Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. Ali Mirzapour Paper Presentation - Deep Learning March 7 th

Size: px
Start display at page:

Download "Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient. Ali Mirzapour Paper Presentation - Deep Learning March 7 th"

Transcription

1 Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient Ali Mirzapour Paper Presentation - Deep Learning March 7 th 1

2 Outline of the Presentation Restricted Boltzmann Machine (RBM) Contrastive Divergence (CD) Gradient Approximation The Persistent CD Algorithm Experimental Results Discussion Conclusion and Future work 2

3 Restricted Boltzmann Machine (RBM) Neural network models for both unsupervised and supervised learning Consists of two layer of binary units 3

4 Restricted Boltzmann Machine (RBM) (Cont.) Is an Energy Based model EE xx, h = jj kk WW jjjj h jj xx kk cc kk xx kk jj bb jj h jj kk Probability of data point (x in the visible layer) exp( EE xx, h) pp xx = pp xx, h = ZZ Z is a partition function. h ZZ = exp( EE xx, h) xx,yy 4

5 Restricted Boltzmann Machine (RBM) (Cont.) Success of RBM Try to minimize the average negative log-likelihood (NLL) 1 log pp(xx tt ) TT tt Stochasticgradient descent is proceeded = log PP vv = + = EE h EE(xx tt,h) xx (tt) EE xx,h (xx,h) 5

6 Contrastive Divergence (CD) Gradient Approximation To estimate the direction of gradient accurately Replace the expectation by a point estimate at xx Obtain the point xx by Gibbs sampling Start sampling chain at xx (tt) 6

7 The Persistent CD Algorithm Using the CD gradient approximation is too time-consuming Instead of initializing the chain by xx (tt), initialize the Markov Chain by the negative sample of the last iteration 7

8 Experimental results The considered data sets MNIST data set of handwritten digits images 28 by 28 pixels training cases for validation set for test cases Values are binarized by sampling from the given Bernoulli distribution 8

9 Experimental results (Cont.) A data set consisting of descriptions of s is considered s s are labeled by spam and not-spam An artificial data set Created by combining the outlines of rectangles and triangles Infinite amount of data is generated Data set of image segmentations Picture of horses Have a binary data set (part of horse, part of background) 9

10 Experimental results (Cont.) The Implemented Models RBM for unsupervised learning Time complexity of the computation is exponential of the smallest layer (visible or hidden) RBM for supervised learning The label of data points are added to the chain Fully connected Markov Random field (MRF) Compared with the Pseudo-Likelihood algorithm 10

11 Experimental results (Cont.) Best Implementation of PCD Algorithm No Markov chains get reset One full Gibbs sampling update is done on each of the Markov Chain for each gradient estimation The # of Markov Chains = # of training data points in a mini-batch 11

12 Experimental results (Cont.) PCD for fully connected MRF Advantage The positive phase in MRF is constant The training set can be discarded after the positive phase computation Disadvantage Markov chain defined by Gibbs sampling has slowing mixing All visible units can not be updated at the same time 12

13 Discussion Modeling MNIST data with 25 hidden units 13

14 Discussion (cont.) Modeling MNIST data with 500 hidden units 14

15 Discussion (cont.) Classification of MNIST data 15

16 Discussion PCD outperforms the other algorithms CD-10 takes about four times as long as PCD CD-1, and MF CD CD-10 performs better than CD-1 when there is a little time Performance of RBM which is trained by CD-1 and PCD 16

17 Discussion (cont.) Modeling Artificial Data CD-10 being preferable when little time is available and PCD being better if more time is available 17

18 Discussion (cont.) Modeling Artificial Data The Data set is artificially generated An infinite amount of data is available Weight Decay Regularization Determines how dominant this regularization term will be in the gradient computation CD algorithms are quite dependent on the mixing rate of the Markov Chain defined by the Gibbs sampler 18 Higher Regularization Term Parameters of Model Smaller

19 Discussion (cont.) Classifying Data There is a small data set (5000 data) Error bars on the performance are large PCD is a reasonable choice 19

20 Discussion (cont.) Modeling Horse Contours PCD is not a best choice The number of data is much bigger (1024 visible units, 500 hidden units) PCD performs better by increasing the number of training time 20

21 Discussion (cont.) PCD on MRFs vs. Pseudo-Likelihood (PL) PCD on MRFs It moves in the direction of the data likelihood function It profits from having more time to run Pseudo- Likelihood (PL) It Does not produce the best probability models It needs early stopping to prevent diverging 21

22 Discussion (cont.) PCD on MRFs vs. Pseudo-Likelihood (PL) 22

23 Conclusion and Future work Conclusion Proposed a Persistent CD (PCD) Quantify the performance of their proposed model with the other algorithms PCD is fast and simple PCD outperforms the other algorithms Future work To investigate the use of weight decay regularization To compare algorithms in more amount of the training time 23

24 24 Thank you

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient

Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient Training Restricted Boltzmann Machines using Approximations to the Likelihood Gradient Tijmen Tieleman tijmen@cs.toronto.edu Department of Computer Science, University of Toronto, Toronto, Ontario M5S

More information

A Fast Learning Algorithm for Deep Belief Nets

A Fast Learning Algorithm for Deep Belief Nets A Fast Learning Algorithm for Deep Belief Nets Geoffrey E. Hinton, Simon Osindero Department of Computer Science University of Toronto, Toronto, Canada Yee-Whye Teh Department of Computer Science National

More information

Training Restricted Boltzmann Machines with Multi-Tempering: Harnessing Parallelization

Training Restricted Boltzmann Machines with Multi-Tempering: Harnessing Parallelization Training Restricted Boltzmann Machines with Multi-Tempering: Harnessing Parallelization Philemon Brakel, Sander Dieleman, and Benjamin Schrauwen Department of Electronics and Information Systems, Ghent

More information

Deep Boltzmann Machines

Deep Boltzmann Machines Deep Boltzmann Machines Sargur N. Srihari srihari@cedar.buffalo.edu Topics 1. Boltzmann machines 2. Restricted Boltzmann machines 3. Deep Belief Networks 4. Deep Boltzmann machines 5. Boltzmann machines

More information

Training Restricted Boltzmann Machines with Overlapping Partitions

Training Restricted Boltzmann Machines with Overlapping Partitions Training Restricted Boltzmann Machines with Overlapping Partitions Hasari Tosun and John W. Sheppard Montana State University, Department of Computer Science, Bozeman, Montana, USA Abstract. Restricted

More information

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt

Energy Based Models, Restricted Boltzmann Machines and Deep Networks. Jesse Eickholt Energy Based Models, Restricted Boltzmann Machines and Deep Networks Jesse Eickholt ???? Who s heard of Energy Based Models (EBMs) Restricted Boltzmann Machines (RBMs) Deep Belief Networks Auto-encoders

More information

Parallel Implementation of Deep Learning Using MPI

Parallel Implementation of Deep Learning Using MPI Parallel Implementation of Deep Learning Using MPI CSE633 Parallel Algorithms (Spring 2014) Instructor: Prof. Russ Miller Team #13: Tianle Ma Email: tianlema@buffalo.edu May 7, 2014 Content Introduction

More information

Introduction to Deep Learning

Introduction to Deep Learning ENEE698A : Machine Learning Seminar Introduction to Deep Learning Raviteja Vemulapalli Image credit: [LeCun 1998] Resources Unsupervised feature learning and deep learning (UFLDL) tutorial (http://ufldl.stanford.edu/wiki/index.php/ufldl_tutorial)

More information

3D Object Recognition with Deep Belief Nets

3D Object Recognition with Deep Belief Nets 3D Object Recognition with Deep Belief Nets Vinod Nair and Geoffrey E. Hinton Department of Computer Science, University of Toronto 10 King s College Road, Toronto, M5S 3G5 Canada {vnair,hinton}@cs.toronto.edu

More information

Implicit Mixtures of Restricted Boltzmann Machines

Implicit Mixtures of Restricted Boltzmann Machines Implicit Mixtures of Restricted Boltzmann Machines Vinod Nair and Geoffrey Hinton Department of Computer Science, University of Toronto 10 King s College Road, Toronto, M5S 3G5 Canada {vnair,hinton}@cs.toronto.edu

More information

CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks

CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks CSE 5526: Introduction to Neural Networks Radial Basis Function (RBF) Networks Part IV 1 Function approximation MLP is both a pattern classifier and a function approximator As a function approximator,

More information

To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine

To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine 2014 22nd International Conference on Pattern Recognition To be Bernoulli or to be Gaussian, for a Restricted Boltzmann Machine Takayoshi Yamashita, Masayuki Tanaka, Eiji Yoshida, Yuji Yamauchi and Hironobu

More information

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES

Deep Learning. Practical introduction with Keras JORDI TORRES 27/05/2018. Chapter 3 JORDI TORRES Deep Learning Practical introduction with Keras Chapter 3 27/05/2018 Neuron A neural network is formed by neurons connected to each other; in turn, each connection of one neural network is associated

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Bengio Université de Montréal 13/06/2007

More information

CS6716 Pattern Recognition

CS6716 Pattern Recognition CS6716 Pattern Recognition Prototype Methods Aaron Bobick School of Interactive Computing Administrivia Problem 2b was extended to March 25. Done? PS3 will be out this real soon (tonight) due April 10.

More information

Efficient Feature Learning Using Perturb-and-MAP

Efficient Feature Learning Using Perturb-and-MAP Efficient Feature Learning Using Perturb-and-MAP Ke Li, Kevin Swersky, Richard Zemel Dept. of Computer Science, University of Toronto {keli,kswersky,zemel}@cs.toronto.edu Abstract Perturb-and-MAP [1] is

More information

Recognizing Hand-written Digits Using Hierarchical Products of Experts

Recognizing Hand-written Digits Using Hierarchical Products of Experts Recognizing Hand-written Digits Using Hierarchical Products of Experts Guy Mayraz & Geoffrey E. Hinton Gatsby Computational Neuroscience Unit University College London 17 Queen Square, London WCIN 3AR,

More information

Deep neural networks II

Deep neural networks II Deep neural networks II May 31 st, 2018 Yong Jae Lee UC Davis Many slides from Rob Fergus, Svetlana Lazebnik, Jia-Bin Huang, Derek Hoiem, Adriana Kovashka, Why (convolutional) neural networks? State of

More information

Learning Class-relevant Features and Class-irrelevant Features via a Hybrid third-order RBM

Learning Class-relevant Features and Class-irrelevant Features via a Hybrid third-order RBM via a Hybrid third-order RBM Heng Luo Ruimin Shen Changyong Niu Carsten Ullrich Shanghai Jiao Tong University hengluo@sjtu.edu Shanghai Jiao Tong University rmshen@sjtu.edu Zhengzhou University iecyniu@zzu.edu.cn

More information

Large Scale Data Analysis Using Deep Learning

Large Scale Data Analysis Using Deep Learning Large Scale Data Analysis Using Deep Learning Machine Learning Basics - 1 U Kang Seoul National University U Kang 1 In This Lecture Overview of Machine Learning Capacity, overfitting, and underfitting

More information

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU,

Machine Learning. Deep Learning. Eric Xing (and Pengtao Xie) , Fall Lecture 8, October 6, Eric CMU, Machine Learning 10-701, Fall 2015 Deep Learning Eric Xing (and Pengtao Xie) Lecture 8, October 6, 2015 Eric Xing @ CMU, 2015 1 A perennial challenge in computer vision: feature engineering SIFT Spin image

More information

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction

Akarsh Pokkunuru EECS Department Contractive Auto-Encoders: Explicit Invariance During Feature Extraction Akarsh Pokkunuru EECS Department 03-16-2017 Contractive Auto-Encoders: Explicit Invariance During Feature Extraction 1 AGENDA Introduction to Auto-encoders Types of Auto-encoders Analysis of different

More information

Deep Learning. Volker Tresp Summer 2014

Deep Learning. Volker Tresp Summer 2014 Deep Learning Volker Tresp Summer 2014 1 Neural Network Winter and Revival While Machine Learning was flourishing, there was a Neural Network winter (late 1990 s until late 2000 s) Around 2010 there

More information

SPE MS. Abstract. Introduction. Autoencoders

SPE MS. Abstract. Introduction. Autoencoders SPE-174015-MS Autoencoder-derived Features as Inputs to Classification Algorithms for Predicting Well Failures Jeremy Liu, ISI USC, Ayush Jaiswal, USC, Ke-Thia Yao, ISI USC, Cauligi S.Raghavendra, USC

More information

Multi-view object segmentation in space and time. Abdelaziz Djelouah, Jean Sebastien Franco, Edmond Boyer

Multi-view object segmentation in space and time. Abdelaziz Djelouah, Jean Sebastien Franco, Edmond Boyer Multi-view object segmentation in space and time Abdelaziz Djelouah, Jean Sebastien Franco, Edmond Boyer Outline Addressed problem Method Results and Conclusion Outline Addressed problem Method Results

More information

Handwritten Hindi Numerals Recognition System

Handwritten Hindi Numerals Recognition System CS365 Project Report Handwritten Hindi Numerals Recognition System Submitted by: Akarshan Sarkar Kritika Singh Project Mentor: Prof. Amitabha Mukerjee 1 Abstract In this project, we consider the problem

More information

Emotion Detection using Deep Belief Networks

Emotion Detection using Deep Belief Networks Emotion Detection using Deep Belief Networks Kevin Terusaki and Vince Stigliani May 9, 2014 Abstract In this paper, we explore the exciting new field of deep learning. Recent discoveries have made it possible

More information

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani

Neural Networks. CE-725: Statistical Pattern Recognition Sharif University of Technology Spring Soleymani Neural Networks CE-725: Statistical Pattern Recognition Sharif University of Technology Spring 2013 Soleymani Outline Biological and artificial neural networks Feed-forward neural networks Single layer

More information

Clustering algorithms and autoencoders for anomaly detection

Clustering algorithms and autoencoders for anomaly detection Clustering algorithms and autoencoders for anomaly detection Alessia Saggio Lunch Seminars and Journal Clubs Université catholique de Louvain, Belgium 3rd March 2017 a Outline Introduction Clustering algorithms

More information

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models

Computer Vision Group Prof. Daniel Cremers. 4a. Inference in Graphical Models Group Prof. Daniel Cremers 4a. Inference in Graphical Models Inference on a Chain (Rep.) The first values of µ α and µ β are: The partition function can be computed at any node: Overall, we have O(NK 2

More information

3 : Representation of Undirected GMs

3 : Representation of Undirected GMs 0-708: Probabilistic Graphical Models 0-708, Spring 202 3 : Representation of Undirected GMs Lecturer: Eric P. Xing Scribes: Nicole Rafidi, Kirstin Early Last Time In the last lecture, we discussed directed

More information

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version

Restricted Boltzmann Machines. Shallow vs. deep networks. Stacked RBMs. Boltzmann Machine learning: Unsupervised version Shallow vs. deep networks Restricted Boltzmann Machines Shallow: one hidden layer Features can be learned more-or-less independently Arbitrary function approximator (with enough hidden units) Deep: two

More information

Optimizing Neural Networks that Generate Images. Tijmen Tieleman

Optimizing Neural Networks that Generate Images. Tijmen Tieleman Optimizing Neural Networks that Generate Images by Tijmen Tieleman A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Computer Science

More information

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition

Pattern Recognition. Kjell Elenius. Speech, Music and Hearing KTH. March 29, 2007 Speech recognition Pattern Recognition Kjell Elenius Speech, Music and Hearing KTH March 29, 2007 Speech recognition 2007 1 Ch 4. Pattern Recognition 1(3) Bayes Decision Theory Minimum-Error-Rate Decision Rules Discriminant

More information

Modeling pigeon behaviour using a Conditional Restricted Boltzmann Machine

Modeling pigeon behaviour using a Conditional Restricted Boltzmann Machine Modeling pigeon behaviour using a Conditional Restricted Boltzmann Machine Matthew D. Zeiler 1,GrahamW.Taylor 1, Nikolaus F. Troje 2 and Geoffrey E. Hinton 1 1- University of Toronto - Dept. of Computer

More information

Early Stopping. Sargur N. Srihari

Early Stopping. Sargur N. Srihari Early Stopping Sargur N. srihari@cedar.buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Regularization Strategies 1. Parameter Norm Penalties

More information

Advanced Introduction to Machine Learning, CMU-10715

Advanced Introduction to Machine Learning, CMU-10715 Advanced Introduction to Machine Learning, CMU-10715 Deep Learning Barnabás Póczos, Sept 17 Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio

More information

Deep Belief Network for Clustering and Classification of a Continuous Data

Deep Belief Network for Clustering and Classification of a Continuous Data Deep Belief Network for Clustering and Classification of a Continuous Data Mostafa A. SalamaI, Aboul Ella Hassanien" Aly A. Fahmy2 'Department of Computer Science, British University in Egypt, Cairo, Egypt

More information

Collective classification in network data

Collective classification in network data 1 / 50 Collective classification in network data Seminar on graphs, UCSB 2009 Outline 2 / 50 1 Problem 2 Methods Local methods Global methods 3 Experiments Outline 3 / 50 1 Problem 2 Methods Local methods

More information

Autoencoders, denoising autoencoders, and learning deep networks

Autoencoders, denoising autoencoders, and learning deep networks 4 th CiFAR Summer School on Learning and Vision in Biology and Engineering Toronto, August 5-9 2008 Autoencoders, denoising autoencoders, and learning deep networks Part II joint work with Hugo Larochelle,

More information

A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition

A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition A Comparison of Sequence-Trained Deep Neural Networks and Recurrent Neural Networks Optical Modeling For Handwriting Recognition Théodore Bluche, Hermann Ney, Christopher Kermorvant SLSP 14, Grenoble October

More information

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa

Lecture 2 Notes. Outline. Neural Networks. The Big Idea. Architecture. Instructors: Parth Shah, Riju Pahwa Instructors: Parth Shah, Riju Pahwa Lecture 2 Notes Outline 1. Neural Networks The Big Idea Architecture SGD and Backpropagation 2. Convolutional Neural Networks Intuition Architecture 3. Recurrent Neural

More information

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION

DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION DEEP LEARNING TO DIVERSIFY BELIEF NETWORKS FOR REMOTE SENSING IMAGE CLASSIFICATION S.Dhanalakshmi #1 #PG Scholar, Department of Computer Science, Dr.Sivanthi Aditanar college of Engineering, Tiruchendur

More information

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic

SEMANTIC COMPUTING. Lecture 8: Introduction to Deep Learning. TU Dresden, 7 December Dagmar Gromann International Center For Computational Logic SEMANTIC COMPUTING Lecture 8: Introduction to Deep Learning Dagmar Gromann International Center For Computational Logic TU Dresden, 7 December 2018 Overview Introduction Deep Learning General Neural Networks

More information

Ensemble methods in machine learning. Example. Neural networks. Neural networks

Ensemble methods in machine learning. Example. Neural networks. Neural networks Ensemble methods in machine learning Bootstrap aggregating (bagging) train an ensemble of models based on randomly resampled versions of the training set, then take a majority vote Example What if you

More information

The Mathematics Behind Neural Networks

The Mathematics Behind Neural Networks The Mathematics Behind Neural Networks Pattern Recognition and Machine Learning by Christopher M. Bishop Student: Shivam Agrawal Mentor: Nathaniel Monson Courtesy of xkcd.com The Black Box Training the

More information

Dynamic Routing Between Capsules

Dynamic Routing Between Capsules Report Explainable Machine Learning Dynamic Routing Between Capsules Author: Michael Dorkenwald Supervisor: Dr. Ullrich Köthe 28. Juni 2018 Inhaltsverzeichnis 1 Introduction 2 2 Motivation 2 3 CapusleNet

More information

1.2 Round-off Errors and Computer Arithmetic

1.2 Round-off Errors and Computer Arithmetic 1.2 Round-off Errors and Computer Arithmetic 1 In a computer model, a memory storage unit word is used to store a number. A word has only a finite number of bits. These facts imply: 1. Only a small set

More information

Neural Networks and Deep Learning

Neural Networks and Deep Learning Neural Networks and Deep Learning Example Learning Problem Example Learning Problem Celebrity Faces in the Wild Machine Learning Pipeline Raw data Feature extract. Feature computation Inference: prediction,

More information

Hidden Markov Models. Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017

Hidden Markov Models. Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017 Hidden Markov Models Gabriela Tavares and Juri Minxha Mentor: Taehwan Kim CS159 04/25/2017 1 Outline 1. 2. 3. 4. Brief review of HMMs Hidden Markov Support Vector Machines Large Margin Hidden Markov Models

More information

Shortening Time Required for Adaptive Structural Learning Method of Deep Belief Network with Multi-Modal Data Arrangement

Shortening Time Required for Adaptive Structural Learning Method of Deep Belief Network with Multi-Modal Data Arrangement Shortening Time Required for Adaptive Structural Learning Method of Deep Belief Network with Multi-Modal Data Arrangement arxiv:180703952v1 [csne] 11 Jul 2018 Shin Kamada Graduate School of Information

More information

Asynchronous Multi-Task Learning

Asynchronous Multi-Task Learning Asynchronous Multi-Task Learning Inci M. Baytas, Ming Yan, Anil K. Jain and Jiayu Zhou December 14th, 2016 ICDM 2016 Inci M. Baytas, Ming Yan, Anil K. Jain and Jiayu Zhou 1 Outline 1 Introduction 2 Solving

More information

Deep Learning and Its Applications

Deep Learning and Its Applications Convolutional Neural Network and Its Application in Image Recognition Oct 28, 2016 Outline 1 A Motivating Example 2 The Convolutional Neural Network (CNN) Model 3 Training the CNN Model 4 Issues and Recent

More information

Convolutional Deep Belief Networks on CIFAR-10

Convolutional Deep Belief Networks on CIFAR-10 Convolutional Deep Belief Networks on CIFAR-10 Alex Krizhevsky kriz@cs.toronto.edu 1 Introduction We describe how to train a two-layer convolutional Deep Belief Network (DBN) on the 1.6 million tiny images

More information

BRAND STANDARD GUIDELINES 2014

BRAND STANDARD GUIDELINES 2014 BRAND STANDARD GUIDELINES 2014 LOGO USAGE & TYPEFACES Logo Usage The Lackawanna College School of Petroleum & Natural Gas logo utilizes typography, two simple rule lines and the Lackawanna College graphic

More information

CSC 578 Neural Networks and Deep Learning

CSC 578 Neural Networks and Deep Learning CSC 578 Neural Networks and Deep Learning Fall 2018/19 7. Recurrent Neural Networks (Some figures adapted from NNDL book) 1 Recurrent Neural Networks 1. Recurrent Neural Networks (RNNs) 2. RNN Training

More information

Latent Regression Bayesian Network for Data Representation

Latent Regression Bayesian Network for Data Representation 2016 23rd International Conference on Pattern Recognition (ICPR) Cancún Center, Cancún, México, December 4-8, 2016 Latent Regression Bayesian Network for Data Representation Siqi Nie Department of Electrical,

More information

CS 179 Lecture 16. Logistic Regression & Parallel SGD

CS 179 Lecture 16. Logistic Regression & Parallel SGD CS 179 Lecture 16 Logistic Regression & Parallel SGD 1 Outline logistic regression (stochastic) gradient descent parallelizing SGD for neural nets (with emphasis on Google s distributed neural net implementation)

More information

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah

Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Improving the way neural networks learn Srikumar Ramalingam School of Computing University of Utah Reference Most of the slides are taken from the third chapter of the online book by Michael Nielson: neuralnetworksanddeeplearning.com

More information

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen

Lecture 13. Deep Belief Networks. Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen Lecture 13 Deep Belief Networks Michael Picheny, Bhuvana Ramabhadran, Stanley F. Chen IBM T.J. Watson Research Center Yorktown Heights, New York, USA {picheny,bhuvana,stanchen}@us.ibm.com 12 December 2012

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu Can we identify node groups? (communities, modules, clusters) 2/13/2014 Jure Leskovec, Stanford C246: Mining

More information

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.

D-Separation. b) the arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C. D-Separation Say: A, B, and C are non-intersecting subsets of nodes in a directed graph. A path from A to B is blocked by C if it contains a node such that either a) the arrows on the path meet either

More information

Unsupervised Deep Learning for Scene Recognition

Unsupervised Deep Learning for Scene Recognition Unsupervised Deep Learning for Scene Recognition Akram Helou and Chau Nguyen May 19, 2011 1 Introduction Object and scene recognition are usually studied separately. However, research [2]shows that context

More information

An Evolutionary Approximation to Contrastive Divergence in Convolutional Restricted Boltzmann Machines

An Evolutionary Approximation to Contrastive Divergence in Convolutional Restricted Boltzmann Machines Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2014 An Evolutionary Approximation to Contrastive Divergence in Convolutional Restricted Boltzmann Machines

More information

Learning robust features from underwater ship-radiated noise with mutual information group sparse DBN

Learning robust features from underwater ship-radiated noise with mutual information group sparse DBN Learning robust features from underwater ship-radiated noise with mutual information group sparse DBN Sheng SHEN ; Honghui YANG ; Zhen HAN ; Junun SHI ; Jinyu XIONG ; Xiaoyong ZHANG School of Marine Science

More information

Report: Privacy-Preserving Classification on Deep Neural Network

Report: Privacy-Preserving Classification on Deep Neural Network Report: Privacy-Preserving Classification on Deep Neural Network Janno Veeorg Supervised by Helger Lipmaa and Raul Vicente Zafra May 25, 2017 1 Introduction In this report we consider following task: how

More information

COMP 551 Applied Machine Learning Lecture 16: Deep Learning

COMP 551 Applied Machine Learning Lecture 16: Deep Learning COMP 551 Applied Machine Learning Lecture 16: Deep Learning Instructor: Ryan Lowe (ryan.lowe@cs.mcgill.ca) Slides mostly by: Class web page: www.cs.mcgill.ca/~hvanho2/comp551 Unless otherwise noted, all

More information

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016

CPSC 340: Machine Learning and Data Mining. Principal Component Analysis Fall 2016 CPSC 340: Machine Learning and Data Mining Principal Component Analysis Fall 2016 A2/Midterm: Admin Grades/solutions will be posted after class. Assignment 4: Posted, due November 14. Extra office hours:

More information

Image Restoration using Markov Random Fields

Image Restoration using Markov Random Fields Image Restoration using Markov Random Fields Based on the paper Stochastic Relaxation, Gibbs Distributions and Bayesian Restoration of Images, PAMI, 1984, Geman and Geman. and the book Markov Random Field

More information

COMPUTATIONAL INTELLIGENCE

COMPUTATIONAL INTELLIGENCE COMPUTATIONAL INTELLIGENCE Fundamentals Adrian Horzyk Preface Before we can proceed to discuss specific complex methods we have to introduce basic concepts, principles, and models of computational intelligence

More information

Machine Learning Classifiers and Boosting

Machine Learning Classifiers and Boosting Machine Learning Classifiers and Boosting Reading Ch 18.6-18.12, 20.1-20.3.2 Outline Different types of learning problems Different types of learning algorithms Supervised learning Decision trees Naïve

More information

Clustering Relational Data using the Infinite Relational Model

Clustering Relational Data using the Infinite Relational Model Clustering Relational Data using the Infinite Relational Model Ana Daglis Supervised by: Matthew Ludkin September 4, 2015 Ana Daglis Clustering Data using the Infinite Relational Model September 4, 2015

More information

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016

CS 1674: Intro to Computer Vision. Neural Networks. Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 CS 1674: Intro to Computer Vision Neural Networks Prof. Adriana Kovashka University of Pittsburgh November 16, 2016 Announcements Please watch the videos I sent you, if you haven t yet (that s your reading)

More information

Final Report of Term Project ANN for Handwritten Digits Recognition

Final Report of Term Project ANN for Handwritten Digits Recognition Final Report of Term Project ANN for Handwritten Digits Recognition Weiran Wang May 5, 09 Abstract In this paper we present an Aritificial Neural Network to tackle the recognition of human handwritten

More information

Static Gesture Recognition with Restricted Boltzmann Machines

Static Gesture Recognition with Restricted Boltzmann Machines Static Gesture Recognition with Restricted Boltzmann Machines Peter O Donovan Department of Computer Science, University of Toronto 6 Kings College Rd, M5S 3G4, Canada odonovan@dgp.toronto.edu Abstract

More information

Mixed handwritten and printed digit recognition in Sudoku with Convolutional Deep Belief Network

Mixed handwritten and printed digit recognition in Sudoku with Convolutional Deep Belief Network Mixed handwritten and printed digit recognition in Sudoku with Convolutional Deep Belief Network Baptiste Wicht*, Jean Hennebert t University of Fribourg, Switzerland HES-SO, University of Applied Science

More information

Recurrent Neural Network (RNN) Industrial AI Lab.

Recurrent Neural Network (RNN) Industrial AI Lab. Recurrent Neural Network (RNN) Industrial AI Lab. For example (Deterministic) Time Series Data Closed- form Linear difference equation (LDE) and initial condition High order LDEs 2 (Stochastic) Time Series

More information

Lecture 20: Neural Networks for NLP. Zubin Pahuja

Lecture 20: Neural Networks for NLP. Zubin Pahuja Lecture 20: Neural Networks for NLP Zubin Pahuja zpahuja2@illinois.edu courses.engr.illinois.edu/cs447 CS447: Natural Language Processing 1 Today s Lecture Feed-forward neural networks as classifiers simple

More information

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla

DEEP LEARNING REVIEW. Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature Presented by Divya Chitimalla DEEP LEARNING REVIEW Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 2015 -Presented by Divya Chitimalla What is deep learning Deep learning allows computational models that are composed of multiple

More information

Structured Perceptron. Ye Qiu, Xinghui Lu, Yue Lu, Ruofei Shen

Structured Perceptron. Ye Qiu, Xinghui Lu, Yue Lu, Ruofei Shen Structured Perceptron Ye Qiu, Xinghui Lu, Yue Lu, Ruofei Shen 1 Outline 1. 2. 3. 4. Brief review of perceptron Structured Perceptron Discriminative Training Methods for Hidden Markov Models: Theory and

More information

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used.

4.12 Generalization. In back-propagation learning, as many training examples as possible are typically used. 1 4.12 Generalization In back-propagation learning, as many training examples as possible are typically used. It is hoped that the network so designed generalizes well. A network generalizes well when

More information

Large-scale Deep Unsupervised Learning using Graphics Processors

Large-scale Deep Unsupervised Learning using Graphics Processors Large-scale Deep Unsupervised Learning using Graphics Processors Rajat Raina Anand Madhavan Andrew Y. Ng Stanford University Learning from unlabeled data Classify vs. car motorcycle Input space Unlabeled

More information

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.

More on Neural Networks. Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5. More on Neural Networks Read Chapter 5 in the text by Bishop, except omit Sections 5.3.3, 5.3.4, 5.4, 5.5.4, 5.5.5, 5.5.6, 5.5.7, and 5.6 Recall the MLP Training Example From Last Lecture log likelihood

More information

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation

An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation An Empirical Evaluation of Deep Architectures on Problems with Many Factors of Variation Hugo Larochelle larocheh@iro.umontreal.ca Dumitru Erhan erhandum@iro.umontreal.ca Aaron Courville courvila@iro.umontreal.ca

More information

Unsupervised Learning

Unsupervised Learning Deep Learning for Graphics Unsupervised Learning Niloy Mitra Iasonas Kokkinos Paul Guerrero Vladimir Kim Kostas Rematas Tobias Ritschel UCL UCL/Facebook UCL Adobe Research U Washington UCL Timetable Niloy

More information

Neural Networks: promises of current research

Neural Networks: promises of current research April 2008 www.apstat.com Current research on deep architectures A few labs are currently researching deep neural network training: Geoffrey Hinton s lab at U.Toronto Yann LeCun s lab at NYU Our LISA lab

More information

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale Supplementary material for: BO-: Robust and Efficient Hyperparameter Optimization at Scale Stefan Falkner 1 Aaron Klein 1 Frank Hutter 1 A. Available Software To promote reproducible science and enable

More information

Feedback Alignment Algorithms. Lisa Zhang, Tingwu Wang, Mengye Ren

Feedback Alignment Algorithms. Lisa Zhang, Tingwu Wang, Mengye Ren Feedback Alignment Algorithms Lisa Zhang, Tingwu Wang, Mengye Ren Agenda Review of Back Propagation Random feedback weights support learning in deep neural networks Direct Feedback Alignment Provides Learning

More information

Parallel Stochastic Gradient Descent

Parallel Stochastic Gradient Descent University of Montreal August 11th, 2007 CIAR Summer School - Toronto Stochastic Gradient Descent Cost to optimize: E z [C(θ, z)] with θ the parameters and z a training point. Stochastic gradient: θ t+1

More information

Extracting and Composing Robust Features with Denoising Autoencoders

Extracting and Composing Robust Features with Denoising Autoencoders Presenter: Alexander Truong March 16, 2017 Extracting and Composing Robust Features with Denoising Autoencoders Pascal Vincent, Hugo Larochelle, Yoshua Bengio, Pierre-Antoine Manzagol 1 Outline Introduction

More information

Neural Network Neurons

Neural Network Neurons Neural Networks Neural Network Neurons 1 Receives n inputs (plus a bias term) Multiplies each input by its weight Applies activation function to the sum of results Outputs result Activation Functions Given

More information

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent

Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Gradient Descent Optimization Algorithms for Deep Learning Batch gradient descent Stochastic gradient descent Mini-batch gradient descent Slide credit: http://sebastianruder.com/optimizing-gradient-descent/index.html#batchgradientdescent

More information

Application of Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks to Recognition of Partially Occluded Objects

Application of Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks to Recognition of Partially Occluded Objects Application of Support Vector Machines, Convolutional Neural Networks and Deep Belief Networks to Recognition of Partially Occluded Objects Joseph Lin Chu and Adam Krzyżak Department of Computer Science

More information

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization

COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18. Lecture 6: k-nn Cross-validation Regularization COMPUTATIONAL INTELLIGENCE SEW (INTRODUCTION TO MACHINE LEARNING) SS18 Lecture 6: k-nn Cross-validation Regularization LEARNING METHODS Lazy vs eager learning Eager learning generalizes training data before

More information

Unsupervised Feature Learning for Optical Character Recognition

Unsupervised Feature Learning for Optical Character Recognition Unsupervised Feature Learning for Optical Character Recognition Devendra K Sahu and C. V. Jawahar Center for Visual Information Technology, IIIT Hyderabad, India. Abstract Most of the popular optical character

More information

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University

Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University Applied Bayesian Nonparametrics 5. Spatial Models via Gaussian Processes, not MRFs Tutorial at CVPR 2012 Erik Sudderth Brown University NIPS 2008: E. Sudderth & M. Jordan, Shared Segmentation of Natural

More information

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016

CPSC 340: Machine Learning and Data Mining. Deep Learning Fall 2016 CPSC 340: Machine Learning and Data Mining Deep Learning Fall 2016 Assignment 5: Due Friday. Assignment 6: Due next Friday. Final: Admin December 12 (8:30am HEBB 100) Covers Assignments 1-6. Final from

More information

Incremental extreme learning machine based on deep feature embedded

Incremental extreme learning machine based on deep feature embedded Int. J. Mach. Learn. & Cyber. (06) 7: 0 DOI 0.007/s304-05-049-5 ORIGINAL ARTICLE Incremental extreme learning machine based on deep feature embedded Jian Zhang, Shifei Ding, Nan Zhang, Zhongzhi Shi Received:

More information

Convolution Neural Networks for Chinese Handwriting Recognition

Convolution Neural Networks for Chinese Handwriting Recognition Convolution Neural Networks for Chinese Handwriting Recognition Xu Chen Stanford University 450 Serra Mall, Stanford, CA 94305 xchen91@stanford.edu Abstract Convolutional neural networks have been proven

More information

Chapter 6: Cluster Analysis

Chapter 6: Cluster Analysis Chapter 6: Cluster Analysis The major goal of cluster analysis is to separate individual observations, or items, into groups, or clusters, on the basis of the values for the q variables measured on each

More information