quantitative evaluation of interest point/region detectors points / regions at the same relative location and area Repeatability rate :

More information

Variational Methods II

Variational Methods II Mathematical Foundations of Computer Graphics and Vision Variational Methods II Luca Ballan Institute of Visual Computing Last Lecture If we have a topological vector space with an inner product and functionals

More information

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision

Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Markov/Conditional Random Fields, Graph Cut, and applications in Computer Vision Fuxin Li Slides and materials from Le Song, Tucker Hermans, Pawan Kumar, Carsten Rother, Peter Orchard, and others Recap:

More information

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing

Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Image Segmentation Using Iterated Graph Cuts BasedonMulti-scaleSmoothing Tomoyuki Nagahashi 1, Hironobu Fujiyoshi 1, and Takeo Kanade 2 1 Dept. of Computer Science, Chubu University. Matsumoto 1200, Kasugai,

More information

Super Resolution Using Graph-cut

Super Resolution Using Graph-cut Super Resolution Using Graph-cut Uma Mudenagudi, Ram Singla, Prem Kalra, and Subhashis Banerjee Department of Computer Science and Engineering Indian Institute of Technology Delhi Hauz Khas, New Delhi,

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Autonomous Navigation for Flying Robots

Autonomous Navigation for Flying Robots Computer Vision Group Prof. Daniel Cremers Autonomous Navigation for Flying Robots Lecture 7.1: 2D Motion Estimation in Images Jürgen Sturm Technische Universität München 3D to 2D Perspective Projections

More information

Visual Motion Analysis and Tracking Part II

Visual Motion Analysis and Tracking Part II Visual Motion Analysis and Tracking Part II David J Fleet and Allan D Jepson CIAR NCAP Summer School July 12-16, 16, 2005 Outline Optical Flow and Tracking: Optical flow estimation (robust, iterative refinement,

More information

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book

Image Segmentation continued Graph Based Methods. Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Image Segmentation continued Graph Based Methods Some slides: courtesy of O. Capms, Penn State, J.Ponce and D. Fortsyth, Computer Vision Book Previously Binary segmentation Segmentation by thresholding

More information

Scale Space and Variational Methods in Computer Vision (SSVM), 2015, Oral Presentation.

Scale Space and Variational Methods in Computer Vision (SSVM), 2015, Oral Presentation. [C1] V. Golkov, A. Vasilev, F. Pasa, I. Lipp, W. Boubaker, E. Sgarlata, F. Pfeiffer, V. Tomassini, D. K. Jones and D. Cremers, q-space Novelty Detection in Short Diffusion MRI Scans of Multiple Sclerosis,

More information

Non-Rigid 2D-3D Pose Estimation and 2D Image Segmentation

Non-Rigid 2D-3D Pose Estimation and 2D Image Segmentation Non-Rigid 2D-3D Pose Estimation and 2D Image Segmentation Romeil Sandhu Samuel Dambreville Anthony Yezzi Allen Tannenbaum Georgia Institute of Technology School of Electrical and Computer Engineering Atlanta,

More information

Label Configuration Priors for Continuous Multi-Label Optimization. Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers

Label Configuration Priors for Continuous Multi-Label Optimization. Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers TUM TECHNISCHE UNIVERSITÄT MÜNCHEN INSTITUT FÜR INFORMATIK Label Configuration Priors for Continuous Multi-Label Optimization Mohamed Souiai, Evgeny Strekalovskiy, Claudia Nieuwenhuis, Daniel Cremers TUM-I1221

More information

Local Image Features

Local Image Features Local Image Features Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial This section: correspondence and alignment

More information

Surface Extraction from Binary Volumes with Higher-Order Smoothness

Surface Extraction from Binary Volumes with Higher-Order Smoothness 1 Surface Extraction from Binary Volumes with Higher-Order Smoothness Victor Lempitsky Abstract A number of 3D shape reconstruction algorithms, in particular 3D image segmentation methods, produce their

More information

Digital Image Restoration

Digital Image Restoration Digital Image Restoration Blur as a chance and not a nuisance Filip Šroubek sroubekf@utia.cas.cz www.utia.cas.cz Institute of Information Theory and Automation Academy of Sciences of the Czech Republic

More information

Multiregion level set tracking with transformation invariant shape priors

Multiregion level set tracking with transformation invariant shape priors Multiregion level set tracking with transformation invariant shape priors Michael Fussenegger 1, Rachid Deriche 2, and Axel Pinz 1 1 Institute of Electrical Measurement and Measurement Signal Processing

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

A Continuous Max-Flow Approach to Potts Model

A Continuous Max-Flow Approach to Potts Model A Continuous Max-Flow Approach to Potts Model Jing Yuan 1, Egil Bae 2, Xue-Cheng Tai 2,3, and Yuri Boykov 1 1 Computer Science Department, University of Western Ontario, London Ontario, Canada N6A 5B7

More information

Snakes, level sets and graphcuts. (Deformable models)

Snakes, level sets and graphcuts. (Deformable models) INSTITUTE OF INFORMATION AND COMMUNICATION TECHNOLOGIES BULGARIAN ACADEMY OF SCIENCE Snakes, level sets and graphcuts (Deformable models) Centro de Visión por Computador, Departament de Matemàtica Aplicada

More information

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation

Object detection using Region Proposals (RCNN) Ernest Cheung COMP Presentation Object detection using Region Proposals (RCNN) Ernest Cheung COMP790-125 Presentation 1 2 Problem to solve Object detection Input: Image Output: Bounding box of the object 3 Object detection using CNN

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

Motion Estimation (II) Ce Liu Microsoft Research New England

Motion Estimation (II) Ce Liu Microsoft Research New England Motion Estimation (II) Ce Liu celiu@microsoft.com Microsoft Research New England Last time Motion perception Motion representation Parametric motion: Lucas-Kanade T I x du dv = I x I T x I y I x T I y

More information

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA

TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA TEXTURE OVERLAY ONTO NON-RIGID SURFACE USING COMMODITY DEPTH CAMERA Tomoki Hayashi, Francois de Sorbier and Hideo Saito Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku,

More information