Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley

Size: px
Start display at page:

Download "Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction. CVPR 2017 Tutorial Christian Häne UC Berkeley"

Transcription

1 Geometric and Semantic 3D Reconstruction: Part 4A: Volumetric Semantic 3D Reconstruction CVPR 2017 Tutorial Christian Häne UC Berkeley

2 Dense Multi-View Reconstruction Goal: 3D Model from Images (Depth Maps)

3 A Standard Pipeline Input Images Structure-from-Motion Sparse Reconstruction Dense Matching Depth Maps

4 A Standard Pipeline Depth Maps Depth Map Fusion Dense 3D Model

5 Challenges Noise in Depth Maps Inconsistencies Between Views Incomplete Data Mistakes in Depth Maps

6 Domain / Representation Volume Outside / Inside Mesh Triangles Representing the Surface Surface Element (Surfel). Dense Set of Small Disks

7 Truncated Signed Distance Field (TSDF) [Curless & Levoy, 1996, Levoy et al. 2000] Weighted Average over Multiple Viewpoints

8 Marching Cubes [Lorensen & Cline 1987] Conversion from Volume to Mesh Extract Mesh as Iso-Surface (Zero-Crossing) [Levoy et al. 2000]

9 Real-Time on GPU [Newcombe et al. 2011] Input: Depth Cameras (Kinect)

10 Regularization Noise and Outliers Energy minimization Data Term Smoothness Term

11 Discrete Domain / Graph Cut [Lempitsky & Boykov, 2007] Label Voxels as Inside/Outside (1 or 0) Energy minimization via Graph Cut Cut Edges -> Smoothness Cost [Lempitsky & Boykov, 2007] Metrication Artifacts

12 Continuous Domain / Variational Segment Continuous Domain Inside/Outside Variational Optimization Total Variation as Smoothness Penalizes Surface Area u(x) = 0 u(x) = 1 [Zach, 2007]

13 Direct Reconstruction Input Images Structure-from-Motion Sparse Reconstruction Photoconsistency, Energy Minimization Dense 3D Model

14 Per Voxel Photoconsistency No explicit Computation of Depth Maps Photo Consistency Evaluated per Voxel Silhouettes / Visual Hull (Object only) [Kolev et al. 2009]

15 Adding Surface Normals [Kolev et al. 2009] Surface Normals for High Frequency Details Estimated Normal Field Guides Reconstruction

16 Formulation over Rays [Liu & Cooper, 2010, 2014] First Transition to Occupied Space Along Ray Color Consistent over all Rays Discrete Graph Based Formulation Alternating Minimization, Belief Propagation

17 Challenging Cases Some Examples Using Depth Map Fusion

18 Adding Semantics Input Images Semantic Classifier Class Likelihoods Sparse Reconstruction Dense Matching Depth Maps

19 Dense Semantic 3D Reconstruction Class Likelihoods Depth Maps Joint Fusion, Convex Optimization Dense Semantic 3D Model

20 Adding Semantics to Geometry [Sengupta, Greveson, Shahrokni, Torr, 2013] Geometry not Improved

21 Dense Semantic 3D Reconstruction [Häne et al. 2013, 2016] Dense 3D Model Dense Semantic 3D Model Dense semantic 3D model takes class-specific surface orientation into account! likely unlikely For example: direction of ground: horizontal more likely than vertical

22 Multi-Label Formulation Discrete Domain Continuous Domain Smoothness: Transitions Along Edges Linear Program Belief Propagation Graph Cuts Smoothness: (anisotropic) boundary length Convex Program Discretized (for Iterative Optimization)

23 Anisotropy / Wulff Shape Wulff Shape [Wulff 1901, Esedoglu and Osher 2004] Convex shape defined by

24 Semantic Reconstruction Formulation [Häne et al. 2013, 2016] Data Term: Described as pervoxel unary potentials Regularization Term: Class-specific, direction dependent, surface area penalization Learned from training data

25 Data Term Sum of Weight in Each Voxel Sky -> Free Space Weight Along Whole Ray

26 Entering Unary Weights Weights for all voxels and all views entered

27 Entering Unary Weights Weights for all voxels and all views entered Model Recovered based on weights

28 Smoothness Term Isotropic + Anisotropic (Wulff Shape) Maximum Likelihood Estimation Grid Search Training Data Two Wulff Shape Parameterizations

29 Energy Evolution [Häne et al. 2013, 2016] First Order Primal-Dual Algorithm [Chambolle & Pock, 2010]

30 Weakly Observed Structures [Häne et al. 2013, 2016] Buildings Standing on the Ground

31 Weakly Observed Structures [Häne et al. 2013, 2016] Building and Vegetation Separated

32 Unobserved Surfaces Labels can be Separated

33 Unobserved Surfaces Labels can be Separated

34 Extension To Octrees [Blaha, Vogel, et al. 2016] Exploiting Sparsity of Surface

35 Using More Classes [Cherabier, Häne, Oswald, Pollefeys, 2016] Exploiting Sparsity of Labels / Transitions Only Relevant Labels Active In Block

36 Using Only Sparse Points [Kundu et al. 2014] Discrete Formulation Message Passing

37 Traditional, Unary Potential Weights for all voxels and all views entered

38 Traditional, Unary Potential Weights for all voxels and all views entered Model Recovered based on weights

39 Issues with Unary Potentials [Savinov, Ladicky, Häne, Pollefeys, 2015, 2016] Data given as Information along rays Approximation with unary weights -> artifacts Artifact Closed Archway Inflated Roofline

40 Ray Potential Costs along rays for placing surface First transition to occupied semantic class

41 Ray Potentials Costs along rays for placing surface Optimization contains per-ray variables

42 Ray Potentials [Savinov et al., 2015, 2016] Data given as Information along rays Keeping information along rays in formulation Correct Archway Correct Roofline

43 Formulation [Savinov, Häne, Ladicky, Pollefeys, 2016] Local View: Describes Visible Surface in Camera Global View: Describes Voxel Labeling Data Term: Described as ray potential Regularization Term: Class-specific, direction dependent, surface area penalization Constraints: Make Local and Global View Consistent

44 Formulation [Savinov, Häne, Ladicky, Pollefeys, 2016] Convex Relaxation Weak Solution: One Non-Convex Constraint Change of Visibility Along Ray <-> Cost Assumed Majorize-Minimize Optimization

45 Results [Savinov, Häne, Ladicky, Pollefeys, 2016] Thin Structures

46 Results [Savinov, Häne, Ladicky, Pollefeys, 2016] Semantic 3D Reconstruction Image Unary Potential Ray Potential

47 Object Shape Priors Real-World Objects Reflective Transparent Specular Exploit Object-Class Specific Similarity Example Input Image Reconstruction without Prior

48 Shape Model Bao, Chandraker, Lin, Savarese, 2013

49 Results [Bao, Chandraker, Lin, Savarese, 2013] Image PMVS PSR with Prior Ground Truth Only Object Reconstructed

50 Normal-Based 3D Object Shape Priors [Häne, Savinov, Pollefeys, 2014] Reconstruction Volume aligned with object Surface normals locally similar between instances

51 Training the Prior [Häne, Savinov, Pollefeys, 2014] Per-voxel surface normal direction distribution Regularization with discretized Wulff shapes

52 Reconstruction Formulation [Häne, Savinov, Pollefeys, 2014] Reconstruction volume aligned Data Term: Described as per-voxel unary potentials Extract per-voxel Wulff shapes Training Data: Mesh models

53 Results Cars [Häne, Savinov, Pollefeys, 2014]

54 Results Cars [Häne, Savinov, Pollefeys, 2014]

55 Alignment Transform [Maninchedda, Häne, et al. 2016]

56 Semantic 3D Reconstruction of Heads [Maninchedda, Häne et al. 2016]

57 Conclusion Semantics Helps to Improve Geometry Consistent Semantic Segmentation Richer Representation Multi-Label Shape Priors Future Directions: Real-Time Applications End to End Learning

Semantic 3D Reconstruction of Heads Supplementary Material

Semantic 3D Reconstruction of Heads Supplementary Material Semantic 3D Reconstruction of Heads Supplementary Material Fabio Maninchedda1, Christian Ha ne2,?, Bastien Jacquet3,?, Amae l Delaunoy?, Marc Pollefeys1,4 1 ETH Zurich 2 UC Berkeley 3 Kitware SAS 4 Microsoft

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Marc Pollefeys Joined work with Nikolay Savinov, Christian Haene, Lubor Ladicky 2 Comparison to Volumetric Fusion Higher-order ray

More information

An Overview of Recent Progress in Volumetric Semantic 3D Reconstruction

An Overview of Recent Progress in Volumetric Semantic 3D Reconstruction An Overview of Recent Progress in Volumetric Semantic 3D Reconstruction (Invited Paper) Christian Häne Department of Electrical Engineering and Computer Sciences University of California, Berkeley, USA

More information

Towards Integrated 3D Reconstruction and Semantic Interpretation of Urban Scenes

Towards Integrated 3D Reconstruction and Semantic Interpretation of Urban Scenes Towards Integrated 3D Reconstruction and Semantic Interpretation of Urban Scenes MAROŠ BLAHÁ 1, CHRISTOPH VOGEL 2, AUDREY RICHARD 1, JAN D. WEGNER 1, THOMAS POCK 2 & KONRAD SCHINDLER 1 We describe recent

More information

Project Updates Short lecture Volumetric Modeling +2 papers

Project Updates Short lecture Volumetric Modeling +2 papers Volumetric Modeling Schedule (tentative) Feb 20 Feb 27 Mar 5 Introduction Lecture: Geometry, Camera Model, Calibration Lecture: Features, Tracking/Matching Mar 12 Mar 19 Mar 26 Apr 2 Apr 9 Apr 16 Apr 23

More information

Deep Models for 3D Reconstruction

Deep Models for 3D Reconstruction Deep Models for 3D Reconstruction Andreas Geiger Autonomous Vision Group, MPI for Intelligent Systems, Tübingen Computer Vision and Geometry Group, ETH Zürich October 12, 2017 Max Planck Institute for

More information

Geometric Reconstruction Dense reconstruction of scene geometry

Geometric Reconstruction Dense reconstruction of scene geometry Lecture 5. Dense Reconstruction and Tracking with Real-Time Applications Part 2: Geometric Reconstruction Dr Richard Newcombe and Dr Steven Lovegrove Slide content developed from: [Newcombe, Dense Visual

More information

arxiv: v2 [cs.cv] 22 May 2016

arxiv: v2 [cs.cv] 22 May 2016 Semantic 3D Reconstruction with Continuous Regularization and Ray Potentials Using a Visibility Consistency Constraint arxiv:604.02885v2 [cs.cv] 22 May 206 Nikolay Savinov, Christian Häne, L ubor Ladický

More information

Image Based Reconstruction II

Image Based Reconstruction II Image Based Reconstruction II Qixing Huang Feb. 2 th 2017 Slide Credit: Yasutaka Furukawa Image-Based Geometry Reconstruction Pipeline Last Lecture: Multi-View SFM Multi-View SFM This Lecture: Multi-View

More information

Volumetric Scene Reconstruction from Multiple Views

Volumetric Scene Reconstruction from Multiple Views Volumetric Scene Reconstruction from Multiple Views Chuck Dyer University of Wisconsin dyer@cs cs.wisc.edu www.cs cs.wisc.edu/~dyer Image-Based Scene Reconstruction Goal Automatic construction of photo-realistic

More information

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011

Multi-view Stereo. Ivo Boyadzhiev CS7670: September 13, 2011 Multi-view Stereo Ivo Boyadzhiev CS7670: September 13, 2011 What is stereo vision? Generic problem formulation: given several images of the same object or scene, compute a representation of its 3D shape

More information

Outline. 1 Why we re interested in Real-Time tracking and mapping. 3 Kinect Fusion System Overview. 4 Real-time Surface Mapping

Outline. 1 Why we re interested in Real-Time tracking and mapping. 3 Kinect Fusion System Overview. 4 Real-time Surface Mapping Outline CSE 576 KinectFusion: Real-Time Dense Surface Mapping and Tracking PhD. work from Imperial College, London Microsoft Research, Cambridge May 6, 2013 1 Why we re interested in Real-Time tracking

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Cedric Cagniart Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 Problem Statement Given several calibrated views of an object... can we automatically

More information

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction

Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Discrete Optimization of Ray Potentials for Semantic 3D Reconstruction Nikolay Savinov 1, L ubor Ladický 1, Christian Häne and Marc Pollefeys ETH Zürich, Switzerland nikolay.savinov,lubor.ladicky,christian.haene,marc.pollefeys}@inf.ethz.ch

More information

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting

Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting Intrinsic3D: High-Quality 3D Reconstruction by Joint Appearance and Geometry Optimization with Spatially-Varying Lighting R. Maier 1,2, K. Kim 1, D. Cremers 2, J. Kautz 1, M. Nießner 2,3 Fusion Ours 1

More information

Multi-view stereo. Many slides adapted from S. Seitz

Multi-view stereo. Many slides adapted from S. Seitz Multi-view stereo Many slides adapted from S. Seitz Beyond two-view stereo The third eye can be used for verification Multiple-baseline stereo Pick a reference image, and slide the corresponding window

More information

3D Photography: Stereo Matching

3D Photography: Stereo Matching 3D Photography: Stereo Matching Kevin Köser, Marc Pollefeys Spring 2012 http://cvg.ethz.ch/teaching/2012spring/3dphoto/ Stereo & Multi-View Stereo Tsukuba dataset http://cat.middlebury.edu/stereo/ Stereo

More information

Dense 3D Reconstruction from Autonomous Quadrocopters

Dense 3D Reconstruction from Autonomous Quadrocopters Dense 3D Reconstruction from Autonomous Quadrocopters Computer Science & Mathematics TU Munich Martin Oswald, Jakob Engel, Christian Kerl, Frank Steinbrücker, Jan Stühmer & Jürgen Sturm Autonomous Quadrocopters

More information

Shape from Silhouettes I CV book Szelisky

Shape from Silhouettes I CV book Szelisky Shape from Silhouettes I CV book Szelisky 11.6.2 Guido Gerig CS 6320, Spring 2012 (slides modified from Marc Pollefeys UNC Chapel Hill, some of the figures and slides are adapted from M. Pollefeys, J.S.

More information

Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo

Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo Using Multiple Hypotheses to Improve Depth-Maps for Multi-View Stereo Neill D.F. Campbell 1, George Vogiatzis 2, Carlos Hernández 2, and Roberto Cipolla 1 1 Department of Engineering, University of Cambridge,

More information

Semantic 3D Reconstruction with Continuous Regularization and Ray Potentials Using a Visibility Consistency Constraint

Semantic 3D Reconstruction with Continuous Regularization and Ray Potentials Using a Visibility Consistency Constraint Semantic 3D Reconstruction with Continuous Regularization and Ray Potentials Using a Visibility Consistency Constraint Nikolay Savinov, Christian Häne, L ubor Ladický and Marc Pollefeys ETH Zürich, Switzerland

More information

Volumetric stereo with silhouette and feature constraints

Volumetric stereo with silhouette and feature constraints Volumetric stereo with silhouette and feature constraints Jonathan Starck, Gregor Miller and Adrian Hilton Centre for Vision, Speech and Signal Processing, University of Surrey, Guildford, GU2 7XH, UK.

More information

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments

A Patch Prior for Dense 3D Reconstruction in Man-Made Environments A Patch Prior for Dense 3D Reconstruction in Man-Made Environments Christian Häne 1, Christopher Zach 2, Bernhard Zeisl 1, Marc Pollefeys 1 1 ETH Zürich 2 MSR Cambridge October 14, 2012 A Patch Prior for

More information

Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency

Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency 1 Multi-view Stereo via Volumetric Graph-cuts and Occlusion Robust Photo-Consistency George Vogiatzis, Carlos Hernández Esteban, Philip H. S. Torr, Roberto Cipolla 2 Abstract This paper presents a volumetric

More information

Multi-View Stereo for Static and Dynamic Scenes

Multi-View Stereo for Static and Dynamic Scenes Multi-View Stereo for Static and Dynamic Scenes Wolfgang Burgard Jan 6, 2010 Main references Yasutaka Furukawa and Jean Ponce, Accurate, Dense and Robust Multi-View Stereopsis, 2007 C.L. Zitnick, S.B.

More information

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017

Multi-View Matching & Mesh Generation. Qixing Huang Feb. 13 th 2017 Multi-View Matching & Mesh Generation Qixing Huang Feb. 13 th 2017 Geometry Reconstruction Pipeline RANSAC --- facts Sampling Feature point detection [Gelfand et al. 05, Huang et al. 06] Correspondences

More information

Multiple View Geometry

Multiple View Geometry Multiple View Geometry Martin Quinn with a lot of slides stolen from Steve Seitz and Jianbo Shi 15-463: Computational Photography Alexei Efros, CMU, Fall 2007 Our Goal The Plenoptic Function P(θ,φ,λ,t,V

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2015 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Today: dense 3D reconstruction The matching problem

More information

Computing 3D Geometry Directly From Range Images

Computing 3D Geometry Directly From Range Images Computing 3D Geometry Directly From Range Images Sarah F. Frisken and Ronald N. Perry Mitsubishi Electric Research Laboratories Geometry from Range Data A Classic Approach Subject Range images Range surfaces

More information

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping

3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 74 3D Surface Reconstruction from 2D Multiview Images using Voxel Mapping 1 Tushar Jadhav, 2 Kulbir Singh, 3 Aditya Abhyankar 1 Research scholar, 2 Professor, 3 Dean 1 Department of Electronics & Telecommunication,Thapar

More information

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc.

3D Reconstruction with Tango. Ivan Dryanovski, Google Inc. 3D Reconstruction with Tango Ivan Dryanovski, Google Inc. Contents Problem statement and motivation The Tango SDK 3D reconstruction - data structures & algorithms Applications Developer tools Problem formulation

More information

Hierarchical Surface Prediction for 3D Object Reconstruction

Hierarchical Surface Prediction for 3D Object Reconstruction Hierarchical Surface Prediction for 3D Object Reconstruction Christian Häne, Shubham Tulsiani, Jitendra Malik University of California, Berkeley {chaene, shubhtuls, malik}@eecs.berkeley.edu Abstract Recently,

More information

Multi-View 3D Reconstruction of Highly-Specular Objects

Multi-View 3D Reconstruction of Highly-Specular Objects Multi-View 3D Reconstruction of Highly-Specular Objects Master Thesis Author: Aljoša Ošep Mentor: Michael Weinmann Motivation Goal: faithful reconstruction of full 3D shape of an object Current techniques:

More information

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava

3D Computer Vision. Dense 3D Reconstruction II. Prof. Didier Stricker. Christiano Gava 3D Computer Vision Dense 3D Reconstruction II Prof. Didier Stricker Christiano Gava Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de

More information

Shape from Silhouettes I

Shape from Silhouettes I Shape from Silhouettes I Guido Gerig CS 6320, Spring 2013 Credits: Marc Pollefeys, UNC Chapel Hill, some of the figures and slides are also adapted from J.S. Franco, J. Matusik s presentations, and referenced

More information

Multi-View 3D-Reconstruction

Multi-View 3D-Reconstruction Multi-View 3D-Reconstruction Slobodan Ilic Computer Aided Medical Procedures (CAMP) Technische Universität München, Germany 1 3D Models Digital copy of real object Allows us to - Inspect details of object

More information

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from?

Binocular stereo. Given a calibrated binocular stereo pair, fuse it to produce a depth image. Where does the depth information come from? Binocular Stereo Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the depth information come from? Binocular stereo Given a calibrated binocular stereo

More information

Dense 3D Reconstruction. Christiano Gava

Dense 3D Reconstruction. Christiano Gava Dense 3D Reconstruction Christiano Gava christiano.gava@dfki.de Outline Previous lecture: structure and motion II Structure and motion loop Triangulation Wide baseline matching (SIFT) Today: dense 3D reconstruction

More information

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger

Outline. Level Set Methods. For Inverse Obstacle Problems 4. Introduction. Introduction. Martin Burger For Inverse Obstacle Problems Martin Burger Outline Introduction Optimal Geometries Inverse Obstacle Problems & Shape Optimization Sensitivity Analysis based on Gradient Flows Numerical Methods University

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 12 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

3D Imaging from Video and Planar Radiography

3D Imaging from Video and Planar Radiography 3D Imaging from Video and Planar Radiography Julien Pansiot and Edmond Boyer Morpheo, Inria Grenoble Rhône-Alpes, France International Conference on Medical Image Computing and Computer Assisted Intervention

More information

Automatic Dense Semantic Mapping From Visual Street-level Imagery

Automatic Dense Semantic Mapping From Visual Street-level Imagery Automatic Dense Semantic Mapping From Visual Street-level Imagery Sunando Sengupta [1], Paul Sturgess [1], Lubor Ladicky [2], Phillip H.S. Torr [1] [1] Oxford Brookes University [2] Visual Geometry Group,

More information

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL

Urban Scene Segmentation, Recognition and Remodeling. Part III. Jinglu Wang 11/24/2016 ACCV 2016 TUTORIAL Part III Jinglu Wang Urban Scene Segmentation, Recognition and Remodeling 102 Outline Introduction Related work Approaches Conclusion and future work o o - - ) 11/7/16 103 Introduction Motivation Motivation

More information

Solving Vision Tasks with variational methods on the GPU

Solving Vision Tasks with variational methods on the GPU Solving Vision Tasks with variational methods on the GPU Horst Bischof Inst. f. Computer Graphics and Vision Graz University of Technology Joint work with Thomas Pock, Markus Unger, Arnold Irschara and

More information

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep

CS395T paper review. Indoor Segmentation and Support Inference from RGBD Images. Chao Jia Sep CS395T paper review Indoor Segmentation and Support Inference from RGBD Images Chao Jia Sep 28 2012 Introduction What do we want -- Indoor scene parsing Segmentation and labeling Support relationships

More information

Surface Extraction from Binary Volumes with Higher-Order Smoothness

Surface Extraction from Binary Volumes with Higher-Order Smoothness 1 Surface Extraction from Binary Volumes with Higher-Order Smoothness Victor Lempitsky Abstract A number of 3D shape reconstruction algorithms, in particular 3D image segmentation methods, produce their

More information

An Efficient Octree Design for Local Variational Range Image Fusion

An Efficient Octree Design for Local Variational Range Image Fusion An Efficient Octree Design for Local Variational Range Image Fusion Nico Marniok, Ole Johannsen, and Bastian Goldluecke University of Konstanz, Konstanz, Germany Abstract. We present a reconstruction pipeline

More information

Direction Matters: Depth Estimation with a Surface Normal Classifier

Direction Matters: Depth Estimation with a Surface Normal Classifier Direction Matters: Depth Estimation with a Surface Normal Classifier Christian Häne, L ubor Ladický, Marc Pollefeys Department of Computer Science ETH Zürich, Switzerland {christian.haene, lubor.ladicky,

More information

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision

Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision Fundamentals of Stereo Vision Michael Bleyer LVA Stereo Vision What Happened Last Time? Human 3D perception (3D cinema) Computational stereo Intuitive explanation of what is meant by disparity Stereo matching

More information

arxiv: v1 [cs.cv] 26 Jun 2017

arxiv: v1 [cs.cv] 26 Jun 2017 Semantically Informed Multiview Surface Refinement Maroš Bláha Mathias Rothermel Martin R. Oswald Torsten Sattler Audrey Richard Jan D. Wegner Marc Pollefeys Konrad Schindler ETH Zurich arxiv:1706.08336v1

More information

Semantically Informed Multiview Surface Refinement

Semantically Informed Multiview Surface Refinement Semantically Informed Multiview Surface Refinement Maroš Bláha 1 Mathias Rothermel 1 Martin R. Oswald 2 Torsten Sattler 2 Audrey Richard 1 Jan D. Wegner 1 Marc Pollefeys 2,3 Konrad Schindler 1 1 Institute

More information

arxiv: v2 [cs.cv] 6 Nov 2017

arxiv: v2 [cs.cv] 6 Nov 2017 Hierarchical Surface Prediction for 3D Object Reconstruction Christian Häne, Shubham Tulsiani, Jitendra Malik University of California, Berkeley {chaene, shubhtuls, malik}@eecs.berkeley.edu arxiv:1704.00710v2

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Geometric Registration for Deformable Shapes 1.1 Introduction

Geometric Registration for Deformable Shapes 1.1 Introduction Geometric Registration for Deformable Shapes 1.1 Introduction Overview Data Sources and Applications Problem Statement Overview Presenters Will Chang University of California at San Diego, USA Hao Li ETH

More information

Chaplin, Modern Times, 1936

Chaplin, Modern Times, 1936 Chaplin, Modern Times, 1936 [A Bucket of Water and a Glass Matte: Special Effects in Modern Times; bonus feature on The Criterion Collection set] Multi-view geometry problems Structure: Given projections

More information

Stereo. Many slides adapted from Steve Seitz

Stereo. Many slides adapted from Steve Seitz Stereo Many slides adapted from Steve Seitz Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1 image 2 Dense depth map Binocular stereo Given a calibrated

More information

Surface Reconstruction. Gianpaolo Palma

Surface Reconstruction. Gianpaolo Palma Surface Reconstruction Gianpaolo Palma Surface reconstruction Input Point cloud With or without normals Examples: multi-view stereo, union of range scan vertices Range scans Each scan is a triangular mesh

More information

Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn

Continuous and Discrete Optimization Methods in Computer Vision. Daniel Cremers Department of Computer Science University of Bonn Continuous and Discrete Optimization Methods in Computer Vision Daniel Cremers Department of Computer Science University of Bonn Oxford, August 16 2007 Segmentation by Energy Minimization Given an image,

More information

Introduction to Mobile Robotics Techniques for 3D Mapping

Introduction to Mobile Robotics Techniques for 3D Mapping Introduction to Mobile Robotics Techniques for 3D Mapping Wolfram Burgard, Michael Ruhnke, Bastian Steder 1 Why 3D Representations Robots live in the 3D world. 2D maps have been applied successfully for

More information

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching

CS 4495 Computer Vision A. Bobick. Motion and Optic Flow. Stereo Matching Stereo Matching Fundamental matrix Let p be a point in left image, p in right image l l Epipolar relation p maps to epipolar line l p maps to epipolar line l p p Epipolar mapping described by a 3x3 matrix

More information

Signed Distance Function Representation, Tracking, and Mapping. Tanner Schmidt

Signed Distance Function Representation, Tracking, and Mapping. Tanner Schmidt Signed Distance Function Representation, Tracking, and Mapping Tanner Schmidt Overview - Explicit and implicit surface representations SDF fusion SDF tracking Related research - KinectFusion Patch Volumes

More information

3D Scene Understanding by Voxel-CRF

3D Scene Understanding by Voxel-CRF 3D Scene Understanding by Voxel-CRF Byung-soo Kim University of Michigan bsookim@umich.edu Pushmeet Kohli Microsoft Research Cambridge pkohli@microsoft.com Silvio Savarese Stanford University ssilvio@stanford.edu

More information

From Point Clouds to Mesh using Regression

From Point Clouds to Mesh using Regression From Point Clouds to Mesh using Regression L ubor Ladický ETH Zürich lubor.ladicky@inf.ethz.ch Fabio Maninchedda ETH Zürich fabiom@inf.ethz.ch Olivier Saurer ETH Zürich saurero@inf.ethz.ch Marc Pollefeys

More information

Monocular Tracking and Reconstruction in Non-Rigid Environments

Monocular Tracking and Reconstruction in Non-Rigid Environments Monocular Tracking and Reconstruction in Non-Rigid Environments Kick-Off Presentation, M.Sc. Thesis Supervisors: Federico Tombari, Ph.D; Benjamin Busam, M.Sc. Patrick Ruhkamp 13.01.2017 Introduction Motivation:

More information

Stereo Depth Map Fusion for Robot Navigation

Stereo Depth Map Fusion for Robot Navigation Stereo Depth Map Fusion for Robot Navigation Christian Häne 1, Christopher Zach 1, Jongwoo Lim 2, Ananth Ranganathan 2 and Marc Pollefeys 1 Department of Computer Science 1 ETH Zürich, Switzerland Honda

More information

Probabilistic Labeling Cost for High-Accuracy Multi-View Reconstruction

Probabilistic Labeling Cost for High-Accuracy Multi-View Reconstruction Probabilistic Labeling Cost for High-Accuracy Multi-View Reconstruction Ilya Kostrikov, Esther Horbert, Bastian Leibe Computer Vision Group RWTH Aachen University ilya.kostrikov@rwth-aachen.de {horbert,

More information

Mesh from Depth Images Using GR 2 T

Mesh from Depth Images Using GR 2 T Mesh from Depth Images Using GR 2 T Mairead Grogan & Rozenn Dahyot School of Computer Science and Statistics Trinity College Dublin Dublin, Ireland mgrogan@tcd.ie, Rozenn.Dahyot@tcd.ie www.scss.tcd.ie/

More information

Processing 3D Surface Data

Processing 3D Surface Data Processing 3D Surface Data Computer Animation and Visualisation Lecture 17 Institute for Perception, Action & Behaviour School of Informatics 3D Surfaces 1 3D surface data... where from? Iso-surfacing

More information

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds

Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds www.crs4.it/vic/ vcg.isti.cnr.it/ Fast and robust techniques for 3D/2D registration and photo blending on massive point clouds R. Pintus, E. Gobbetti, M.Agus, R. Combet CRS4 Visual Computing M. Callieri

More information

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5)

Project 2 due today Project 3 out today. Readings Szeliski, Chapter 10 (through 10.5) Announcements Stereo Project 2 due today Project 3 out today Single image stereogram, by Niklas Een Readings Szeliski, Chapter 10 (through 10.5) Public Library, Stereoscopic Looking Room, Chicago, by Phillips,

More information

SINCE the introduction of low-cost RGB video plus depth

SINCE the introduction of low-cost RGB video plus depth IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. XXX, NO. XXX, XXX XXX 1 Hybrid modelling of non-rigid scenes from RGBD cameras Charles Malleson Member, IEEE, Jean-Yves Guillemaut Member,

More information

Mesh Processing Pipeline

Mesh Processing Pipeline Mesh Smoothing 1 Mesh Processing Pipeline... Scan Reconstruct Clean Remesh 2 Mesh Quality Visual inspection of sensitive attributes Specular shading Flat Shading Gouraud Shading Phong Shading 3 Mesh Quality

More information

Automatic Photo Popup

Automatic Photo Popup Automatic Photo Popup Derek Hoiem Alexei A. Efros Martial Hebert Carnegie Mellon University What Is Automatic Photo Popup Introduction Creating 3D models from images is a complex process Time-consuming

More information

KinectFusion: Real-Time Dense Surface Mapping and Tracking

KinectFusion: Real-Time Dense Surface Mapping and Tracking KinectFusion: Real-Time Dense Surface Mapping and Tracking Gabriele Bleser Thanks to Richard Newcombe for providing the ISMAR slides Overview General: scientific papers (structure, category) KinectFusion:

More information

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem Jan Lellmann, Frank Lenzen, Christoph Schnörr Image and Pattern Analysis Group Universität Heidelberg EMMCVPR 2011 St. Petersburg,

More information

Shape from Silhouettes

Shape from Silhouettes Shape from Silhouettes Schedule (tentative) 2 # date topic 1 Sep.22 Introduction and geometry 2 Sep.29 Invariant features 3 Oct.6 Camera models and calibration 4 Oct.13 Multiple-view geometry 5 Oct.20

More information

Accurate 3D Face and Body Modeling from a Single Fixed Kinect

Accurate 3D Face and Body Modeling from a Single Fixed Kinect Accurate 3D Face and Body Modeling from a Single Fixed Kinect Ruizhe Wang*, Matthias Hernandez*, Jongmoo Choi, Gérard Medioni Computer Vision Lab, IRIS University of Southern California Abstract In this

More information

Surface Normal Integration for Convex Space-time Multi-view Reconstruction

Surface Normal Integration for Convex Space-time Multi-view Reconstruction OSWALD, CREMERS: SURFACE NORMAL INTEGRATION FOR 4D RECONSTRUCTION 1 Surface Normal Integration for Convex Space-time Multi-view Reconstruction Martin R. Oswald martin.oswald@in.tum.de Daniel Cremers cremers@tum.de

More information

Hybrid Rendering for Collaborative, Immersive Virtual Environments

Hybrid Rendering for Collaborative, Immersive Virtual Environments Hybrid Rendering for Collaborative, Immersive Virtual Environments Stephan Würmlin wuermlin@inf.ethz.ch Outline! Rendering techniques GBR, IBR and HR! From images to models! Novel view generation! Putting

More information

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences

Modeling, Combining, and Rendering Dynamic Real-World Events From Image Sequences Modeling, Combining, and Rendering Dynamic Real-World Events From Image s Sundar Vedula, Peter Rander, Hideo Saito, and Takeo Kanade The Robotics Institute Carnegie Mellon University Abstract Virtualized

More information

IMAGE-BASED RENDERING

IMAGE-BASED RENDERING IMAGE-BASED RENDERING 1. What is Image-Based Rendering? - The synthesis of new views of a scene from pre-recorded pictures.!"$#% "'&( )*+,-/.). #0 1 ' 2"&43+5+, 2. Why? (1) We really enjoy visual magic!

More information

Segmentation. Bottom up Segmentation Semantic Segmentation

Segmentation. Bottom up Segmentation Semantic Segmentation Segmentation Bottom up Segmentation Semantic Segmentation Semantic Labeling of Street Scenes Ground Truth Labels 11 classes, almost all occur simultaneously, large changes in viewpoint, scale sky, road,

More information

Deep Marching Cubes: Learning Explicit Surface Representations

Deep Marching Cubes: Learning Explicit Surface Representations Deep Marching Cubes: Learning Explicit Surface Representations Yiyi Liao 1,2 Simon Donné 1,3 Andreas Geiger 1,4 1 Autonomous Vision Group, MPI for Intelligent Systems and University of Tübingen 2 Institute

More information

Lecture 10: Multi view geometry

Lecture 10: Multi view geometry Lecture 10: Multi view geometry Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today? Stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

3D Photography: Active Ranging, Structured Light, ICP

3D Photography: Active Ranging, Structured Light, ICP 3D Photography: Active Ranging, Structured Light, ICP Kalin Kolev, Marc Pollefeys Spring 2013 http://cvg.ethz.ch/teaching/2013spring/3dphoto/ Schedule (tentative) Feb 18 Feb 25 Mar 4 Mar 11 Mar 18 Mar

More information

What have we leaned so far?

What have we leaned so far? What have we leaned so far? Camera structure Eye structure Project 1: High Dynamic Range Imaging What have we learned so far? Image Filtering Image Warping Camera Projection Model Project 2: Panoramic

More information

Multi-View Reconstruction using Narrow-Band Graph-Cuts and Surface Normal Optimization

Multi-View Reconstruction using Narrow-Band Graph-Cuts and Surface Normal Optimization Multi-View Reconstruction using Narrow-Band Graph-Cuts and Surface Normal Optimization Alexander Ladikos Selim Benhimane Nassir Navab Chair for Computer Aided Medical Procedures Department of Informatics

More information

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University.

3D Computer Vision. Structured Light II. Prof. Didier Stricker. Kaiserlautern University. 3D Computer Vision Structured Light II Prof. Didier Stricker Kaiserlautern University http://ags.cs.uni-kl.de/ DFKI Deutsches Forschungszentrum für Künstliche Intelligenz http://av.dfki.de 1 Introduction

More information

Multiview Reconstruction

Multiview Reconstruction Multiview Reconstruction Why More Than 2 Views? Baseline Too short low accuracy Too long matching becomes hard Why More Than 2 Views? Ambiguity with 2 views Camera 1 Camera 2 Camera 3 Trinocular Stereo

More information

SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE

SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE SIMPLE ROOM SHAPE MODELING WITH SPARSE 3D POINT INFORMATION USING PHOTOGRAMMETRY AND APPLICATION SOFTWARE S. Hirose R&D Center, TOPCON CORPORATION, 75-1, Hasunuma-cho, Itabashi-ku, Tokyo, Japan Commission

More information

Scanning and Printing Objects in 3D Jürgen Sturm

Scanning and Printing Objects in 3D Jürgen Sturm Scanning and Printing Objects in 3D Jürgen Sturm Metaio (formerly Technical University of Munich) My Research Areas Visual navigation for mobile robots RoboCup Kinematic Learning Articulated Objects Quadrocopters

More information

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo

03 - Reconstruction. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Spring 17 - Daniele Panozzo 3 - Reconstruction Acknowledgements: Olga Sorkine-Hornung Geometry Acquisition Pipeline Scanning: results in range images Registration: bring all range images to one coordinate system Stitching/ reconstruction:

More information

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm

Dense Tracking and Mapping for Autonomous Quadrocopters. Jürgen Sturm Computer Vision Group Prof. Daniel Cremers Dense Tracking and Mapping for Autonomous Quadrocopters Jürgen Sturm Joint work with Frank Steinbrücker, Jakob Engel, Christian Kerl, Erik Bylow, and Daniel Cremers

More information

Handheld scanning with ToF sensors and cameras

Handheld scanning with ToF sensors and cameras Handheld scanning with ToF sensors and cameras Enrico Cappelletto, Pietro Zanuttigh, Guido Maria Cortelazzo Dept. of Information Engineering, University of Padova enrico.cappelletto,zanuttigh,corte@dei.unipd.it

More information

3D Modeling from Multiple Images

3D Modeling from Multiple Images 3D Modeling from Multiple Images Wei Zhang 1,JianYao 2, and Wai-Kuen Cham 1 1 Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China 2 College of

More information

Multiple Depth Maps Integration for 3D Reconstruction using Geodesic Graph Cuts

Multiple Depth Maps Integration for 3D Reconstruction using Geodesic Graph Cuts Multiple Depth Maps Integration for 3D Reconstruction using Geodesic Graph Cuts Jiangbin Zheng 1, Xinxin Zuo 1, Jinchang Ren 2, Sen Wang 3 1 Shaanxi Provincial Key Laboratory of Speech and Image Information

More information

Scalar Algorithms: Contouring

Scalar Algorithms: Contouring Scalar Algorithms: Contouring Computer Animation and Visualisation Lecture tkomura@inf.ed.ac.uk Institute for Perception, Action & Behaviour School of Informatics Contouring Scaler Data Last Lecture...

More information

Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency

Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 12, DECEMBER 2007 2241 Multiview Stereo via Volumetric Graph-Cuts and Occlusion Robust Photo-Consistency George Vogiatzis, Member,

More information

Lecture 10 Dense 3D Reconstruction

Lecture 10 Dense 3D Reconstruction Institute of Informatics Institute of Neuroinformatics Lecture 10 Dense 3D Reconstruction Davide Scaramuzza 1 REMODE: Probabilistic, Monocular Dense Reconstruction in Real Time M. Pizzoli, C. Forster,

More information