Introduction to Autonomous Mobile Robots

Size: px
Start display at page:

Download "Introduction to Autonomous Mobile Robots"

Transcription

1 Introduction to Autonomous Mobile Robots second edition Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza The MIT Press Cambridge, Massachusetts London, England

2 Contents Acknowledgments xiii Preface xv 1 Introduction Introduction An Overview of the Book 11 2 Locomotion Introduction Key issues for locomotion Legged Mobile Robots Leg configurations and stability Consideration of dynamics Examples of legged robot locomotion Wheeled Mobile Robots Wheeled locomotion: The design space Wheeled locomotion: Case studies Aerial Mobile Robots / Introduction Aircraft configurations State of the art in autonomous VTOL Problems 56 3 Mobile Robot Kinematics Introduction Kinematic Models and Constraints 58

3 viii Contents Representing robot position Forward kinematic models Wheel kinematic constraints Robot kinematic constraints Examples'. Robot kinematic models and constraints Mobile Robot Maneuverability Degree of mobility Degree of steerability Robot maneuverability Mobile Robot Workspace Degrees of freedom Holonomic robots Path and trajectory considerations Beyond Basic Kinematics Motion Control (Kinematic Control) Open loop control (trajectory-following) Feedback control Problems 99 Perception Sensors for Mobile Robots Sensor classification Characterizing sensor performance Representing uncertainty Wheel/motor sensors Heading sensors Accelerometers Inertial measurement unit (IMU) Ground beacons Active ranging Motion/speed sensors Vision sensors Fundamentals of Computer Vision Introduction The digital camera Image formation Omnidirectional cameras Structure from stereo Structure from motion 180

4 Contents ix Motion and optical flow Color tracking Fundamentals of Image Processing Image filtering Edge detection Computing image similarity Feature Extraction Image Feature Extraction: Interest Point Detectors Introduction Properties of the ideal feature detector Corner detectors Invariance to photometric and geometric changes Blob detectors Place Recognition Introduction From bag of features to visual words Efficient location recognition by using an inverted file Geometric verification for robust place recognition Applications Other image representations for place recognition Feature Extraction Based on Range Data (Laser, Ultrasonic) Line fitting Six line-extraction algorithms Range histogram features Extracting other geometric features Problems 262 Mobile Robot Localization Introduction The Challenge of Localization: Noise and Aliasing Sensor noise, Sensor aliasing Effector noise An error model for odometric position estimation To Localize or Not to Localize: Localization-Based Navigation Versus Programmed Solutions Belief Representation Single-hypothesis belief Multiple-hypothesis belief 280

5 X Contents 5.5 Map Representation Continuous representations Decomposition strategies State of the art: Current challenges in map representation Probabilistic Map-Based Localization Introduction The robot localization problem Basic concepts of probability theory Terminology/ The ingredients of probabilistic map-based localization Classification of localization problems Markov localization Kaiman filter localization Other Examples of Localization Systems Landmark-based navigation Globally unique localization Positioning beacon systems Route-based localization Autonomous Map Building Introduction SLAM: The simultaneous localization and mapping problem Mathematical definition of SLAM Extended Kaiman Filter (EKF) SLAM Visual SLAM with a single camera Discussion on EKF SLAM Graph-based SLAM Particle filter SLAM Open challenges in SLAM Open source SLAM software and other resources Problems 366 Planning and Navigation Introduction Competences for Navigation: Planning and Reacting Path Planning Graph search Potential field path planning Obstacle avoidance Bug algorithm 393

6 Contents Vector field histogram The bubble band technique Curvature velocity techniques Dynamic window approaches The Schlegel approach to obstacle avoidance Nearness diagram Gradient method Adding dynamic constraints Other approaches Overview Navigation Architectures Modularity for code reuse and sharing Control localization Techniques for decomposition Case studies: tiered robot architectures Problems 423 Bibliography 425 Books 425 Papers 427 Referenced Webpages 444 Index 447 /

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS

Mobile Robotics. Mathematics, Models, and Methods. HI Cambridge. Alonzo Kelly. Carnegie Mellon University UNIVERSITY PRESS Mobile Robotics Mathematics, Models, and Methods Alonzo Kelly Carnegie Mellon University HI Cambridge UNIVERSITY PRESS Contents Preface page xiii 1 Introduction 1 1.1 Applications of Mobile Robots 2 1.2

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Sebastian Thrun Wolfram Burgard Dieter Fox The MIT Press Cambridge, Massachusetts London, England Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in

More information

Mobile Robots Summery. Autonomous Mobile Robots

Mobile Robots Summery. Autonomous Mobile Robots Mobile Robots Summery Roland Siegwart Mike Bosse, Marco Hutter, Martin Rufli, Davide Scaramuzza, (Margarita Chli, Paul Furgale) Mobile Robots Summery 1 Introduction probabilistic map-based localization

More information

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary

Zürich. Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza. ETH Master Course: L Autonomous Mobile Robots Summary Roland Siegwart Margarita Chli Martin Rufli Davide Scaramuzza ETH Master Course: 151-0854-00L Autonomous Mobile Robots Summary 2 Lecture Overview Mobile Robot Control Scheme knowledge, data base mission

More information

Mobile Robots Locomotion

Mobile Robots Locomotion Mobile Robots Locomotion Institute for Software Technology 1 Course Outline 1. Introduction to Mobile Robots 2. Locomotion 3. Sensors 4. Localization 5. Environment Modelling 6. Reactive Navigation 2 Today

More information

COS Lecture 13 Autonomous Robot Navigation

COS Lecture 13 Autonomous Robot Navigation COS 495 - Lecture 13 Autonomous Robot Navigation Instructor: Chris Clark Semester: Fall 2011 1 Figures courtesy of Siegwart & Nourbakhsh Control Structure Prior Knowledge Operator Commands Localization

More information

Robotics. Chapter 25. Chapter 25 1

Robotics. Chapter 25. Chapter 25 1 Robotics Chapter 25 Chapter 25 1 Outline Robots, Effectors, and Sensors Localization and Mapping Motion Planning Chapter 25 2 Mobile Robots Chapter 25 3 Manipulators P R R R R R Configuration of robot

More information

Simultaneous Localization and Mapping

Simultaneous Localization and Mapping Sebastian Lembcke SLAM 1 / 29 MIN Faculty Department of Informatics Simultaneous Localization and Mapping Visual Loop-Closure Detection University of Hamburg Faculty of Mathematics, Informatics and Natural

More information

CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University. Course Logistics. Instructor: Jingjin Yu

CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University. Course Logistics. Instructor: Jingjin Yu CS 460/560 Introduction to Computational Robotics Fall 2017, Rutgers University Course Logistics Instructor: Jingjin Yu Logistics, etc. General Lectures: Noon-1:20pm Tuesdays and Fridays, SEC 118 Instructor:

More information

Localization, Where am I?

Localization, Where am I? 5.1 Localization, Where am I?? position Position Update (Estimation?) Encoder Prediction of Position (e.g. odometry) YES matched observations Map data base predicted position Matching Odometry, Dead Reckoning

More information

Principles of Robot Motion

Principles of Robot Motion Principles of Robot Motion Theory, Algorithms, and Implementation Howie Choset, Kevin Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia Kavraki, and Sebastian Thrun A Bradford Book The MIT

More information

Mobile Robotics. Mathematics, Models, and Methods

Mobile Robotics. Mathematics, Models, and Methods Mobile Robotics Mathematics, Models, and Methods Mobile Robotics offers comprehensive coverage of the essentials of the field suitable for both students and practitioners. Adapted from the author's graduate

More information

W4. Perception & Situation Awareness & Decision making

W4. Perception & Situation Awareness & Decision making W4. Perception & Situation Awareness & Decision making Robot Perception for Dynamic environments: Outline & DP-Grids concept Dynamic Probabilistic Grids Bayesian Occupancy Filter concept Dynamic Probabilistic

More information

Unmanned Aerial Vehicles

Unmanned Aerial Vehicles Unmanned Aerial Vehicles Embedded Control Edited by Rogelio Lozano WILEY Table of Contents Chapter 1. Aerodynamic Configurations and Dynamic Models 1 Pedro CASTILLO and Alejandro DZUL 1.1. Aerodynamic

More information

Mobile Robots: An Introduction.

Mobile Robots: An Introduction. Mobile Robots: An Introduction Amirkabir University of Technology Computer Engineering & Information Technology Department http://ce.aut.ac.ir/~shiry/lecture/robotics-2004/robotics04.html Introduction

More information

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100

ME 597/747 Autonomous Mobile Robots. Mid Term Exam. Duration: 2 hour Total Marks: 100 ME 597/747 Autonomous Mobile Robots Mid Term Exam Duration: 2 hour Total Marks: 100 Instructions: Read the exam carefully before starting. Equations are at the back, but they are NOT necessarily valid

More information

Navigation methods and systems

Navigation methods and systems Navigation methods and systems Navigare necesse est Content: Navigation of mobile robots a short overview Maps Motion Planning SLAM (Simultaneous Localization and Mapping) Navigation of mobile robots a

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Ph.D. Antonio Marin-Hernandez Artificial Intelligence Department Universidad Veracruzana Sebastian Camacho # 5 Xalapa, Veracruz Robotics Action and Perception LAAS-CNRS 7, av du

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Introduction to Autonomous Mobile Robots

Introduction to Autonomous Mobile Robots Introduction to Autonomous Mobile Robots i Contents vii Contents Acknowledgments xiii Preface xv 1 Introduction 1 1.1 Introduction 1 1.2 An Overview of the Book 11 2 Locomotion 13 2.1 Introduction 13 2.1.1

More information

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE

Table of Contents. Chapter 1. Modeling and Identification of Serial Robots... 1 Wisama KHALIL and Etienne DOMBRE Chapter 1. Modeling and Identification of Serial Robots.... 1 Wisama KHALIL and Etienne DOMBRE 1.1. Introduction... 1 1.2. Geometric modeling... 2 1.2.1. Geometric description... 2 1.2.2. Direct geometric

More information

Final Exam Practice Fall Semester, 2012

Final Exam Practice Fall Semester, 2012 COS 495 - Autonomous Robot Navigation Final Exam Practice Fall Semester, 2012 Duration: Total Marks: 70 Closed Book 2 hours Start Time: End Time: By signing this exam, I agree to the honor code Name: Signature:

More information

Robotics/Perception II

Robotics/Perception II Robotics/Perception II Artificial Intelligence and Integrated Computer Systems Division (AIICS) Outline Sensors - summary Computer systems Robotic architectures Mapping and Localization Motion planning

More information

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang

MULTI-MODAL MAPPING. Robotics Day, 31 Mar Frank Mascarich, Shehryar Khattak, Tung Dang MULTI-MODAL MAPPING Robotics Day, 31 Mar 2017 Frank Mascarich, Shehryar Khattak, Tung Dang Application-Specific Sensors Cameras TOF Cameras PERCEPTION LiDAR IMU Localization Mapping Autonomy Robotic Perception

More information

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T

10/11/07 1. Motion Control (wheeled robots) Representing Robot Position ( ) ( ) [ ] T 3 3 Motion Control (wheeled robots) Introduction: Mobile Robot Kinematics Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground

More information

Mobile Robots Locomotion & Sensors

Mobile Robots Locomotion & Sensors Mobile Robots Locomotion & Sensors Institute for Software Technology 1 Robotics is Easy control behavior perception modelling domain model environment model information extraction raw data planning task

More information

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models

Overview. EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping. Statistical Models Introduction ti to Embedded dsystems EECS 124, UC Berkeley, Spring 2008 Lecture 23: Localization and Mapping Gabe Hoffmann Ph.D. Candidate, Aero/Astro Engineering Stanford University Statistical Models

More information

Robotics. Haslum COMP3620/6320

Robotics. Haslum COMP3620/6320 Robotics P@trik Haslum COMP3620/6320 Introduction Robotics Industrial Automation * Repetitive manipulation tasks (assembly, etc). * Well-known, controlled environment. * High-power, high-precision, very

More information

MEM380 Applied Autonomous Robots Winter Robot Kinematics

MEM380 Applied Autonomous Robots Winter Robot Kinematics MEM38 Applied Autonomous obots Winter obot Kinematics Coordinate Transformations Motivation Ultimatel, we are interested in the motion of the robot with respect to a global or inertial navigation frame

More information

Autonomous Mobile Robot Design

Autonomous Mobile Robot Design Autonomous Mobile Robot Design Topic: EKF-based SLAM Dr. Kostas Alexis (CSE) These slides have partially relied on the course of C. Stachniss, Robot Mapping - WS 2013/14 Autonomous Robot Challenges Where

More information

AN INTRODUCTION TO FUZZY SETS Analysis and Design. Witold Pedrycz and Fernando Gomide

AN INTRODUCTION TO FUZZY SETS Analysis and Design. Witold Pedrycz and Fernando Gomide AN INTRODUCTION TO FUZZY SETS Analysis and Design Witold Pedrycz and Fernando Gomide A Bradford Book The MIT Press Cambridge, Massachusetts London, England Foreword - Preface Introduction xiii xxv xxi

More information

Localization and Map Building

Localization and Map Building Localization and Map Building Noise and aliasing; odometric position estimation To localize or not to localize Belief representation Map representation Probabilistic map-based localization Other examples

More information

Introduction to robot algorithms CSE 410/510

Introduction to robot algorithms CSE 410/510 Introduction to robot algorithms CSE 410/510 Rob Platt robplatt@buffalo.edu Times: MWF, 10-10:50 Location: Clemens 322 Course web page: http://people.csail.mit.edu/rplatt/cse510.html Office Hours: 11-12

More information

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables.

Thomas Bräunl EMBEDDED ROBOTICS. Mobile Robot Design and Applications with Embedded Systems. Second Edition. With 233 Figures and 24 Tables. Thomas Bräunl EMBEDDED ROBOTICS Mobile Robot Design and Applications with Embedded Systems Second Edition With 233 Figures and 24 Tables Springer CONTENTS PART I: EMBEDDED SYSTEMS 1 Robots and Controllers

More information

7630 Autonomous Robotics Probabilities for Robotics

7630 Autonomous Robotics Probabilities for Robotics 7630 Autonomous Robotics Probabilities for Robotics Basics of probability theory The Bayes-Filter Introduction to localization problems Monte-Carlo-Localization Based on material from R. Triebel, R. Kästner

More information

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning

Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Introduction to Information Science and Technology (IST) Part IV: Intelligent Machines and Robotics Planning Sören Schwertfeger / 师泽仁 ShanghaiTech University ShanghaiTech University - SIST - 10.05.2017

More information

Visual Perception for Robots

Visual Perception for Robots Visual Perception for Robots Sven Behnke Computer Science Institute VI Autonomous Intelligent Systems Our Cognitive Robots Complete systems for example scenarios Equipped with rich sensors Flying robot

More information

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview

Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Nonlinear State Estimation for Robotics and Computer Vision Applications: An Overview Arun Das 05/09/2017 Arun Das Waterloo Autonomous Vehicles Lab Introduction What s in a name? Arun Das Waterloo Autonomous

More information

UAV Autonomous Navigation in a GPS-limited Urban Environment

UAV Autonomous Navigation in a GPS-limited Urban Environment UAV Autonomous Navigation in a GPS-limited Urban Environment Yoko Watanabe DCSD/CDIN JSO-Aerial Robotics 2014/10/02-03 Introduction 2 Global objective Development of a UAV onboard system to maintain flight

More information

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment

Autonomous Mobile Robots, Chapter 6 Planning and Navigation Where am I going? How do I get there? Localization. Cognition. Real World Environment Planning and Navigation Where am I going? How do I get there?? Localization "Position" Global Map Cognition Environment Model Local Map Perception Real World Environment Path Motion Control Competencies

More information

Robotics. CSPP Artificial Intelligence March 10, 2004

Robotics. CSPP Artificial Intelligence March 10, 2004 Robotics CSPP 56553 Artificial Intelligence March 10, 2004 Roadmap Robotics is AI-complete Integration of many AI techniques Classic AI Search in configuration space (Ultra) Modern AI Subsumption architecture

More information

EE565:Mobile Robotics Lecture 2

EE565:Mobile Robotics Lecture 2 EE565:Mobile Robotics Lecture 2 Welcome Dr. Ing. Ahmad Kamal Nasir Organization Lab Course Lab grading policy (40%) Attendance = 10 % In-Lab tasks = 30 % Lab assignment + viva = 60 % Make a group Either

More information

CS283: Robotics Fall 2016: Software

CS283: Robotics Fall 2016: Software CS283: Robotics Fall 2016: Software Sören Schwertfeger / 师泽仁 ShanghaiTech University Mobile Robotics ShanghaiTech University - SIST - 18.09.2016 2 Review Definition Robot: A machine capable of performing

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

Epipolar Geometry in Stereo, Motion and Object Recognition

Epipolar Geometry in Stereo, Motion and Object Recognition Epipolar Geometry in Stereo, Motion and Object Recognition A Unified Approach by GangXu Department of Computer Science, Ritsumeikan University, Kusatsu, Japan and Zhengyou Zhang INRIA Sophia-Antipolis,

More information

Bayesian Train Localization Method Extended By 3D Geometric Railway Track Observations From Inertial Sensors

Bayesian Train Localization Method Extended By 3D Geometric Railway Track Observations From Inertial Sensors www.dlr.de Chart 1 Fusion 2012 > Oliver Heirich Extended Bayesian Train Localization > 10.7.2012 Bayesian Train Localization Method Extended By 3D Geometric Railway Track Observations From Inertial Sensors

More information

Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation

Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation Non Linear Control of Four Wheel Omnidirectional Mobile Robot: Modeling, Simulation and Real-Time Implementation eer Alakshendra Research Scholar Robotics Lab Dr Shital S.Chiddarwar Supervisor Robotics

More information

Theory of Automatic Robot Assembly and Programming

Theory of Automatic Robot Assembly and Programming Theory of Automatic Robot Assembly and Programming Theory of Automatic Robot Assembly and Programming Bartholomew o. Nnaji Professor and Director Automation and Robotics Laboratory Department of Industrial

More information

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group

Master Automática y Robótica. Técnicas Avanzadas de Vision: Visual Odometry. by Pascual Campoy Computer Vision Group Master Automática y Robótica Técnicas Avanzadas de Vision: by Pascual Campoy Computer Vision Group www.vision4uav.eu Centro de Automá

More information

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz

Humanoid Robotics. Monte Carlo Localization. Maren Bennewitz Humanoid Robotics Monte Carlo Localization Maren Bennewitz 1 Basis Probability Rules (1) If x and y are independent: Bayes rule: Often written as: The denominator is a normalizing constant that ensures

More information

arxiv: v1 [cs.ro] 2 Sep 2017

arxiv: v1 [cs.ro] 2 Sep 2017 arxiv:1709.00525v1 [cs.ro] 2 Sep 2017 Sensor Network Based Collision-Free Navigation and Map Building for Mobile Robots Hang Li Abstract Safe robot navigation is a fundamental research field for autonomous

More information

Contents I IMAGE FORMATION 1

Contents I IMAGE FORMATION 1 Contents I IMAGE FORMATION 1 1 Geometric Camera Models 3 1.1 Image Formation............................. 4 1.1.1 Pinhole Perspective....................... 4 1.1.2 Weak Perspective.........................

More information

Centre for Autonomous Systems

Centre for Autonomous Systems Robot Henrik I Centre for Autonomous Systems Kungl Tekniska Högskolan hic@kth.se 27th April 2005 Outline 1 duction 2 Kinematic and Constraints 3 Mobile Robot 4 Mobile Robot 5 Beyond Basic 6 Kinematic 7

More information

Fundamental problems in mobile robotics

Fundamental problems in mobile robotics ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Mobile & Service Robotics Kinematics Fundamental problems in mobile robotics Locomotion: how the robot moves in the environment Perception: how

More information

Last update: May 6, Robotics. CMSC 421: Chapter 25. CMSC 421: Chapter 25 1

Last update: May 6, Robotics. CMSC 421: Chapter 25. CMSC 421: Chapter 25 1 Last update: May 6, 2010 Robotics CMSC 421: Chapter 25 CMSC 421: Chapter 25 1 A machine to perform tasks What is a robot? Some level of autonomy and flexibility, in some type of environment Sensory-motor

More information

Cinematica dei Robot Mobili su Ruote. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo

Cinematica dei Robot Mobili su Ruote. Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Cinematica dei Robot Mobili su Ruote Corso di Robotica Prof. Davide Brugali Università degli Studi di Bergamo Riferimenti bibliografici Roland SIEGWART, Illah R. NOURBAKHSH Introduction to Autonomous Mobile

More information

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta

CMPUT 412 Motion Control Wheeled robots. Csaba Szepesvári University of Alberta CMPUT 412 Motion Control Wheeled robots Csaba Szepesvári University of Alberta 1 Motion Control (wheeled robots) Requirements Kinematic/dynamic model of the robot Model of the interaction between the wheel

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 10 Class 2: Visual Odometry November 2nd, 2017 Today Visual Odometry Intro Algorithm SLAM Visual Odometry Input Output Images, Video Camera trajectory, motion

More information

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017

Outline Sensors. EE Sensors. H.I. Bozma. Electric Electronic Engineering Bogazici University. December 13, 2017 Electric Electronic Engineering Bogazici University December 13, 2017 Absolute position measurement Outline Motion Odometry Inertial systems Environmental Tactile Proximity Sensing Ground-Based RF Beacons

More information

Autonomous Mobile Robots

Autonomous Mobile Robots Autonomous Mobile Robots Basics 1..1 / Leg configuration, stability and gaits, locomotion with 1,, 4 or 6 legs At least six legs for static walking (always statically stable tripod of legs) Min. DOF for

More information

Visual SLAM for small Unmanned Aerial Vehicles

Visual SLAM for small Unmanned Aerial Vehicles Visual SLAM for small Unmanned Aerial Vehicles Margarita Chli Autonomous Systems Lab, ETH Zurich Simultaneous Localization And Mapping How can a body navigate in a previously unknown environment while

More information

Multi-resolution SLAM for Real World Navigation

Multi-resolution SLAM for Real World Navigation Proceedings of the International Symposium of Research Robotics Siena, Italy, October 2003 Multi-resolution SLAM for Real World Navigation Agostino Martinelli, Adriana Tapus, Kai Olivier Arras, and Roland

More information

Image Processing, Analysis and Machine Vision

Image Processing, Analysis and Machine Vision Image Processing, Analysis and Machine Vision Milan Sonka PhD University of Iowa Iowa City, USA Vaclav Hlavac PhD Czech Technical University Prague, Czech Republic and Roger Boyle DPhil, MBCS, CEng University

More information

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor

Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Computationally Efficient Visual-inertial Sensor Fusion for GPS-denied Navigation on a Small Quadrotor Chang Liu & Stephen D. Prior Faculty of Engineering and the Environment, University of Southampton,

More information

Robot Motion Planning

Robot Motion Planning Robot Motion Planning slides by Jan Faigl Department of Computer Science and Engineering Faculty of Electrical Engineering, Czech Technical University in Prague lecture A4M36PAH - Planning and Games Dpt.

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech

Dealing with Scale. Stephan Weiss Computer Vision Group NASA-JPL / CalTech Dealing with Scale Stephan Weiss Computer Vision Group NASA-JPL / CalTech Stephan.Weiss@ieee.org (c) 2013. Government sponsorship acknowledged. Outline Why care about size? The IMU as scale provider: The

More information

Advanced Robotics Path Planning & Navigation

Advanced Robotics Path Planning & Navigation Advanced Robotics Path Planning & Navigation 1 Agenda Motivation Basic Definitions Configuration Space Global Planning Local Planning Obstacle Avoidance ROS Navigation Stack 2 Literature Choset, Lynch,

More information

Monocular Visual Odometry

Monocular Visual Odometry Elective in Robotics coordinator: Prof. Giuseppe Oriolo Monocular Visual Odometry (slides prepared by Luca Ricci) Monocular vs. Stereo: eamples from Nature Predator Predators eyes face forward. The field

More information

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots

Spring Localization II. Roland Siegwart, Margarita Chli, Martin Rufli. ASL Autonomous Systems Lab. Autonomous Mobile Robots Spring 2016 Localization II Localization I 25.04.2016 1 knowledge, data base mission commands Localization Map Building environment model local map position global map Cognition Path Planning path Perception

More information

Motion Control (wheeled robots)

Motion Control (wheeled robots) Motion Control (wheeled robots) Requirements for Motion Control Kinematic / dynamic model of the robot Model of the interaction between the wheel and the ground Definition of required motion -> speed control,

More information

COMPUTER AND ROBOT VISION

COMPUTER AND ROBOT VISION VOLUME COMPUTER AND ROBOT VISION Robert M. Haralick University of Washington Linda G. Shapiro University of Washington T V ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo Park, California

More information

5 Mobile Robot Localization

5 Mobile Robot Localization 5 Mobile Robot Localization 159 5 Mobile Robot Localization 5.1 Introduction? Fig 5.1 Where am I? Navigation is one of the most challenging competencies required of a mobile robot. Success in navigation

More information

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018

Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Turning an Automated System into an Autonomous system using Model-Based Design Autonomous Tech Conference 2018 Asaf Moses Systematics Ltd., Technical Product Manager aviasafm@systematics.co.il 1 Autonomous

More information

Three-Dimensional Computer Vision

Three-Dimensional Computer Vision \bshiaki Shirai Three-Dimensional Computer Vision With 313 Figures ' Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Table of Contents 1 Introduction 1 1.1 Three-Dimensional Computer Vision

More information

Lecture «Robot Dynamics»: Kinematics 3

Lecture «Robot Dynamics»: Kinematics 3 Lecture «Robot Dynamics»: Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Application questions. Theoretical questions

Application questions. Theoretical questions The oral exam will last 30 minutes and will consist of one application question followed by two theoretical questions. Please find below a non exhaustive list of possible application questions. The list

More information

Kalman Filter Based. Localization

Kalman Filter Based. Localization Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Kalman Filter Based Localization & SLAM Zürich Autonomous

More information

3D Scene Reconstruction with a Mobile Camera

3D Scene Reconstruction with a Mobile Camera 3D Scene Reconstruction with a Mobile Camera 1 Introduction Robert Carrera and Rohan Khanna Stanford University: CS 231A Autonomous supernumerary arms, or "third arms", while still unconventional, hold

More information

Perception: Sensors. Autonomous Mobile Robots. Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart

Perception: Sensors. Autonomous Mobile Robots. Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart ASL Autonomous Systems Lab Perception: Sensors Autonomous Mobile Robots Davide Scaramuzza Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart Autonomous Mobile Robots Margarita Chli, Paul Furgale,

More information

Exam in DD2426 Robotics and Autonomous Systems

Exam in DD2426 Robotics and Autonomous Systems Exam in DD2426 Robotics and Autonomous Systems Lecturer: Patric Jensfelt KTH, March 16, 2010, 9-12 No aids are allowed on the exam, i.e. no notes, no books, no calculators, etc. You need a minimum of 20

More information

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard

Robot Mapping. A Short Introduction to the Bayes Filter and Related Models. Gian Diego Tipaldi, Wolfram Burgard Robot Mapping A Short Introduction to the Bayes Filter and Related Models Gian Diego Tipaldi, Wolfram Burgard 1 State Estimation Estimate the state of a system given observations and controls Goal: 2 Recursive

More information

Control of a quadrotor manipulating a beam (2 projects available)

Control of a quadrotor manipulating a beam (2 projects available) Control of a quadrotor manipulating a beam (2 projects available) Supervisor: Emanuele Garone (egarone@ulb.ac.be), Tam Nguyen, Laurent Catoire General Goal: The goal of this project is to complete from

More information

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda**

DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER. Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** DYNAMIC POSITIONING OF A MOBILE ROBOT USING A LASER-BASED GONIOMETER Joaquim A. Batlle*, Josep Maria Font*, Josep Escoda** * Department of Mechanical Engineering Technical University of Catalonia (UPC)

More information

Data Association for SLAM

Data Association for SLAM CALIFORNIA INSTITUTE OF TECHNOLOGY ME/CS 132a, Winter 2011 Lab #2 Due: Mar 10th, 2011 Part I Data Association for SLAM 1 Introduction For this part, you will experiment with a simulation of an EKF SLAM

More information

Robotic Behaviors. Potential Field Methods

Robotic Behaviors. Potential Field Methods Robotic Behaviors Potential field techniques - trajectory generation - closed feedback-loop control Design of variety of behaviors - motivated by potential field based approach steering behaviors Closed

More information

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno

Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments. Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Aerial Robotic Autonomous Exploration & Mapping in Degraded Visual Environments Kostas Alexis Autonomous Robots Lab, University of Nevada, Reno Motivation Aerial robotic operation in GPS-denied Degraded

More information

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM)

Robotics. Lecture 8: Simultaneous Localisation and Mapping (SLAM) Robotics Lecture 8: Simultaneous Localisation and Mapping (SLAM) See course website http://www.doc.ic.ac.uk/~ajd/robotics/ for up to date information. Andrew Davison Department of Computing Imperial College

More information

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera

Appearance-based Visual Localisation in Outdoor Environments with an Omnidirectional Camera 52. Internationales Wissenschaftliches Kolloquium Technische Universität Ilmenau 10. - 13. September 2007 M. Schenderlein / K. Debes / A. Koenig / H.-M. Gross Appearance-based Visual Localisation in Outdoor

More information

Team Description Paper Team AutonOHM

Team Description Paper Team AutonOHM Team Description Paper Team AutonOHM Jon Martin, Daniel Ammon, Helmut Engelhardt, Tobias Fink, Tobias Scholz, and Marco Masannek University of Applied Science Nueremberg Georg-Simon-Ohm, Kesslerplatz 12,

More information

Landmark-Based Robot Localization Using a Stereo Camera System

Landmark-Based Robot Localization Using a Stereo Camera System American Journal of Signal Processing 2015, 5(2): 40-50 DOI: 10.5923/j.ajsp.20150502.03 Landmark-Based Robot Localization Using a Stereo Camera System Nguyen Tan Nhu, Nguyen Thanh Hai * Faculty of Electrical

More information

COMPARISON OF ROBOT NAVIGATION METHODS USING PERFORMANCE METRICS

COMPARISON OF ROBOT NAVIGATION METHODS USING PERFORMANCE METRICS COMPARISON OF ROBOT NAVIGATION METHODS USING PERFORMANCE METRICS Adriano Flores Dantas, Rodrigo Porfírio da Silva Sacchi, Valguima V. V. A. Odakura Faculdade de Ciências Exatas e Tecnologia (FACET) Universidade

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter

ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter ECE276A: Sensing & Estimation in Robotics Lecture 11: Simultaneous Localization and Mapping using a Particle Filter Lecturer: Nikolay Atanasov: natanasov@ucsd.edu Teaching Assistants: Siwei Guo: s9guo@eng.ucsd.edu

More information

A Modular Software Framework for Eye-Hand Coordination in Humanoid Robots

A Modular Software Framework for Eye-Hand Coordination in Humanoid Robots A Modular Software Framework for Eye-Hand Coordination in Humanoid Robots Jurgen Leitner, Simon Harding, Alexander Forster and Peter Corke Presentation: Hana Fusman Introduction/ Overview The goal of their

More information

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm

Particle Filter in Brief. Robot Mapping. FastSLAM Feature-based SLAM with Particle Filters. Particle Representation. Particle Filter Algorithm Robot Mapping FastSLAM Feature-based SLAM with Particle Filters Cyrill Stachniss Particle Filter in Brief! Non-parametric, recursive Bayes filter! Posterior is represented by a set of weighted samples!

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Third Edition Rafael C. Gonzalez University of Tennessee Richard E. Woods MedData Interactive PEARSON Prentice Hall Pearson Education International Contents Preface xv Acknowledgments

More information

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology

Basics of Localization, Mapping and SLAM. Jari Saarinen Aalto University Department of Automation and systems Technology Basics of Localization, Mapping and SLAM Jari Saarinen Aalto University Department of Automation and systems Technology Content Introduction to Problem (s) Localization A few basic equations Dead Reckoning

More information

Jinkun Liu Xinhua Wang. Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation

Jinkun Liu Xinhua Wang. Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and MATLAB Simulation Jinkun Liu Xinhua Wang Advanced Sliding Mode Control for Mechanical Systems Design, Analysis and MATLAB Simulation Jinkun Liu Xinhua Wang Advanced Sliding Mode Control for Mechanical Systems Design, Analysis

More information

Final Project Report: Mobile Pick and Place

Final Project Report: Mobile Pick and Place Final Project Report: Mobile Pick and Place Xiaoyang Liu (xiaoyan1) Juncheng Zhang (junchen1) Karthik Ramachandran (kramacha) Sumit Saxena (sumits1) Yihao Qian (yihaoq) Adviser: Dr Matthew Travers Carnegie

More information