Machine Learning and Modeling for Social Networks

Size: px
Start display at page:

Download "Machine Learning and Modeling for Social Networks"

Transcription

1 Machine Learning and Modeling for Social Networks Olivia Woolley Meza, Izabela Moise, Nino Antulov-Fatulin, Lloyd Sanders 1

2 Introduction to Networks Computational Social Science D-GESS Olivia Woolley Meza 08/05/17 2

3 Motivation Basic concepts and definitions Adjacency matrix, paths, connected components Centrality Degree, closeness, Page Rank, betweenness Structural features (of social networks) Heterogeneity, assortativity, clustering, small world, communities Network models Random graphs, generative models 3

4 4

5 Multiple interconnected social media platforms source: H. Alani, M. Rowe, Mining and Comparing Engagement Dynamics Across Multiple Social Media Platforms, ACM Web Science Conference (WebSci)

6 Seven bridges of Königsberg In 1736 Euler posted the following problem: Is it possible to have a walk in the city of Königsberg, that crosses each of the seven bridges only once? 6

7 Networks: abstraction and representation of relations Source: Wikipedia Solution: No! Unless a node is a starting or endpoint, it must have an even number of edges if every edge is traversed only once. 7

8 Social networks Jacob L. Moreno introduced sociograms in his 1934 book Who Shall Survive? Understand the individual through it s relation to the group 8

9 Table 3.1 Basic statistics for a number of published networks. The properties measured are as follows: total number of vertices n; total number of edges m; mean degree z; mean vertex vertex distance l; type of graph, directed or undirected; exponent α of degree distribution if the distribution follows a power law (or if not; in/out-degree exponents are given for directed graphs); clustering coefficient C (1) from (3.3); clustering coefficient C (2) from (3.6); degree correlation coefficient r, section 3.6. The last column gives the citation for the network in the bibliography. Blank entries indicate unavailable data. Biological Technological Information Social Network Type n m z l α C (1) C (2) r Ref(s). film actors undirected [20, 415] company directors undirected [105, 322] math coauthorship undirected [107, 181] physics coauthorship undirected [310, 312] biology coauthorship undirected [310, 312] telephone call graph undirected [8, 9] messages directed / [136] address books directed [320] student relationships undirected [45] sexual contacts undirected [264, 265] WWW nd.edu directed / [14, 34] WWW Altavista directed /2.7 [74] citation network directed / [350] Roget s Thesaurus directed [243] word co-occurrence undirected [119, 157] Internet undirected [86, 148] power grid undirected [415] train routes undirected [365] software packages directed / [317] software classes directed [394] electronic circuits undirected [155] peer-to-peer network undirected [6, 353] metabolic network undirected [213] protein interactions undirected [211] marine food web directed [203] freshwater food web directed [271] neural network directed [415, 420] Source: Newman, M.E. (2003).The structure and function of complex networks. SIAM review, 45(2),

10 Basic definitions A graph G is defined as G(N,L) Set of nodes (vertices) N Nodes can have attributes Set of links (edges) L Directed (arcs) or undirected (edges) Unweighted or weighted (distance, traveling time, etc.) Links of different types can exist (multiplex networks) 10

11 Network Representations: Adjacency Matrix aij = existence of interaction between i and j wij = weights of interaction between i and j (e.g. number of communications per unit time) C A Adjacency Matrix A has entries aij a ij = ( 1, if w ij > 0 0, else 11

12 Network Representations: Edge and Adjacency Lists Edge list Adjacency list C A

13 Paths Path of length n = ordered collection of n+1 nodes and n links. Eg: (A,B,C,E), (A,D), (C,D),(D,E,C) in G =(N,L) Circuit = closed path (last node = first node) A B C Number of walks length k is given by powers or adjacency matrix D E 13

14 Geodesic paths The geodesic (shortest) path between i and j is minimum number of traversed edges A B A B C C D D E E Distance d(i,j) = shortest path between i and j Diameter D of the graph = max(d(i,j)) 14

15 Connected components A graph G=(N,L) is connected if and only if there exists a path connecting any two nodes in G Connected (Tree) Not Connected (Forest) Connected with loops 15

16 Centrality Measures 16

17 Degree, Strength, Closeness aij = existence of interaction between i and j wij = weight of interaction between i and j (e.g. number of communications per unit time) dij = distance between i and j Node degree k i = Â j a ij Node flux/strength F i = Â j w ij Node closeness D i = Â j d ij 17

18 Eigenvector centrality and PageRank Brin, Sergey, and Lawrence Page. "Reprint of: The anatomy of a large-scale hypertextual web search engine." Computer networks (2012): Eigenvector centrality x i is higher the more high-scoring others a node is connected to: x (t+1) i = nx j=1 A ij x (t) j Solution is dominated by the largest eigenvalue 1 as t!1 Ax = 1 x x i = 1 1 nx A ij x j j=1 PageRank x i downgrades common in-links and deals with directed links: x i = nx j=1 A ij x j k out j + x = AD 1 x + 1 D = max(k out, 1) 1 18

19 Betweenness centrality v Idea: Controlling network flows The number of shortest paths passing through a node v: σ st = number of shortest paths from s to t σ st (v) = number of shortest paths from s to t passing through v 19

20 Structural features (of social networks) 20

21 Giant Component A giant component is a connected component which size scales with the size of the network 21

22 Centrality heterogeneity P(Outdegree >= x) e-06 1e-08 1 P(Indegree >= x) e-06 1e Degree (a) Flickr Degree (b) LiveJournal Degree (c) Orkut Degree (d) YouTube source: Mislove et al. (2007) 22

23 Assortative mixing or homophily Birds of a feather flock together Can be any characteristic E.g. Degree assortativity: Average nearest-neighbor degree for vertices with degree k k nn Degree (a) Flickr (0.49) Degree (b) LiveJournal (0.34) Degree (c) Orkut (0.36) Degree (d) YouTube (0.19) source: Mislove et al. (2007) 23

24 Transitivity and clustering My friends tend to be friends Local clustering coefficient C(i): fraction of pairs of neighbors of a node that are also neighbors of each other. Equivalently, number of closed triples. Source Costa (2008) Question: What is the local clustering coefficient for the node i? Global clustering coefficient: network average 24

25 Small world property Empirical puzzle: Social worlds that are highly clustered but at the same time global distances are short e.g. there are at most 6 degrees of separation between any two randomly chosen individuals Randomly rewire a link with probability p Source: Watts, D. J., & Strogatz, S. H. (1998) A small-world network is a network where the typical distance L between two randomly chosen nodes grows logarithmically with total number of nodes N 25

26 Modularity and community structure Source: Newman, M. E. J. (2011) Computational Social Science D-GESS Olivia Woolley Meza 08/05/17 26

27 Community detection vs Graph partition Graph partitioning specifies the number of subgroups or number of nodes in each subgroup Hierarchical clustering, k means Community detection infers the subgroups from the network structure Divisive algorithms (recursively removing highest betweenness edges) Random walk algorithms (maximizing the time random walkers spend within a community) Modularity 27

28 Modularity m Q s 1 l s L d s 2L 2 is over the m modules of t observed fraction within group connections expected fraction within group connections m modules L links in total l s links within module s d s total module degree Basic idea: High fraction of links within group compared to chance (a null model) Community detection: Find partition with maximal modularity Q 28

29 1. Random graphs 2. Configuration models 3. Generative models Network Models 29

30 1. Random graphs (Erdos-Renyi) Start with a number of nodes n (not connected) Define probability of connection p For all the possible couples of nodes a link is created with probability p 30

31 Degree and clustering are easily computable The degree distribution is the Binomial distribution Pr(k) = n 1 k p k (1 p) n 1 k k! in the limit of large n Pr(k) ' The average degree is: <k> = p(n-1) (n 1)k k! p k e c = ck k! e c Clustering coefficient C is simply p (the probability of any pair existing) No heterogeneous degree distributions No small-world scaling with clustering 31

32 Percolation transition (a) The formation of the Giant Component is not a smooth process Emerges suddenly when <k>=1 This phenomenon is called 1st order phase-transition Size of the giant component S (b) all small, tree-like components giant component + small tree-like components mean Mean degree <k> c Source: A. Clauset Network lectures Figure 1: (a) Graphical solutions to Eq. (11), showing the curve y =1 e cs for three choices of c along with the curve y = S. The locations of their intersection gives the numerical solutions to Eq. (11). Any solution S>0impliesagiant component. (b) The solution to Eq. (11) as a function of c, showing the discontinuous emergence of a giant component at the critical point c = 1, along with some examples random graphs from di erent points on the c axis. 32

33 2. Configuration model Fix the degree sequence or degree distribution Find a network that samples uniformly over all other properties E.g. assign degrees to nodes and add stubs ` Uniformly at random sample stubs and connect them Problem : Creates self and duplicate edges (works better as network size grows) This process can be generalized to any property (see also Exponential Random Graph models ) 33

34 3. Generative models: Preferential attachment Algorithm: Start with a random connected graph At each time step create a new node and attach it to each node i with probability pi proportional to the node degree ki p i = k i P j k j P(K > k) Generates power-law tails (richer-get-richer) P (K) k 3 k 34

35 Network packages MATLAB: MatlabBGL (Boost Graph Library) matlabbgl or Python: NetworkX igraph (originally R, now also python and C/C++) 35

36 Representing and visualizing networks Gephi ( -> Easy and common Pajek ( -> Easy to use NWB ( -> Good for Analysis Visone ( JUNG ( -> library Net Draw ( Pegasus ( -> for huge data 36

37 References Handbook of graphs and networks: from the Genome to the Internet, edited by S. Bornholdt, H. G. Schuster. John Wiley and Sons, Watts,D.J.,& Strogatz, S.H. (1998).Collective dynamics of small- world networks. nature, 393(6684), Newman, M.E. (2003).The structure and function of complex networks. SIAM review, 45(2), Mislove, A., et al. (2007) "Measurement and analysis of online social networks." Proceedings of the 7th ACM SIGCOMM conference on Internet measurement. ACM. Newman, M. E. (2009). Networks: an introduction. Oxford University Press. Easley, D., & Kleinberg, J. (2010). Networks, crowds, and markets. Cambridge: Cambridge University Press. Newman, M. E. J. (2011). Communities, modules and large-scale structure in networks. Nature Physics, 8(1), Fortunato, S. "Community detection in graphs." Physics reports (2010): Laszlo Barabasi web site: 37

Modeling and Simulating Social Systems with MATLAB

Modeling and Simulating Social Systems with MATLAB Modeling and Simulating Social Systems with MATLAB Lecture 8 Introduction to Graphs/Networks Olivia Woolley, Stefano Balietti, Lloyd Sanders, Dirk Helbing Chair of Sociology, in particular of Modeling

More information

L Modeling and Simulating Social Systems with MATLAB

L Modeling and Simulating Social Systems with MATLAB 851-0585-04L Modeling and Simulating Social Systems with MATLAB Lecture 6 Introduction to Graphs/Networks Karsten Donnay and Stefano Balietti Chair of Sociology, in particular of Modeling and Simulation

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

Summary: What We Have Learned So Far

Summary: What We Have Learned So Far Summary: What We Have Learned So Far small-world phenomenon Real-world networks: { Short path lengths High clustering Broad degree distributions, often power laws P (k) k γ Erdös-Renyi model: Short path

More information

Basics of Network Analysis

Basics of Network Analysis Basics of Network Analysis Hiroki Sayama sayama@binghamton.edu Graph = Network G(V, E): graph (network) V: vertices (nodes), E: edges (links) 1 Nodes = 1, 2, 3, 4, 5 2 3 Links = 12, 13, 15, 23,

More information

1 Comparing networks, and why social networks are different

1 Comparing networks, and why social networks are different 1 Comparing networks, and why social networks are different The various measures of network structure that we have encountered so far allow us mainly to understand the structure of a single particular

More information

Graph-theoretic Properties of Networks

Graph-theoretic Properties of Networks Graph-theoretic Properties of Networks Bioinformatics: Sequence Analysis COMP 571 - Spring 2015 Luay Nakhleh, Rice University Graphs A graph is a set of vertices, or nodes, and edges that connect pairs

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

CS-E5740. Complex Networks. Scale-free networks

CS-E5740. Complex Networks. Scale-free networks CS-E5740 Complex Networks Scale-free networks Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3. Growing network models: scale-free

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

An introduction to the physics of complex networks

An introduction to the physics of complex networks An introduction to the physics of complex networks Alain Barrat CPT, Marseille, France ISI, Turin, Italy http://www.cpt.univ-mrs.fr/~barrat http://www.cxnets.org http://www.sociopatterns.org REVIEWS: Statistical

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Introduction to Complex Networks Analysis

Introduction to Complex Networks Analysis Introduction to Complex Networks Analysis Miloš Savić Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad, Serbia Complex systems and networks System - a set of interrelated

More information

caution in interpreting graph-theoretic diagnostics

caution in interpreting graph-theoretic diagnostics April 17, 2013 What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network [1, 2, 3] What is a network a collection of more or less identical agents or objects,

More information

Critical Phenomena in Complex Networks

Critical Phenomena in Complex Networks Critical Phenomena in Complex Networks Term essay for Physics 563: Phase Transitions and the Renormalization Group University of Illinois at Urbana-Champaign Vikyath Deviprasad Rao 11 May 2012 Abstract

More information

Case Studies in Complex Networks

Case Studies in Complex Networks Case Studies in Complex Networks Introduction to Scientific Modeling CS 365 George Bezerra 08/27/2012 The origin of graph theory Königsberg bridge problem Leonard Euler (1707-1783) The Königsberg Bridge

More information

Properties of Biological Networks

Properties of Biological Networks Properties of Biological Networks presented by: Ola Hamud June 12, 2013 Supervisor: Prof. Ron Pinter Based on: NETWORK BIOLOGY: UNDERSTANDING THE CELL S FUNCTIONAL ORGANIZATION By Albert-László Barabási

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds ECS 289 / MAE 298, Lecture 9 April 29, 2014 Web search and decentralized search on small-worlds Announcements HW2 and HW2b now posted: Due Friday May 9 Vikram s ipython and NetworkX notebooks posted Project

More information

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material.

Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. Link Analysis from Bing Liu. Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data, Springer and other material. 1 Contents Introduction Network properties Social network analysis Co-citation

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

Complex-Network Modelling and Inference

Complex-Network Modelling and Inference Complex-Network Modelling and Inference Lecture 8: Graph features (2) Matthew Roughan http://www.maths.adelaide.edu.au/matthew.roughan/notes/ Network_Modelling/ School

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems

Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems Complex networks Phys 682 / CIS 629: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network

More information

Graph Theory for Network Science

Graph Theory for Network Science Graph Theory for Network Science Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Networks or Graphs We typically

More information

1 More configuration model

1 More configuration model 1 More configuration model In the last lecture, we explored the definition of the configuration model, a simple method for drawing networks from the ensemble, and derived some of its mathematical properties.

More information

CS-E5740. Complex Networks. Network analysis: key measures and characteristics

CS-E5740. Complex Networks. Network analysis: key measures and characteristics CS-E5740 Complex Networks Network analysis: key measures and characteristics Course outline 1. Introduction (motivation, definitions, etc. ) 2. Static network models: random and small-world networks 3.

More information

L Modelling and Simulating Social Systems with MATLAB

L Modelling and Simulating Social Systems with MATLAB 851-0585-04L Modelling and Simulating Social Systems with MATLAB Lesson 6 Graphs (Networks) Anders Johansson and Wenjian Yu (with S. Lozano and S. Wehrli) ETH Zürich 2010-03-29 Lesson 6 Contents History:

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

COMP6237 Data Mining and Networks. Markus Brede. Lecture slides available here:

COMP6237 Data Mining and Networks. Markus Brede. Lecture slides available here: COMP6237 Data Mining and Networks Markus Brede Brede.Markus@gmail.com Lecture slides available here: http://users.ecs.soton.ac.uk/mb8/stats/datamining.html Outline Why? The WWW is a major application of

More information

A Generating Function Approach to Analyze Random Graphs

A Generating Function Approach to Analyze Random Graphs A Generating Function Approach to Analyze Random Graphs Presented by - Vilas Veeraraghavan Advisor - Dr. Steven Weber Department of Electrical and Computer Engineering Drexel University April 8, 2005 Presentation

More information

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS.

Graph Theory. Graph Theory. COURSE: Introduction to Biological Networks. Euler s Solution LECTURE 1: INTRODUCTION TO NETWORKS. Graph Theory COURSE: Introduction to Biological Networks LECTURE 1: INTRODUCTION TO NETWORKS Arun Krishnan Koenigsberg, Russia Is it possible to walk with a route that crosses each bridge exactly once,

More information

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno

Wednesday, March 8, Complex Networks. Presenter: Jirakhom Ruttanavakul. CS 790R, University of Nevada, Reno Wednesday, March 8, 2006 Complex Networks Presenter: Jirakhom Ruttanavakul CS 790R, University of Nevada, Reno Presented Papers Emergence of scaling in random networks, Barabási & Bonabeau (2003) Scale-free

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

CS224W: Analysis of Networks Jure Leskovec, Stanford University

CS224W: Analysis of Networks Jure Leskovec, Stanford University CS224W: Analysis of Networks Jure Leskovec, Stanford University http://cs224w.stanford.edu 11/13/17 Jure Leskovec, Stanford CS224W: Analysis of Networks, http://cs224w.stanford.edu 2 Observations Models

More information

Exercise set #2 (29 pts)

Exercise set #2 (29 pts) (29 pts) The deadline for handing in your solutions is Nov 16th 2015 07:00. Return your solutions (one.pdf le and one.zip le containing Python code) via e- mail to Becs-114.4150@aalto.fi. Additionally,

More information

1 Degree Distributions

1 Degree Distributions Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 3: Jan 24, 2012 Scribes: Geoffrey Fairchild and Jason Fries 1 Degree Distributions Last time, we discussed some graph-theoretic

More information

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han http://link.koreatech.ac.kr 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application

More information

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein

- relationships (edges) among entities (nodes) - technology: Internet, World Wide Web - biology: genomics, gene expression, proteinprotein Complex networks Phys 7682: Computational Methods for Nonlinear Systems networks are everywhere (and always have been) - relationships (edges) among entities (nodes) explosion of interest in network structure,

More information

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques

Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Structural Analysis of Paper Citation and Co-Authorship Networks using Network Analysis Techniques Kouhei Sugiyama, Hiroyuki Ohsaki and Makoto Imase Graduate School of Information Science and Technology,

More information

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Who? Prof. Aris Anagnostopoulos Prof. Luciana S. Buriol Prof. Guido Schäfer What will We Cover? Topics: Network properties

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

beyond social networks

beyond social networks beyond social networks Small world phenomenon: high clustering C network >> C random graph low average shortest path l network ln( N)! neural network of C. elegans,! semantic networks of languages,! actor

More information

RANDOM-REAL NETWORKS

RANDOM-REAL NETWORKS RANDOM-REAL NETWORKS 1 Random networks: model A random graph is a graph of N nodes where each pair of nodes is connected by probability p: G(N,p) Random networks: model p=1/6 N=12 L=8 L=10 L=7 The number

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena CSE 190 Lecture 16 Data Mining and Predictive Analytics Small-world phenomena Another famous study Stanley Milgram wanted to test the (already popular) hypothesis that people in social networks are separated

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

Introduction to Networks and Business Intelligence

Introduction to Networks and Business Intelligence Introduction to Networks and Business Intelligence Prof. Dr. Daning Hu Department of Informatics University of Zurich Sep 16th, 2014 Outline n Network Science A Random History n Network Analysis Network

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

Network Analysis. Dr. Scott A. Hale Oxford Internet Institute 16 March 2016

Network Analysis. Dr. Scott A. Hale Oxford Internet Institute   16 March 2016 Network Analysis Dr. Scott A. Hale Oxford Internet Institute http://www.scotthale.net/ 16 March 2016 Outline for today 1 Basic network concepts 2 Network data 3 Software for networks 4 Layout algorithms

More information

Social Network Analysis With igraph & R. Ofrit Lesser December 11 th, 2014

Social Network Analysis With igraph & R. Ofrit Lesser December 11 th, 2014 Social Network Analysis With igraph & R Ofrit Lesser ofrit.lesser@gmail.com December 11 th, 2014 Outline The igraph R package Basic graph concepts What can you do with igraph? Construction Attributes Centrality

More information

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks

CSE 258 Lecture 12. Web Mining and Recommender Systems. Social networks CSE 258 Lecture 12 Web Mining and Recommender Systems Social networks Social networks We ve already seen networks (a little bit) in week 3 i.e., we ve studied inference problems defined on graphs, and

More information

Networks and Discrete Mathematics

Networks and Discrete Mathematics Aristotle University, School of Mathematics Master in Web Science Networks and Discrete Mathematics Small Words-Scale-Free- Model Chronis Moyssiadis Vassilis Karagiannis 7/12/2012 WS.04 Webscience: lecture

More information

SI Networks: Theory and Application, Fall 2008

SI Networks: Theory and Application, Fall 2008 University of Michigan Deep Blue deepblue.lib.umich.edu 2008-09 SI 508 - Networks: Theory and Application, Fall 2008 Adamic, Lada Adamic, L. (2008, November 12). Networks: Theory and Application. Retrieved

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

Degree Distribution: The case of Citation Networks

Degree Distribution: The case of Citation Networks Network Analysis Degree Distribution: The case of Citation Networks Papers (in almost all fields) refer to works done earlier on same/related topics Citations A network can be defined as Each node is a

More information

Topic II: Graph Mining

Topic II: Graph Mining Topic II: Graph Mining Discrete Topics in Data Mining Universität des Saarlandes, Saarbrücken Winter Semester 2012/13 T II.Intro-1 Topic II Intro: Graph Mining 1. Why Graphs? 2. What is Graph Mining 3.

More information

Overview of Network Theory, I

Overview of Network Theory, I Overview of Network Theory, I ECS 253 / MAE 253, Spring 2016, Lecture 1 Prof. Raissa D Souza University of California, Davis Raissa s background: 1999, PhD, Physics, Massachusetts Inst of Tech (MIT): Joint

More information

Complex networks: A mixture of power-law and Weibull distributions

Complex networks: A mixture of power-law and Weibull distributions Complex networks: A mixture of power-law and Weibull distributions Ke Xu, Liandong Liu, Xiao Liang State Key Laboratory of Software Development Environment Beihang University, Beijing 100191, China Abstract:

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks

CSE 158 Lecture 11. Web Mining and Recommender Systems. Social networks CSE 158 Lecture 11 Web Mining and Recommender Systems Social networks Assignment 1 Due 5pm next Monday! (Kaggle shows UTC time, but the due date is 5pm, Monday, PST) Assignment 1 Assignment 1 Social networks

More information

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows)

Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Example for calculation of clustering coefficient Node N 1 has 8 neighbors (red arrows) There are 12 connectivities among neighbors (blue arrows) Average clustering coefficient of a graph Overall measure

More information

Overview of SNA Basics

Overview of SNA Basics Overview of SNA Basics Instructor: Suzan Bayhan Collaborative Networking (CoNe) Research Group Spring 2015, Seminar 58315104 Social Network Analysis for Communication Networks http://www.hiit.fi/u/bayhan/sna/

More information

Mining Social Network Graphs

Mining Social Network Graphs Mining Social Network Graphs Analysis of Large Graphs: Community Detection Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com Note to other teachers and users of these slides: We would be

More information

Random Graphs CS224W

Random Graphs CS224W Random Graphs CS224W Network models Why model? simple representation of complex network can derive properties mathematically predict properties and outcomes Also: to have a strawman In what ways is your

More information

Network Science (VU) ( )

Network Science (VU) ( ) Network Science (VU) (707.028) Denis Helic KMI, TU Graz Nov 10-11, 2011 Denis Helic (KMI, TU Graz) NetSci Nov 10-11, 2011 1 / 50 Outline 1 Introduction 2 Network Structure 3 Random Graphs 4 Real World

More information

Online Social Networks and Media

Online Social Networks and Media Online Social Networks and Media Absorbing Random Walks Link Prediction Why does the Power Method work? If a matrix R is real and symmetric, it has real eigenvalues and eigenvectors: λ, w, λ 2, w 2,, (λ

More information

Topology of the Erasmus student mobility network

Topology of the Erasmus student mobility network Topology of the Erasmus student mobility network Aranka Derzsi, Noemi Derzsy, Erna Káptalan and Zoltán Néda The Erasmus student mobility network Aim: study the network s topology (structure) and its characteristics

More information

Non Overlapping Communities

Non Overlapping Communities Non Overlapping Communities Davide Mottin, Konstantina Lazaridou HassoPlattner Institute Graph Mining course Winter Semester 2016 Acknowledgements Most of this lecture is taken from: http://web.stanford.edu/class/cs224w/slides

More information

Link Analysis and Web Search

Link Analysis and Web Search Link Analysis and Web Search Moreno Marzolla Dip. di Informatica Scienza e Ingegneria (DISI) Università di Bologna http://www.moreno.marzolla.name/ based on material by prof. Bing Liu http://www.cs.uic.edu/~liub/webminingbook.html

More information

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006

arxiv:cond-mat/ v5 [cond-mat.dis-nn] 16 Aug 2006 arxiv:cond-mat/0505185v5 [cond-mat.dis-nn] 16 Aug 2006 Characterization of Complex Networks: A Survey of measurements L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas Instituto de Física de

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model 6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model Daron Acemoglu and Asu Ozdaglar MIT September 23, 2009 1 Outline Generalized random graph models Graphs with prescribed

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

Web 2.0 Social Data Analysis

Web 2.0 Social Data Analysis Web 2.0 Social Data Analysis Ing. Jaroslav Kuchař jaroslav.kuchar@fit.cvut.cz Structure (2) Czech Technical University in Prague, Faculty of Information Technologies Software and Web Engineering 2 Contents

More information

V2: Measures and Metrics (II)

V2: Measures and Metrics (II) - Betweenness Centrality V2: Measures and Metrics (II) - Groups of Vertices - Transitivity - Reciprocity - Signed Edges and Structural Balance - Similarity - Homophily and Assortative Mixing 1 Betweenness

More information

Community detection. Leonid E. Zhukov

Community detection. Leonid E. Zhukov Community detection Leonid E. Zhukov School of Data Analysis and Artificial Intelligence Department of Computer Science National Research University Higher School of Economics Network Science Leonid E.

More information

THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS. Summer semester, 2016/2017

THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS. Summer semester, 2016/2017 THE KNOWLEDGE MANAGEMENT STRATEGY IN ORGANIZATIONS Summer semester, 2016/2017 SOCIAL NETWORK ANALYSIS: THEORY AND APPLICATIONS 1. A FEW THINGS ABOUT NETWORKS NETWORKS IN THE REAL WORLD There are four categories

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

Heuristics for the Critical Node Detection Problem in Large Complex Networks

Heuristics for the Critical Node Detection Problem in Large Complex Networks Heuristics for the Critical Node Detection Problem in Large Complex Networks Mahmood Edalatmanesh Department of Computer Science Submitted in partial fulfilment of the requirements for the degree of Master

More information

Graphs / Networks. CSE 6242/ CX 4242 Feb 18, Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech

Graphs / Networks. CSE 6242/ CX 4242 Feb 18, Centrality measures, algorithms, interactive applications. Duen Horng (Polo) Chau Georgia Tech CSE 6242/ CX 4242 Feb 18, 2014 Graphs / Networks Centrality measures, algorithms, interactive applications Duen Horng (Polo) Chau Georgia Tech Partly based on materials by Professors Guy Lebanon, Jeffrey

More information

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 8 April 21, 2016 Web search and decentralized search on small-world networks Search for information Assume some resource of interest is stored at the vertices of a network: Web

More information

V 2 Clusters, Dijkstra, and Graph Layout"

V 2 Clusters, Dijkstra, and Graph Layout Bioinformatics 3! V 2 Clusters, Dijkstra, and Graph Layout" Mon, Oct 21, 2013" Graph Basics" A graph G is an ordered pair (V, E) of a set V of vertices and a set E of edges." Degree distribution P(k)!

More information

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 30 Jun 2005

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 30 Jun 2005 arxiv:cond-mat/0505185v3 [cond-mat.dis-nn] 30 Jun 2005 Characterization of Complex Networks: A Survey of measurements L. da F. Costa F. A. Rodrigues G. Travieso P. R. Villas Boas Instituto de Física de

More information

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge

Centralities (4) By: Ralucca Gera, NPS. Excellence Through Knowledge Centralities (4) By: Ralucca Gera, NPS Excellence Through Knowledge Some slide from last week that we didn t talk about in class: 2 PageRank algorithm Eigenvector centrality: i s Rank score is the sum

More information

Clustering analysis of gene expression data

Clustering analysis of gene expression data Clustering analysis of gene expression data Chapter 11 in Jonathan Pevsner, Bioinformatics and Functional Genomics, 3 rd edition (Chapter 9 in 2 nd edition) Human T cell expression data The matrix contains

More information

My favorite application using eigenvalues: partitioning and community detection in social networks

My favorite application using eigenvalues: partitioning and community detection in social networks My favorite application using eigenvalues: partitioning and community detection in social networks Will Hobbs February 17, 2013 Abstract Social networks are often organized into families, friendship groups,

More information

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008

Some Graph Theory for Network Analysis. CS 249B: Science of Networks Week 01: Thursday, 01/31/08 Daniel Bilar Wellesley College Spring 2008 Some Graph Theory for Network Analysis CS 9B: Science of Networks Week 0: Thursday, 0//08 Daniel Bilar Wellesley College Spring 008 Goals this lecture Introduce you to some jargon what we call things in

More information

Distances in power-law random graphs

Distances in power-law random graphs Distances in power-law random graphs Sander Dommers Supervisor: Remco van der Hofstad February 2, 2009 Where innovation starts Introduction There are many complex real-world networks, e.g. Social networks

More information

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course

Social Networks. Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Social Networks Slides by : I. Koutsopoulos (AUEB), Source:L. Adamic, SN Analysis, Coursera course Introduction Political blogs Organizations Facebook networks Ingredient networks SN representation Networks

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 11 Web Mining and Recommender Systems Triadic closure; strong & weak ties Triangles So far we ve seen (a little about) how networks can be characterized by their connectivity patterns What

More information

Section 7.13: Homophily (or Assortativity) By: Ralucca Gera, NPS

Section 7.13: Homophily (or Assortativity) By: Ralucca Gera, NPS Section 7.13: Homophily (or Assortativity) By: Ralucca Gera, NPS Are hubs adjacent to hubs? How does a node s degree relate to its neighbors degree? Real networks usually show a non-zero degree correlation

More information

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA

UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA UNIVERSITA DEGLI STUDI DI CATANIA FACOLTA DI INGEGNERIA PhD course in Electronics, Automation and Complex Systems Control-XXIV Cycle DIPARTIMENTO DI INGEGNERIA ELETTRICA ELETTRONICA E DEI SISTEMI ing.

More information

Recap! CMSC 498J: Social Media Computing. Department of Computer Science University of Maryland Spring Hadi Amiri

Recap! CMSC 498J: Social Media Computing. Department of Computer Science University of Maryland Spring Hadi Amiri Recap! CMSC 498J: Social Media Computing Department of Computer Science University of Maryland Spring 2015 Hadi Amiri hadi@umd.edu Announcement CourseEvalUM https://www.courseevalum.umd.edu/ 2 Announcement

More information

Web 2.0 Social Data Analysis

Web 2.0 Social Data Analysis Web 2.0 Social Data Analysis Ing. Jaroslav Kuchař jaroslav.kuchar@fit.cvut.cz Structure(1) Czech Technical University in Prague, Faculty of Information Technologies Software and Web Engineering 2 Contents

More information