Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!

Size: px
Start display at page:

Download "Fitting. Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! EECS Fall 2014! Foundations of Computer Vision!"

Transcription

1 Fitting EECS Fall 2014! Foundations of Computer Vision!! Instructor: Jason Corso (jjcorso)! web.eecs.umich.edu/~jjcorso/t/598f14!! Readings: FP 10; SZ 4.3, 5.1! Date: 10/8/14!! Materials on these slides have come from many sources in addition to myself; individual slides reference specific sources.!

2 Plan 2 Problem Formulation! Least Squares Methods! RANSAC! Hough Transform! Multi-model Fitting! Expectation-Maximization! Examples of Uses of Fitting!

3 What is Fitting? 3 Goals:! Choose a parametric model to fit a certain quantity from data! Estimate model parameters! - Lines! - Curves! - Homographic transformation! - Fundamental matrix! - Shape model!

4 4 Example: fitting lines! (for computing vanishing points)!

5 Example: Estimating an homographic!!! transformation! 5 H!

6 Example: Estimating F! 6

7 Example: fitting a 2D shape template! 7 A

8 Example: fitting a 3D object model! 8

9 Fitting 9 Critical issues:! Noisy data! Outliers! Missing data!

10 10 Critical issues: noisy data!

11 Critical issues: noisy data! (intra-class variability)! 11 A

12 12 Critical issues: outliers! H!

13 Critical issues: missing data! 13 (occlusions)!

14 Fitting! 14 Goal: Choose a parametric model to! fit a certain quantity from data! Techniques:! Least square methods! RANSAC! Hough transform! EM (Expectation Maximization)!

15 Least squares methods - fitting a line - Data: (x 1, y 1 ),, (x n, y n ) 15 Line equation: y i = m x i + b y=mx+b Find (m, b) to minimize! (x i, y i ) E = n i = 1 ( y i mx i b) 2

16 Least squares methods - fitting a line - 16 E = n i = 1 ( y i mx i b) 2

17 Least squares methods - fitting a line - [ ] 2 2 n 1 n 1 n 1 i 2 i i XB Y b m 1 x 1 x y y b m 1 x y E = = = =!!! = + = XB X Y X db de T T Normal equation = = n i i i b mx y E 1 2 ) ( Y X XB X T T = ( ) Y X X X B T T 1 = (XB) (XB) Y 2(XB) Y Y XB) (Y XB) (Y T T T T + = = Find (m, b) that minimize E! 17

18 Least squares methods - fitting a line - 18 E = n i = 1 (yi mxi b) 2 y=mx+b B ( T ) 1 T m = X X X Y B = b (x i, y i ) Limitations! Fails completely for vertical lines!

19 Least squares methods - fitting a line - 19 Distance between point! (x n, y n ) and line ax+by=d ax+by=d Find (a, b, d) to minimize the sum of squared perpendicular distances! E = n i = 1 ( ax i + by i d 2 ) (x i, y i ) U N = 0 data! model parameters!

20 Least squares methods - fitting a line - 20 A h = 0 Minimize A h subject to h = 1 A = UDV T h = last column of V

21 Least squares methods -- fitting an homography y! H! y! x! x! U N = 0 data! model parameters!

22 Least squares: Robustness to noise 22

23 Least squares: Robustness to noise 23 outlier!!

24 24 Critical issues: outliers! H! CONCLUSION: Least square is not robust w.r.t. outliers!

25 Least squares: Robust estimators!! Instead of minimizing!! u i = error (residual) of i th point w.r.t. model parameters β = (a,b,d) ρ = robust function of u i with scale parameter σ!! We minimize! E = E i = ρ! n i = 1 ( u ) ρ ;σ i ( ax i u i + b y = i ax i d 2 ) + b y i d The robust function ρ! Favors a configuration! with small residuals! Penalizes large residuals" 25 u!

26 Least squares: Robust estimators!! Instead of minimizing!! u i = error (residual) of i th point w.r.t. model parameters β = (a,b,d) ρ = robust function of u i with scale parameter σ!! We minimize! E = E i = n i = 1 ( u ) ρ ;σ i ( ax i u i + b y = i ax i d 2 ) + b y i d 26 The robust function ρ! Favors a configuration! with small residuals! Penalizes large residuals"

27 Least squares: Robust estimators 27 Good scale parameter σ! The effect of the outlier is eliminated!

28 Least squares: Robust estimators 28 Bad scale parameter σ (too small!)! Fits only locally! Sensitive to initial condition!!

29 Least squares: Robust estimators 29 Bad scale parameter σ (too large!)!! Same as standard LSQ!! CONCLUSION: Robust estimator useful if prior info about the distribution of points is known! Robust fitting is a nonlinear optimization problem (iterative solution)! Least squares solution provides good initial condition!

30 Fitting! 30 Goal: Choose a parametric model to! fit a certain quantity from data! Techniques:! Least square methods! RANSAC! Hough transform! EM (Expectation Maximization)!!

31 Basic philosophy (voting scheme) 31 Data elements are used to vote for one (or multiple) models! Robust to outliers and missing data! Assumption 1: Noisy features will not vote consistently for any single model ( few outliers)!! Assumption 2: there are enough features to agree on a good model ( few missing data)!

32 RANSAC (RANdom SAmple Consensus) :! Learning technique to estimate! parameters of a model by random! sampling of observed data! Fischler & Bolles in 81.! 32 δ f { P O} π : I, such that:! (P, β ) < δ min π O f ( P, β) = β Model parameters! ( T ) 1 T P P P

33 RANSAC 33 Sample set = set of points in 2D! Algorithm:!! 1. Select random sample of minimum required size to fit model! 2. Compute a putative model from sample set! 3. Compute the set of inliers to this model from whole data set! Repeat 1-3 until model with the most inliers over all samples is found!

34 RANSAC 34 Sample set = set of points in 2D! Algorithm:!! 1. Select random sample of minimum required size to fit model [?]! 2. Compute a putative model from sample set! 3. Compute the set of inliers to this model from whole data set! Repeat 1-3 until model with the most inliers over all samples is found!

35 RANSAC 35 Sample set = set of points in 2D! Algorithm:!! 1. Select random sample of minimum required size to fit model [?]! 2. Compute a putative model from sample set! 3. Compute the set of inliers to this model from whole data set! Repeat 1-3 until model with the most inliers over all samples is found!

36 RANSAC 36 δ Sample set = set of points in 2D! O = 14! Algorithm:!! 1. Select random sample of minimum required size to fit model [?]! 2. Compute a putative model from sample set! 3. Compute the set of inliers to this model from whole data set! Repeat 1-3 until model with the most inliers over all samples is found!

37 RANSAC 37 δ O = 6! Algorithm:!! 1. Select random sample of minimum required size to fit model [?]! 2. Compute a putative model from sample set! 3. Compute the set of inliers to this model from whole data set! Repeat 1-3 until model with the most inliers over all samples is found!

38 How many samples? 38 Number of samples S" p = probability at least one random sample is valid (free from outliers)! e = outlier ratio (1-p)! P is total probability of success after S trials! Likelihood in one trial that all s samples are inliers is! s = minimum number needed to fit the model! Likelihood that S such trials will all fail is! Hence the required number of minimum trials is! proportion of outliers e s 5% 10% 20% 25% 30% 40% 50%

39 39 Estimating H! by RANSAC! H 8 DOF! Need 4 correspondences! Sample set = set of matches between 2 images! Algorithm:!! 1. Select a random sample of minimum required size [?]! 2. Compute a putative model from these! 3. Compute the set of inliers to this model from whole sample space! Repeat 1-3 until model with the most inliers over all samples is found!

40 40 Estimating F! Outlier matches! by RANSAC! F 7 DOF! Need 7 (8) correspondences! Sample set = set of matches between 2 images! Algorithm:!! 1. Select a random sample of minimum required size [?]! 2. Compute a putative model from these! 3. Compute the set of inliers to this model from whole sample space! Repeat 1-3 until model with the most inliers over all samples is found!

41 RANSAC Conclusions 41 Good:! Simple and easily implementable! Successful in different contexts! Bad:! Many parameters to tune! Trade-off accuracy-vs-time! Cannot be used if ratio inliers/outliers is too small!

42 Fitting! 42 Goal: Choose a parametric model to! fit a certain quantity from data! Techniques:! Least square methods! RANSAC! Hough transform!!

43 43 Hough transform! P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959! Given a set of points, find the curve or line that explains the data points best! y! x!

44 44 Hough transform! P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959! Given a set of points, find the curve or line that explains the data points best! y! (x 1, y 1 )! m! y 1 = m x 1 + n! x! Hough space! n! y = m x + n!

45 45 Hough transform! y! m! x! y! m! n! 3! 5! 3! 3! 2! 2! x! 3! 7! 11! 10! 4! 3! 2! 3! 1! 4! 5! 2! 2! 1! 0! 1! 3! 3! n!

46 46 Hough transform! P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. Int. Conf. High Energy Accelerators and Instrumentation, 1959! Issue : parameter space [m,n] is unbounded! Use a polar representation for the parameter space! y! ρ ρ θ x! x cosθ + ysinθ = ρ Hough space! θ

47 47 Hough transform - experiments! features! votes!

48 48 Hough transform - experiments! Noisy data! features!! How to compute the intersection point?! IDEA: introduce a grid a count intersection points in each cell! Issue: Grid size needs to be adjusted! votes!

49 49 Hough transform - experiments! features votes Issue: spurious peaks due to uniform noise!

50 50 Hough transform - conclusions! Good:! All points are processed independently, so can cope with occlusion/outliers! Some robustness to noise: noise points unlikely to contribute consistently to any single bin! Bad:! Spurious peaks due to uniform noise! Trade-off noise-grid size (hard to find sweet point)!

51 51 Hough transform - experiments! Courtesy of TKK Automation Technology Laboratory!!

52 52 Credit slide: K. Grauman!

53 Generalized Hough transform [more on forthcoming lectures]! D. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, Pattern Recognition 13(2), 1981! Identify a shape model by measuring the location of its parts and shape centroid! 53 Measurements: orientation theta, location of p! Each measurement casts a vote in the Hough space: p + r(θ)!!!! a p θ r(θ)

54 Generalized Hough transform B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical Learning in Computer Vision 2004! 54

55 Plan 55 Problem Formulation! Least Squares Methods! RANSAC! Hough Transform! Multi-model Fitting! Expectation-Maximization! Examples of Uses of Fitting!

56 Fitting multiple models! 56 Incremental fitting! E.M. (probabilistic fitting)! Hough transform!

57 Incremental line fitting 57 Scan data point sequentially (using locality constraints)! Perform following loop:! 1. Select N point and fit line to N points! 2. Compute residual R N! 3. Add a new point, re-fit line and re-compute R N+1! 4. Continue while line fitting residual is small enough,! Ø When residual exceeds a threshold, start fitting new model (line)!

58 58 Hough transform! Courtesy of unknown! Same cons and pros as before!

59 Plan 59 Problem Formulation! Least Squares Methods! RANSAC! Hough Transform! Multi-model Fitting! Expectation-Maximization! Examples of Uses of Fitting!

60 Fitting helps matching!! 60 Feature are matched (for instance, based on correlation)!

61 Fitting helps matching!! 61 Image 1! Image 2! Matches bases on appearance only! Red: good matches! Green: bad matches! Idea:! Fitting an homography H (by RANSAC) mapping features from images 1 to 2! Bad matches will be labeled as outliers (hence rejected)!!

62 Fitting helps matching!! 62

63 Recognising Panoramas! M. Brown and D. G. Lowe. Recognising Panoramas. In Proceedings of the 9th International Conference on Computer Vision -- ICCV2003! 63

64 64 Fitting helps matching!! Images courtesy of Brandon Lloyd!

65 65

66 Next Lecture: Moving on to Motion Module 66 Readings: FP 10.6; SZ 8; TV 8! (TV is Trucco and Verri, which is not a required book.)!

67 67

68 Least squares methods - fitting a line - 68 Ax = b More equations than unknowns! Look for solution which minimizes Ax-b = (Ax-b) T (Ax-b) T Solve! ( Ax b) ( Ax b) = 0 x i LS solution!! x = ( A T A) 1 A T b

69 Least squares methods - fitting a line -! 69 Solving! x = t ) 1 ( A A A t b A + = t 1 (A A) A t = pseudo-inverse of A! A = U t V = SVD decomposition of A! A = V 1 1 U A + = V + U + 1 with! equal to for all nonzero singular! values and zero otherwise!

70 Least squares methods - fitting an homography -! 70 From n>=4 corresponding points:! A h = 0 h h! h 1,1 1,2 3,3 = 0

EECS 442 Computer vision. Fitting methods

EECS 442 Computer vision. Fitting methods EECS 442 Computer vision Fitting methods - Problem formulation - Least square methods - RANSAC - Hough transforms - Multi-model fitting - Fitting helps matching! Reading: [HZ] Chapters: 4, 11 [FP] Chapters:

More information

Lecture 9 Fitting and Matching

Lecture 9 Fitting and Matching Lecture 9 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi- model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

Lecture 8 Fitting and Matching

Lecture 8 Fitting and Matching Lecture 8 Fitting and Matching Problem formulation Least square methods RANSAC Hough transforms Multi-model fitting Fitting helps matching! Reading: [HZ] Chapter: 4 Estimation 2D projective transformation

More information

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem

10/03/11. Model Fitting. Computer Vision CS 143, Brown. James Hays. Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem 10/03/11 Model Fitting Computer Vision CS 143, Brown James Hays Slides from Silvio Savarese, Svetlana Lazebnik, and Derek Hoiem Fitting: find the parameters of a model that best fit the data Alignment:

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

Feature Matching and Robust Fitting

Feature Matching and Robust Fitting Feature Matching and Robust Fitting Computer Vision CS 143, Brown Read Szeliski 4.1 James Hays Acknowledgment: Many slides from Derek Hoiem and Grauman&Leibe 2008 AAAI Tutorial Project 2 questions? This

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC

Fitting. Fitting. Slides S. Lazebnik Harris Corners Pkwy, Charlotte, NC Fitting We ve learned how to detect edges, corners, blobs. Now what? We would like to form a higher-level, more compact representation of the features in the image by grouping multiple features according

More information

Fitting: The Hough transform

Fitting: The Hough transform Fitting: The Hough transform Voting schemes Let each feature vote for all the models that are compatible with it Hopefully the noise features will not vote consistently for any single model Missing data

More information

Hough Transform and RANSAC

Hough Transform and RANSAC CS4501: Introduction to Computer Vision Hough Transform and RANSAC Various slides from previous courses by: D.A. Forsyth (Berkeley / UIUC), I. Kokkinos (Ecole Centrale / UCL). S. Lazebnik (UNC / UIUC),

More information

Model Fitting, RANSAC. Jana Kosecka

Model Fitting, RANSAC. Jana Kosecka Model Fitting, RANSAC Jana Kosecka Fitting: Overview If we know which points belong to the line, how do we find the optimal line parameters? Least squares What if there are outliers? Robust fitting, RANSAC

More information

Multi-stable Perception. Necker Cube

Multi-stable Perception. Necker Cube Multi-stable Perception Necker Cube Spinning dancer illusion, Nobuuki Kaahara Fitting and Alignment Computer Vision Szeliski 6.1 James Has Acknowledgment: Man slides from Derek Hoiem, Lana Lazebnik, and

More information

Photo by Carl Warner

Photo by Carl Warner Photo b Carl Warner Photo b Carl Warner Photo b Carl Warner Fitting and Alignment Szeliski 6. Computer Vision CS 43, Brown James Has Acknowledgment: Man slides from Derek Hoiem and Grauman&Leibe 2008 AAAI

More information

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11

Model Fitting. Introduction to Computer Vision CSE 152 Lecture 11 Model Fitting CSE 152 Lecture 11 Announcements Homework 3 is due May 9, 11:59 PM Reading: Chapter 10: Grouping and Model Fitting What to do with edges? Segment linked edge chains into curve features (e.g.,

More information

Homography estimation

Homography estimation RANSAC continued Homography estimation x w? ~x img H~x w Homography estimation? x img ~x w = H 1 ~x img Homography estimation (0,0) (1,0) (6.4,2.8) (8.0,2.9) (5.6, 4.0) (7.8, 4.2) (0,1) (1,1) Ah =0s.tkhk

More information

Model Fitting: The Hough transform I

Model Fitting: The Hough transform I Model Fitting: The Hough transform I Guido Gerig, CS6640 Image Processing, Utah Credit: Svetlana Lazebnik (Computer Vision UNC Chapel Hill, 2008) Fitting Parametric Models: Beyond Lines Choose a parametric

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Instance-level recognition

Instance-level recognition Instance-level recognition 1) Local invariant features 2) Matching and recognition with local features 3) Efficient visual search 4) Very large scale indexing Matching of descriptors Matching and 3D reconstruction

More information

Instance-level recognition part 2

Instance-level recognition part 2 Visual Recognition and Machine Learning Summer School Paris 2011 Instance-level recognition part 2 Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique,

More information

Perception IV: Place Recognition, Line Extraction

Perception IV: Place Recognition, Line Extraction Perception IV: Place Recognition, Line Extraction Davide Scaramuzza University of Zurich Margarita Chli, Paul Furgale, Marco Hutter, Roland Siegwart 1 Outline of Today s lecture Place recognition using

More information

Model Fitting: The Hough transform II

Model Fitting: The Hough transform II Model Fitting: The Hough transform II Guido Gerig, CS6640 Image Processing, Utah Theory: See handwritten notes GG: HT-notes-GG-II.pdf Credits: S. Narasimhan, CMU, Spring 2006 15-385,-685, Link Svetlana

More information

Lecture 8: Fitting. Tuesday, Sept 25

Lecture 8: Fitting. Tuesday, Sept 25 Lecture 8: Fitting Tuesday, Sept 25 Announcements, schedule Grad student extensions Due end of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Instance-level recognition II.

Instance-level recognition II. Reconnaissance d objets et vision artificielle 2010 Instance-level recognition II. Josef Sivic http://www.di.ens.fr/~josef INRIA, WILLOW, ENS/INRIA/CNRS UMR 8548 Laboratoire d Informatique, Ecole Normale

More information

CS231A Midterm Review. Friday 5/6/2016

CS231A Midterm Review. Friday 5/6/2016 CS231A Midterm Review Friday 5/6/2016 Outline General Logistics Camera Models Non-perspective cameras Calibration Single View Metrology Epipolar Geometry Structure from Motion Active Stereo and Volumetric

More information

Lecture 9: Hough Transform and Thresholding base Segmentation

Lecture 9: Hough Transform and Thresholding base Segmentation #1 Lecture 9: Hough Transform and Thresholding base Segmentation Saad Bedros sbedros@umn.edu Hough Transform Robust method to find a shape in an image Shape can be described in parametric form A voting

More information

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher

CS 664 Image Matching and Robust Fitting. Daniel Huttenlocher CS 664 Image Matching and Robust Fitting Daniel Huttenlocher Matching and Fitting Recognition and matching are closely related to fitting problems Parametric fitting can serve as more restricted domain

More information

CS 558: Computer Vision 4 th Set of Notes

CS 558: Computer Vision 4 th Set of Notes 1 CS 558: Computer Vision 4 th Set of Notes Instructor: Philippos Mordohai Webpage: www.cs.stevens.edu/~mordohai E-mail: Philippos.Mordohai@stevens.edu Office: Lieb 215 Overview Keypoint matching Hessian

More information

Straight Lines and Hough

Straight Lines and Hough 09/30/11 Straight Lines and Hough Computer Vision CS 143, Brown James Hays Many slides from Derek Hoiem, Lana Lazebnik, Steve Seitz, David Forsyth, David Lowe, Fei-Fei Li Project 1 A few project highlights

More information

Prof. Kristen Grauman

Prof. Kristen Grauman Fitting Prof. Kristen Grauman UT Austin Fitting Want to associate a model with observed features [Fig from Marszalek & Schmid, 2007] For eample, the model could be a line, a circle, or an arbitrary shape.

More information

Finding 2D Shapes and the Hough Transform

Finding 2D Shapes and the Hough Transform CS 4495 Computer Vision Finding 2D Shapes and the Aaron Bobick School of Interactive Computing Administrivia Today: Modeling Lines and Finding them CS4495: Problem set 1 is still posted. Please read the

More information

RANSAC and some HOUGH transform

RANSAC and some HOUGH transform RANSAC and some HOUGH transform Thank you for the slides. They come mostly from the following source Dan Huttenlocher Cornell U Matching and Fitting Recognition and matching are closely related to fitting

More information

Methods for Representing and Recognizing 3D objects

Methods for Representing and Recognizing 3D objects Methods for Representing and Recognizing 3D objects part 1 Silvio Savarese University of Michigan at Ann Arbor Object: Building, 45º pose, 8-10 meters away Object: Person, back; 1-2 meters away Object:

More information

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs

Announcements, schedule. Lecture 8: Fitting. Weighted graph representation. Outline. Segmentation by Graph Cuts. Images as graphs Announcements, schedule Lecture 8: Fitting Tuesday, Sept 25 Grad student etensions Due of term Data sets, suggestions Reminder: Midterm Tuesday 10/9 Problem set 2 out Thursday, due 10/11 Outline Review

More information

Fitting. Lecture 8. Cristian Sminchisescu. Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce

Fitting. Lecture 8. Cristian Sminchisescu. Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce Fitting Lecture 8 Cristian Sminchisescu Slide credits: K. Grauman, S. Seitz, S. Lazebnik, D. Forsyth, J. Ponce Fitting We want to associate a model with observed features [Fig from Marszalek & Schmid,

More information

Feature Detectors and Descriptors: Corners, Lines, etc.

Feature Detectors and Descriptors: Corners, Lines, etc. Feature Detectors and Descriptors: Corners, Lines, etc. Edges vs. Corners Edges = maxima in intensity gradient Edges vs. Corners Corners = lots of variation in direction of gradient in a small neighborhood

More information

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis

Fitting: Voting and the Hough Transform April 23 rd, Yong Jae Lee UC Davis Fitting: Voting and the Hough Transform April 23 rd, 2015 Yong Jae Lee UC Davis Last time: Grouping Bottom-up segmentation via clustering To find mid-level regions, tokens General choices -- features,

More information

Fitting (LMedS, RANSAC)

Fitting (LMedS, RANSAC) Fitting (LMedS, RANSAC) Thursday, 23/03/2017 Antonis Argyros e-mail: argyros@csd.uoc.gr LMedS and RANSAC What if we have very many outliers? 2 1 Least Median of Squares ri : Residuals Least Squares n 2

More information

Computer Vision 6 Segmentation by Fitting

Computer Vision 6 Segmentation by Fitting Computer Vision 6 Segmentation by Fitting MAP-I Doctoral Programme Miguel Tavares Coimbra Outline The Hough Transform Fitting Lines Fitting Curves Fitting as a Probabilistic Inference Problem Acknowledgements:

More information

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll

Image Warping. Many slides from Alyosha Efros + Steve Seitz. Photo by Sean Carroll Image Warping Man slides from Alosha Efros + Steve Seitz Photo b Sean Carroll Morphing Blend from one object to other with a series of local transformations Image Transformations image filtering: change

More information

HOUGH TRANSFORM CS 6350 C V

HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM CS 6350 C V HOUGH TRANSFORM The problem: Given a set of points in 2-D, find if a sub-set of these points, fall on a LINE. Hough Transform One powerful global method for detecting edges

More information

Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow

Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow Fi#ng & Matching Region Representa3on Image Alignment, Op3cal Flow Lectures 5 & 6 Prof. Fergus Slides from: S. Lazebnik, S. Seitz, M. Pollefeys, A. Effros. Facebook 360 photos Panoramas How do we build

More information

Feature Matching + Indexing and Retrieval

Feature Matching + Indexing and Retrieval CS 1699: Intro to Computer Vision Feature Matching + Indexing and Retrieval Prof. Adriana Kovashka University of Pittsburgh October 1, 2015 Today Review (fitting) Hough transform RANSAC Matching points

More information

Robust Geometry Estimation from two Images

Robust Geometry Estimation from two Images Robust Geometry Estimation from two Images Carsten Rother 09/12/2016 Computer Vision I: Image Formation Process Roadmap for next four lectures Computer Vision I: Image Formation Process 09/12/2016 2 Appearance-based

More information

RANSAC: RANdom Sampling And Consensus

RANSAC: RANdom Sampling And Consensus CS231-M RANSAC: RANdom Sampling And Consensus Roland Angst rangst@stanford.edu www.stanford.edu/~rangst CS231-M 2014-04-30 1 The Need for RANSAC Why do I need RANSAC? I know robust statistics! Robust Statistics

More information

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes

(More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects. Connelly Barnes (More) Algorithms for Cameras: Edge Detec8on Modeling Cameras/Objects Connelly Barnes Acknowledgment: Many slides from James Hays, also Derek Hoiem Grauman&Leibe 2008 Outline Edge Detec)on: Canny, etc.

More information

Uncertainties: Representation and Propagation & Line Extraction from Range data

Uncertainties: Representation and Propagation & Line Extraction from Range data 41 Uncertainties: Representation and Propagation & Line Extraction from Range data 42 Uncertainty Representation Section 4.1.3 of the book Sensing in the real world is always uncertain How can uncertainty

More information

Lecture 4: Finding lines: from detection to model fitting

Lecture 4: Finding lines: from detection to model fitting Lecture 4: Finding lines: from detection to model fitting Professor Fei Fei Li Stanford Vision Lab 1 What we will learn today Edge detection Canny edge detector Line fitting Hough Transform RANSAC (Problem

More information

Template Matching Rigid Motion

Template Matching Rigid Motion Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

EE795: Computer Vision and Intelligent Systems

EE795: Computer Vision and Intelligent Systems EE795: Computer Vision and Intelligent Systems Spring 2012 TTh 17:30-18:45 FDH 204 Lecture 10 130221 http://www.ee.unlv.edu/~b1morris/ecg795/ 2 Outline Review Canny Edge Detector Hough Transform Feature-Based

More information

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58

Image Features: Local Descriptors. Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 Image Features: Local Descriptors Sanja Fidler CSC420: Intro to Image Understanding 1/ 58 [Source: K. Grauman] Sanja Fidler CSC420: Intro to Image Understanding 2/ 58 Local Features Detection: Identify

More information

Vision par ordinateur

Vision par ordinateur Epipolar geometry π Vision par ordinateur Underlying structure in set of matches for rigid scenes l T 1 l 2 C1 m1 l1 e1 M L2 L1 e2 Géométrie épipolaire Fundamental matrix (x rank 2 matrix) m2 C2 l2 Frédéric

More information

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou

Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They can be performed sequentially or simultaneou an edge image, nd line or curve segments present Given the image. in Line and Curves Detection 1 Issues with Curve Detection Grouping (e.g., the Canny hysteresis thresholding procedure) Model tting They

More information

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011

Previously. Part-based and local feature models for generic object recognition. Bag-of-words model 4/20/2011 Previously Part-based and local feature models for generic object recognition Wed, April 20 UT-Austin Discriminative classifiers Boosting Nearest neighbors Support vector machines Useful for object recognition

More information

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features

Template Matching Rigid Motion. Find transformation to align two images. Focus on geometric features Template Matching Rigid Motion Find transformation to align two images. Focus on geometric features (not so much interesting with intensity images) Emphasis on tricks to make this efficient. Problem Definition

More information

Part-based and local feature models for generic object recognition

Part-based and local feature models for generic object recognition Part-based and local feature models for generic object recognition May 28 th, 2015 Yong Jae Lee UC Davis Announcements PS2 grades up on SmartSite PS2 stats: Mean: 80.15 Standard Dev: 22.77 Vote on piazza

More information

RANSAC RANdom SAmple Consensus

RANSAC RANdom SAmple Consensus Talk Outline importance for computer vision principle line fitting epipolar geometry estimation RANSAC RANdom SAmple Consensus Tomáš Svoboda, svoboda@cmp.felk.cvut.cz courtesy of Ondřej Chum, Jiří Matas

More information

Homographies and RANSAC

Homographies and RANSAC Homographies and RANSAC Computer vision 6.869 Bill Freeman and Antonio Torralba March 30, 2011 Homographies and RANSAC Homographies RANSAC Building panoramas Phototourism 2 Depth-based ambiguity of position

More information

Object Recognition with Invariant Features

Object Recognition with Invariant Features Object Recognition with Invariant Features Definition: Identify objects or scenes and determine their pose and model parameters Applications Industrial automation and inspection Mobile robots, toys, user

More information

CPSC 425: Computer Vision

CPSC 425: Computer Vision 1 / 45 CPSC 425: Computer Vision Instructor: Fred Tung ftung@cs.ubc.ca Department of Computer Science University of British Columbia Lecture Notes 2015/2016 Term 2 2 / 45 Menu March 3, 2016 Topics: Hough

More information

BIL Computer Vision Apr 16, 2014

BIL Computer Vision Apr 16, 2014 BIL 719 - Computer Vision Apr 16, 2014 Binocular Stereo (cont d.), Structure from Motion Aykut Erdem Dept. of Computer Engineering Hacettepe University Slide credit: S. Lazebnik Basic stereo matching algorithm

More information

Image Processing and Computer Vision

Image Processing and Computer Vision 1 / 1 Image Processing and Computer Vision Detecting primitives and rigid objects in Images Martin de La Gorce martin.de-la-gorce@enpc.fr February 2015 Detecting lines 2 / 1 How can we detect simple primitive

More information

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16

Computer Vision I. Announcements. Random Dot Stereograms. Stereo III. CSE252A Lecture 16 Announcements Stereo III CSE252A Lecture 16 HW1 being returned HW3 assigned and due date extended until 11/27/12 No office hours today No class on Thursday 12/6 Extra class on Tuesday 12/4 at 6:30PM in

More information

Elaborazione delle Immagini Informazione Multimediale. Raffaella Lanzarotti

Elaborazione delle Immagini Informazione Multimediale. Raffaella Lanzarotti Elaborazione delle Immagini Informazione Multimediale Raffaella Lanzarotti HOUGH TRANSFORM Paragraph 4.3.2 of the book at link: szeliski.org/book/drafts/szeliskibook_20100903_draft.pdf Thanks to Kristen

More information

Multiple View Geometry. Frank Dellaert

Multiple View Geometry. Frank Dellaert Multiple View Geometry Frank Dellaert Outline Intro Camera Review Stereo triangulation Geometry of 2 views Essential Matrix Fundamental Matrix Estimating E/F from point-matches Why Consider Multiple Views?

More information

Stereo and Epipolar geometry

Stereo and Epipolar geometry Previously Image Primitives (feature points, lines, contours) Today: Stereo and Epipolar geometry How to match primitives between two (multiple) views) Goals: 3D reconstruction, recognition Jana Kosecka

More information

Parameter estimation. Christiano Gava Gabriele Bleser

Parameter estimation. Christiano Gava Gabriele Bleser Parameter estimation Christiano Gava Christiano.Gava@dfki.de Gabriele Bleser gabriele.bleser@dfki.de Introduction Previous lectures: P-matrix 2D projective transformations Estimation (direct linear transform)

More information

Patch-based Object Recognition. Basic Idea

Patch-based Object Recognition. Basic Idea Patch-based Object Recognition 1! Basic Idea Determine interest points in image Determine local image properties around interest points Use local image properties for object classification Example: Interest

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t 2 R 3,t 3 Camera 1 Camera

More information

Structure from motion

Structure from motion Structure from motion Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R 1,t 1 R 2,t R 2 3,t 3 Camera 1 Camera

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Computer Vision Lecture 6 Segmentation 12.11.2015 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Image Processing Basics Structure Extraction Segmentation

More information

Fitting D.A. Forsyth, CS 543

Fitting D.A. Forsyth, CS 543 Fitting D.A. Forsyth, CS 543 Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on

More information

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION

COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION COMPARATIVE STUDY OF DIFFERENT APPROACHES FOR EFFICIENT RECTIFICATION UNDER GENERAL MOTION Mr.V.SRINIVASA RAO 1 Prof.A.SATYA KALYAN 2 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING PRASAD V POTLURI SIDDHARTHA

More information

Last lecture. Passive Stereo Spacetime Stereo

Last lecture. Passive Stereo Spacetime Stereo Last lecture Passive Stereo Spacetime Stereo Today Structure from Motion: Given pixel correspondences, how to compute 3D structure and camera motion? Slides stolen from Prof Yungyu Chuang Epipolar geometry

More information

Computer Vision Lecture 6

Computer Vision Lecture 6 Course Outline Computer Vision Lecture 6 Segmentation Image Processing Basics Structure Extraction Segmentation Segmentation as Clustering Graph-theoretic Segmentation 12.11.2015 Recognition Global Representations

More information

Structure from Motion CSC 767

Structure from Motion CSC 767 Structure from Motion CSC 767 Structure from motion Given a set of corresponding points in two or more images, compute the camera parameters and the 3D point coordinates?? R,t R 2,t 2 R 3,t 3 Camera??

More information

Image warping and stitching

Image warping and stitching Image warping and stitching Thurs Oct 15 Last time Feature-based alignment 2D transformations Affine fit RANSAC 1 Robust feature-based alignment Extract features Compute putative matches Loop: Hypothesize

More information

Image correspondences and structure from motion

Image correspondences and structure from motion Image correspondences and structure from motion http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 20 Course announcements Homework 5 posted.

More information

Lecture'9'&'10:'' Stereo'Vision'

Lecture'9'&'10:'' Stereo'Vision' Lecture'9'&'10:'' Stereo'Vision' Dr.'Juan'Carlos'Niebles' Stanford'AI'Lab' ' Professor'FeiAFei'Li' Stanford'Vision'Lab' 1' Dimensionality'ReducIon'Machine'(3D'to'2D)' 3D world 2D image Point of observation

More information

Part based models for recognition. Kristen Grauman

Part based models for recognition. Kristen Grauman Part based models for recognition Kristen Grauman UT Austin Limitations of window-based models Not all objects are box-shaped Assuming specific 2d view of object Local components themselves do not necessarily

More information

Multiple View Geometry in Computer Vision

Multiple View Geometry in Computer Vision Multiple View Geometry in Computer Vision Prasanna Sahoo Department of Mathematics University of Louisville 1 Structure Computation Lecture 18 March 22, 2005 2 3D Reconstruction The goal of 3D reconstruction

More information

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert

Week 2: Two-View Geometry. Padua Summer 08 Frank Dellaert Week 2: Two-View Geometry Padua Summer 08 Frank Dellaert Mosaicking Outline 2D Transformation Hierarchy RANSAC Triangulation of 3D Points Cameras Triangulation via SVD Automatic Correspondence Essential

More information

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich.

Perception. Autonomous Mobile Robots. Sensors Vision Uncertainties, Line extraction from laser scans. Autonomous Systems Lab. Zürich. Autonomous Mobile Robots Localization "Position" Global Map Cognition Environment Model Local Map Path Perception Real World Environment Motion Control Perception Sensors Vision Uncertainties, Line extraction

More information

Lecture: RANSAC and feature detectors

Lecture: RANSAC and feature detectors Lecture: RANSAC and feature detectors Juan Carlos Niebles and Ranjay Krishna Stanford Vision and Learning Lab 1 What we will learn today? A model fitting method for edge detection RANSAC Local invariant

More information

Lecture 6 Stereo Systems Multi-view geometry

Lecture 6 Stereo Systems Multi-view geometry Lecture 6 Stereo Systems Multi-view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-5-Feb-4 Lecture 6 Stereo Systems Multi-view geometry Stereo systems

More information

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15

Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Professor Silvio Savarese Computational Vision and Geometry Lab Silvio Savarese Lecture 6-24-Jan-15 Lecture 6 Stereo Systems Multi- view geometry Stereo systems

More information

(Refer Slide Time: 0:32)

(Refer Slide Time: 0:32) Digital Image Processing. Professor P. K. Biswas. Department of Electronics and Electrical Communication Engineering. Indian Institute of Technology, Kharagpur. Lecture-57. Image Segmentation: Global Processing

More information

Feature Based Registration - Image Alignment

Feature Based Registration - Image Alignment Feature Based Registration - Image Alignment Image Registration Image registration is the process of estimating an optimal transformation between two or more images. Many slides from Alexei Efros http://graphics.cs.cmu.edu/courses/15-463/2007_fall/463.html

More information

Two-view geometry Computer Vision Spring 2018, Lecture 10

Two-view geometry Computer Vision Spring 2018, Lecture 10 Two-view geometry http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 10 Course announcements Homework 2 is due on February 23 rd. - Any questions about the homework? - How many of

More information

INFO0948 Fitting and Shape Matching

INFO0948 Fitting and Shape Matching INFO0948 Fitting and Shape Matching Renaud Detry University of Liège, Belgium Updated March 31, 2015 1 / 33 These slides are based on the following book: D. Forsyth and J. Ponce. Computer vision: a modern

More information

Camera Geometry II. COS 429 Princeton University

Camera Geometry II. COS 429 Princeton University Camera Geometry II COS 429 Princeton University Outline Projective geometry Vanishing points Application: camera calibration Application: single-view metrology Epipolar geometry Application: stereo correspondence

More information

CSE 527: Introduction to Computer Vision

CSE 527: Introduction to Computer Vision CSE 527: Introduction to Computer Vision Week 5 - Class 1: Matching, Stitching, Registration September 26th, 2017 ??? Recap Today Feature Matching Image Alignment Panoramas HW2! Feature Matches Feature

More information

Automatic estimation of the inlier threshold in robust multiple structures fitting.

Automatic estimation of the inlier threshold in robust multiple structures fitting. Automatic estimation of the inlier threshold in robust multiple structures fitting. Roberto Toldo and Andrea Fusiello Dipartimento di Informatica, Università di Verona Strada Le Grazie, 3734 Verona, Italy

More information

The SIFT (Scale Invariant Feature

The SIFT (Scale Invariant Feature The SIFT (Scale Invariant Feature Transform) Detector and Descriptor developed by David Lowe University of British Columbia Initial paper ICCV 1999 Newer journal paper IJCV 2004 Review: Matt Brown s Canonical

More information

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local

Fitting. Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local Fitting Choose a parametric object/some objects to represent a set of tokens Most interesting case is when criterion is not local can t tell whether a set of points lies on a line by looking only at each

More information

CS 231A Computer Vision (Winter 2018) Problem Set 3

CS 231A Computer Vision (Winter 2018) Problem Set 3 CS 231A Computer Vision (Winter 2018) Problem Set 3 Due: Feb 28, 2018 (11:59pm) 1 Space Carving (25 points) Dense 3D reconstruction is a difficult problem, as tackling it from the Structure from Motion

More information

Lecture 10: Multi-view geometry

Lecture 10: Multi-view geometry Lecture 10: Multi-view geometry Professor Stanford Vision Lab 1 What we will learn today? Review for stereo vision Correspondence problem (Problem Set 2 (Q3)) Active stereo vision systems Structure from

More information

CS6670: Computer Vision

CS6670: Computer Vision CS6670: Computer Vision Noah Snavely Lecture 7: Image Alignment and Panoramas What s inside your fridge? http://www.cs.washington.edu/education/courses/cse590ss/01wi/ Projection matrix intrinsics projection

More information

Transformations Between Two Images. Translation Rotation Rigid Similarity (scaled rotation) Affine Projective Pseudo Perspective Bi linear

Transformations Between Two Images. Translation Rotation Rigid Similarity (scaled rotation) Affine Projective Pseudo Perspective Bi linear Transformations etween Two Images Translation Rotation Rigid Similarit (scaled rotation) ffine Projective Pseudo Perspective i linear Fundamental Matri Lecture 13 pplications Stereo Structure from Motion

More information

Stereo Vision. MAN-522 Computer Vision

Stereo Vision. MAN-522 Computer Vision Stereo Vision MAN-522 Computer Vision What is the goal of stereo vision? The recovery of the 3D structure of a scene using two or more images of the 3D scene, each acquired from a different viewpoint in

More information

Fundamental Matrix. Lecture 13

Fundamental Matrix. Lecture 13 Fundamental Matri Lecture 13 Transformations etween Two Images Translation Rotation Rigid Similarit (scaled rotation) ffine Projective Pseudo Perspective i linear pplications Stereo Structure from Motion

More information