Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination

Size: px
Start display at page:

Download "Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination"

Transcription

1 Analysis of Planar Light Fields from Homogeneous Convex Curved Surfaces Under Distant Illumination Ravi Ramamoorthi and Pat Hanrahan

2 Motivation Forward Rendering (Computer Graphics) Complex Lighting (Environment Maps)

3 Motivation Inverse Rendering (Computer Vision and Graphics) Estimate BRDF, Lighting, both BRDF and Lighting Theoretically Possible? Practically Feasible?

4 Reflection Equation L θ i θ o B INCOMING LIGHT B(x, θ o) = π/2 π/2 BRDF ρ( θ i, θ o) OUTGOING LIGHT L(x, θ i)ρ(θ i, θ o) cos(θ i) dθ i

5 Reflection Equation L θ i θ o B INCOMING LIGHT B(x, θ o) = π/2 π/2 BRDF ρ( θ i, θ o) ˆρ(θ i, θ o) = ρ(θ i, θ o) cos(θ i) OUTGOING LIGHT L(x, θ i)ρ(θ i, θ o) cos(θ i) dθ i

6 Reflection Equation L θ i θ o B INCOMING LIGHT B(x, θ o) = π/2 π/2 BRDF ρ( θ i, θ o) ˆρ(θ i, θ o) = ρ(θ i, θ o) cos(θ i) B(x, θ o) = π/2 π/2 OUTGOING LIGHT L(x, θ i)ρ(θ i, θ o) cos(θ i) dθ i L(x, θ i)ˆρ(θ i, θ o) dθ i

7 Approach: Reflection is Convolution L θ i α θ i B(α, θ o) = BRDF ρ( θ i, θ o ) π/2 π/2 θ α o B θ o L(α, θ i)ˆρ(θ i, θ o) dθ i

8 Approach: Reflection is Convolution L θ i α θ i B(α, θ o) = BRDF ρ( θ i, θ o ) π/2 π/2 L(α, θ i) = L(θ i ) = L(α + θ i) θ α o B θ o L(α, θ i)ˆρ(θ i, θ o) dθ i

9 Approach: Reflection is Convolution L θ i α θ i B(α, θ o) = BRDF ρ( θ i, θ o ) π/2 π/2 L(α, θ i) = L(θ i ) = L(α + θ i) B(α, θ o) = π/2 π/2 θ α o B θ o L(α, θ i)ˆρ(θ i, θ o) dθ i L(α + θ i)ˆρ(θ i, θ o) dθ i CONVOLUTION : B = L ˆρ

10 Related Work Graphics: Prefiltering Environment Maps Qualitative Observation that Reflection is Convolution Miller & Hoffman 84, Greene 86 Cabral Max Springmeyer 87, Cabral Olano Nemec 99 Vision, Perception D Zmura 91: Reflection as Operator in Frequency Space Basri & Jacobs: Lambertian Reflection as Convolution

11 Related Work Graphics: Prefiltering Environment Maps Qualitative Observation that Reflection is Convolution Miller & Hoffman 84, Greene 86 Cabral Max Springmeyer 87, Cabral Olano Nemec 99 Vision, Perception D Zmura 91: Reflection as Operator in Frequency Space Basri & Jacobs: Lambertian Reflection as Convolution Our Contribution: Formal Analysis in General 2D case Key insights extend to 3D (more recent work)

12 Fourier Analysis L(θ i ) = p ˆρ(θ i, θ o) = p B(α, θ o) = p L p e Ipθ i ˆρ p,q e Ipθ ie Iqθ o q B p,q e Ipα e Iqθ o q

13 Fourier Analysis L(θ i ) = p L p e Ipθ i ˆρ(θ i, θ o) = p B(α, θ o) = p q q ˆρ p,q e Ipθ ie Iqθ o B p,q e Ipα e Iqθ o B p,q = 2πL pˆρ p,q

14 Fourier Analysis L(θ i ) = p L p e Ipθ i ˆρ(θ i, θ o) = p B(α, θ o) = p q q ˆρ p,q e Ipθ ie Iqθ o B p,q e Ipα e Iqθ o B p,q = 2πL pˆρ p,q Note: Can fix output direction: B p (θ o) = 2πL pˆρ p (θ o)

15 Insights Reflected Light Field is Convolution of Lighting, BRDF Convolution Theorem Product of Fourier Coefficients Signal Processing: Filter Lighting using BRDF Filter Lighting Input Signal BRDF Filter Inverse Rendering is Deconvolution

16 Example: Directional Source at θ i = 0 L(θ i ) = δ(θ i ) L p = 1 2π B p,q = ˆρ p,q Reflected Light Field corresponds directly to BRDF Impulse Response of BRDF filter

17 Example: Mirror BRDF ˆρ(θ i, θ o) = δ(θ i + θ o) ˆρ p,q = δ p,q 2π B p,q = δ p,q L p Reflected Light Field corresponds directly to Lighting Gazing Sphere

18 Example: Lambertian BRDF Transfer function is Clamped Cosine No output dependence, drop index q B p = 2πL pˆρ p Lambertian BRDF is Low-Pass filter Incident Reflected

19 Properties: Lambertian BRDF Filter ˆρ 2p = ( 1)(p+1) 2π (4p 2 1) 0.16 Magnitude of Fourier Coefficient > Frequency (p) > Good approximation using only terms with p 2

20 Phong, Microfacet BRDFs Rough surfaces blur highlights Microfacet BRDF is Gaussian Hence, Fourier Spectrum also Gaussian Similar results for Phong (analytic formulae in paper) 1 Exp = 128 Exp = 8 Magnitude of Fourier Coefficient > Frequency(p) >

21 Inverse Rendering Known Lighting Unknown Known X Miller & Hoffman 84 D Zmura 91 Marschner&Greenberg97 BRDF Sato et al. 97, Yu et al. 99, Unknown Dana et al. 99 Debevec et al. 00, Marschner et al. 00,...? Sato et al. 99 (shadows) Often estimate Textured BRDFs (3rd axis of table)

22 Inverse Rendering General Complex Illumination? Most inverse-brdf methods use point source Outdoor methods: Sato&Ikeuchi94, Yu&Malik98 Well-Posedness, Conditioning? Well Posed if unique solution Well Conditioned if robust to noisy data Factorization of BRDF,Lighting (find both)? Sato et al. 99 use shadows

23 Inverse Lighting L p = 1 2π B p,q ˆρ p,q Well posed unless ˆρ p,q vanishes for all q for some p. Well conditioned when Fourier spectrum decays slowly. Need high frequencies in BRDF (sharp specularities) Ill-conditioned for diffuse BRDFs (low-pass filter) Mirror Lambertian

24 BRDF estimation ˆρ p,q = 1 B p,q 2π L p Well Posed if all terms in Fourier expansion L p nonzero. Well Conditioned when Fourier expansion decays slowly. Need high frequencies in lighting (sharp features) Ill-conditioned for soft lighting (low-frequency) Directional Source Area Source (same BRDF)

25 Light Field Factorization Up to a global scale, Light Field can be factored Can simultaneously estimate Lighting, BRDF Number of Knowns (B) > Number of Unknowns (L, ρ) (B 2D) > (L 1D + ρ 1/2(2D)) Explicit Formula in paper

26 3D Fourier Series Spherical Harmonics Y lm (θ, φ) Representation Matrices of SO(3) D l mm (α, β)

27 3D Fourier Series Spherical Harmonics Y lm (θ, φ) Representation Matrices of SO(3) D l mm (α, β) L(θ i, φ i ) = l,m L lm Y lm (θ i, φ i ) ˆρ(θ i, φ i, θ o, φ o) = ˆρ lq,pq Ylq(θ i, φ i)y pq (θ o, φ o) l,p,q B(α, β, θ o, φ o) = ( B lmpq D l mq (α, β)y pq (θ o, φ o) ) l,m,p,q

28 3D Fourier Series Spherical Harmonics Y lm (θ, φ) Representation Matrices of SO(3) D l mm (α, β) L(θ i, φ i ) = l,m L lm Y lm (θ i, φ i ) ˆρ(θ i, φ i, θ o, φ o) = ˆρ lq,pq Ylq(θ i, φ i)y pq (θ o, φ o) l,p,q B(α, β, θ o, φ o) = ( B lmpq D l mq (α, β)y pq (θ o, φ o) ) l,m,p,q 2D: B pq = 2πL pˆρ p,q 3D: B lmpq = L lmˆρ lq,pq

29 Implications Lambertian BRDF 2D: Only first 2 Fourier coefficients important 3D: First 2 orders of spherical harmonics 99% energy Only the first 9 coefficients are important Similar results independently derived by Basri & Jacobs Formally, recovery of radiance from irradiance ill-posed See On the relationship between Radiance and Irradiance: Determining the illumination from images of a convex Lambertian object (submitted) Phong & Microfacet BRDFs Gaussian Filters. Results similar to 2D

30 Practical Issues (in 3D) Frequency spectra from Incomplete Irregular Data Concavities: Self-Shadowing and Interreflection Textures: Spatially Varying BRDFs

31 Practical Issues (in 3D) Frequency spectra from Incomplete Irregular Data Concavities: Self-Shadowing and Interreflection Textures: Spatially Varying BRDFs Issues can be addressed; can derive practical algorithms Use Dual Angular and Frequency-space Representations Associativity of Convolution See A Signal Processing Framework for Inverse Rendering (submitted)

32 Experiment: Cat Sculpture 3 photographs of cat sculpture of known geometry Microfacet BRDF under complex unknown lighting Lighting also estimated Then use recovered BRDF for new view, new lighting

33 Results: Cat Sculpture Images below show new view, new lighting REAL PHOTOGRAPH Numerical values verified to within 5% RENDERED IMAGE

34 Implications for Perception Assume Lambertian BRDF, no shadows Perception: Separate Reflectance, Illumination Low frequency lighting, High frequency texture Theory formally: lighting only low-frequency effects Find high-frequency texture independent of lighting But ambiguity regarding low-frequency texture, lighting

35 Conclusion Reflection as convolution Fourier analysis gives many insights Extends to 3D and results in practical inverse algorithms Signal-Processing: A useful paradigm for Forward and Inverse Rendering

Chapter 1 Introduction

Chapter 1 Introduction Chapter 1 Introduction The central problem in computer graphics is creating, or rendering, realistic computergenerated images that are indistinguishable from real photographs, a goal referred to as photorealism.

More information

Chapter 6 Inverse Rendering Under Complex Illumination

Chapter 6 Inverse Rendering Under Complex Illumination Chapter 6 Inverse Rendering Under Complex Illumination The previous two chapters have applied our signal processing framework to efficient rendering with environment maps. In this chapter, we switch from

More information

Frequency Space Environment Map Rendering

Frequency Space Environment Map Rendering Chapter 5 Frequency Space Environment Map Rendering In the previous chapter on irradiance environment maps, we have seen how frequencyspace analysis can be used to efficiently compute and represent convolutions

More information

On the relationship between Radiance and. Irradiance: Determining the illumination. from images of a convex Lambertian object

On the relationship between Radiance and. Irradiance: Determining the illumination. from images of a convex Lambertian object On the relationship between Radiance and Irradiance: Determining the illumination from images of a convex Lambertian object Ravi Ramamoorthi and Pat Hanrahan Computer Science Dept., Stanford University

More information

Chapter 7. Conclusions and Future Work

Chapter 7. Conclusions and Future Work Chapter 7 Conclusions and Future Work In this dissertation, we have presented a new way of analyzing a basic building block in computer graphics rendering algorithms the computational interaction between

More information

A Theory Of Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency. Dhruv K. Mahajan

A Theory Of Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency. Dhruv K. Mahajan A Theory Of Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency Dhruv K. Mahajan Submitted in fulfillment of the requirements for the Masters Degree in the Computer Science Department

More information

Shadow and Environment Maps

Shadow and Environment Maps CS294-13: Special Topics Lecture #8 Advanced Computer Graphics University of California, Berkeley Monday, 28 September 2009 Shadow and Environment Maps Lecture #8: Monday, 28 September 2009 Lecturer: Ravi

More information

Dhruv Mahajan, Columbia University, Ravi Ramamoorthi, Columbia University, and Brian Curless, University of Washington

Dhruv Mahajan, Columbia University, Ravi Ramamoorthi, Columbia University, and Brian Curless, University of Washington 1 A Theory Of Frequency Domain Invariants: Spherical Harmonic Identities for BRDF/Lighting Transfer and Image Consistency Dhruv Mahajan, Columbia University, Ravi Ramamoorthi, Columbia University, and

More information

Face Relighting with Radiance Environment Maps

Face Relighting with Radiance Environment Maps Face Relighting with Radiance Environment Maps Zhen Wen Zicheng Liu Thomas S. Huang University of Illinois Microsoft Research University of Illinois Urbana, IL 61801 Redmond, WA 98052 Urbana, IL 61801

More information

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012)

Overview. Radiometry and Photometry. Foundations of Computer Graphics (Spring 2012) Foundations of Computer Graphics (Spring 2012) CS 184, Lecture 21: Radiometry http://inst.eecs.berkeley.edu/~cs184 Overview Lighting and shading key in computer graphics HW 2 etc. ad-hoc shading models,

More information

Face Relighting with Radiance Environment Maps

Face Relighting with Radiance Environment Maps Face Relighting with Radiance Environment Maps Zhen Wen University of Illinois Urbana Champaign zhenwen@ifp.uiuc.edu Zicheng Liu Microsoft Research zliu@microsoft.com Tomas Huang University of Illinois

More information

And if that 120MP Camera was cool

And if that 120MP Camera was cool Reflectance, Lights and on to photometric stereo CSE 252A Lecture 7 And if that 120MP Camera was cool Large Synoptic Survey Telescope 3.2Gigapixel camera 189 CCD s, each with 16 megapixels Pixels are 10µm

More information

Re-rendering from a Dense/Sparse Set of Images

Re-rendering from a Dense/Sparse Set of Images Re-rendering from a Dense/Sparse Set of Images Ko Nishino Institute of Industrial Science The Univ. of Tokyo (Japan Science and Technology) kon@cvl.iis.u-tokyo.ac.jp Virtual/Augmented/Mixed Reality Three

More information

Recovering illumination and texture using ratio images

Recovering illumination and texture using ratio images Recovering illumination and texture using ratio images Alejandro Troccoli atroccol@cscolumbiaedu Peter K Allen allen@cscolumbiaedu Department of Computer Science Columbia University, New York, NY Abstract

More information

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection

To Do. Advanced Computer Graphics. Course Outline. Course Outline. Illumination Models. Diffuse Interreflection Advanced Computer Graphics CSE 163 [Spring 017], Lecture 11 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment due May 19 Should already be well on way. Contact us for difficulties etc. This

More information

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface.

Announcement. Lighting and Photometric Stereo. Computer Vision I. Surface Reflectance Models. Lambertian (Diffuse) Surface. Lighting and Photometric Stereo CSE252A Lecture 7 Announcement Read Chapter 2 of Forsyth & Ponce Might find section 12.1.3 of Forsyth & Ponce useful. HW Problem Emitted radiance in direction f r for incident

More information

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7

Photometric Stereo. Lighting and Photometric Stereo. Computer Vision I. Last lecture in a nutshell BRDF. CSE252A Lecture 7 Lighting and Photometric Stereo Photometric Stereo HW will be on web later today CSE5A Lecture 7 Radiometry of thin lenses δa Last lecture in a nutshell δa δa'cosα δacos β δω = = ( z' / cosα ) ( z / cosα

More information

Reflection models and radiometry Advanced Graphics

Reflection models and radiometry Advanced Graphics Reflection models and radiometry Advanced Graphics Rafał Mantiuk Computer Laboratory, University of Cambridge Applications To render realistic looking materials Applications also in computer vision, optical

More information

A Frequency Analysis of Light Transport

A Frequency Analysis of Light Transport A Frequency Analysis of Light Transport Frédo Durand MIT CSAIL With Nicolas Holzschuch, Cyril Soler, Eric Chan & Francois Sillion Artis Gravir/Imag-Inria & MIT CSAIL Our research 3D rendering Light transport

More information

Capturing light. Source: A. Efros

Capturing light. Source: A. Efros Capturing light Source: A. Efros Review Pinhole projection models What are vanishing points and vanishing lines? What is orthographic projection? How can we approximate orthographic projection? Lenses

More information

Face Re-Lighting from a Single Image under Harsh Lighting Conditions

Face Re-Lighting from a Single Image under Harsh Lighting Conditions Face Re-Lighting from a Single Image under Harsh Lighting Conditions Yang Wang 1, Zicheng Liu 2, Gang Hua 3, Zhen Wen 4, Zhengyou Zhang 2, Dimitris Samaras 5 1 The Robotics Institute, Carnegie Mellon University,

More information

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture.

Motivation: Monte Carlo Rendering. Sampling and Reconstruction of Visual Appearance. Caustics. Illumination Models. Overview of lecture. Sampling and Reconstruction of Visual Appearance CSE 74 [Winter 8], Lecture 3 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir Motivation: Monte Carlo Rendering Key application area for sampling/reconstruction

More information

BRDF Computer Graphics (Spring 2008)

BRDF Computer Graphics (Spring 2008) BRDF Computer Graphics (Spring 2008) COMS 4160, Lecture 20: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Reflected Radiance proportional to Irradiance Constant proportionality: BRDF [CW

More information

Recovering dual-level rough surface parameters from simple lighting. Graphics Seminar, Fall 2010

Recovering dual-level rough surface parameters from simple lighting. Graphics Seminar, Fall 2010 Recovering dual-level rough surface parameters from simple lighting Chun-Po Wang Noah Snavely Steve Marschner Graphics Seminar, Fall 2010 Motivation and Goal Many surfaces are rough Motivation and Goal

More information

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time

Radiometry. Reflectance & Lighting. Solid Angle. Radiance. Radiance Power is energy per unit time Radiometry Reflectance & Lighting Computer Vision I CSE5A Lecture 6 Read Chapter 4 of Ponce & Forsyth Homework 1 Assigned Outline Solid Angle Irradiance Radiance BRDF Lambertian/Phong BRDF By analogy with

More information

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008)

Radiance. Radiance properties. Radiance properties. Computer Graphics (Fall 2008) Computer Graphics (Fall 2008) COMS 4160, Lecture 19: Illumination and Shading 2 http://www.cs.columbia.edu/~cs4160 Radiance Power per unit projected area perpendicular to the ray per unit solid angle in

More information

Precomputation-Based Rendering. Contents

Precomputation-Based Rendering. Contents Foundations and Trends R in Computer Graphics and Vision Vol. 3, No. 4 (2007) 281 369 c 2009 R. Ramamoorthi DOI: 10.1561/0600000021 Precomputation-Based Rendering By Ravi Ramamoorthi Contents 1 Introduction

More information

Rendering Light Reflection Models

Rendering Light Reflection Models Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 3, 2017 Lecture #13 Program of Computer Graphics, Cornell University General Electric - 167 Cornell in

More information

Appearance Sampling of Real Objects for Variable Illumination

Appearance Sampling of Real Objects for Variable Illumination International Journal of Computer Vision c 27 Springer Science + Business Media, LLC. Manufactured in the United States. DOI:.7/s263-7-36- Appearance Sampling of Real Objects for Variable Illumination

More information

x ~ Hemispheric Lighting

x ~ Hemispheric Lighting Irradiance and Incoming Radiance Imagine a sensor which is a small, flat plane centered at a point ~ x in space and oriented so that its normal points in the direction n. This sensor can compute the total

More information

Light Reflection Models

Light Reflection Models Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 21, 2014 Lecture #15 Goal of Realistic Imaging From Strobel, Photographic Materials and Processes Focal Press, 186.

More information

Skeleton Cube for Lighting Environment Estimation

Skeleton Cube for Lighting Environment Estimation (MIRU2004) 2004 7 606 8501 E-mail: {takesi-t,maki,tm}@vision.kuee.kyoto-u.ac.jp 1) 2) Skeleton Cube for Lighting Environment Estimation Takeshi TAKAI, Atsuto MAKI, and Takashi MATSUYAMA Graduate School

More information

Ligh%ng and Reflectance

Ligh%ng and Reflectance Ligh%ng and Reflectance 2 3 4 Ligh%ng Ligh%ng can have a big effect on how an object looks. Modeling the effect of ligh%ng can be used for: Recogni%on par%cularly face recogni%on Shape reconstruc%on Mo%on

More information

Lambertian model of reflectance II: harmonic analysis. Ronen Basri Weizmann Institute of Science

Lambertian model of reflectance II: harmonic analysis. Ronen Basri Weizmann Institute of Science Lambertian model of reflectance II: harmonic analysis Ronen Basri Weizmann Institute of Science Illumination cone What is the set of images of an object under different lighting, with any number of sources?

More information

Comp 410/510 Computer Graphics. Spring Shading

Comp 410/510 Computer Graphics. Spring Shading Comp 410/510 Computer Graphics Spring 2017 Shading Why we need shading Suppose we build a model of a sphere using many polygons and then color it using a fixed color. We get something like But we rather

More information

Rendering Light Reflection Models

Rendering Light Reflection Models Rendering Light Reflection Models Visual Imaging in the Electronic Age Donald P. Greenberg October 27, 2015 Lecture #18 Goal of Realistic Imaging The resulting images should be physically accurate and

More information

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi

Motivation. Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi Advanced Computer Graphics (Fall 2009) CS 283, Lecture 11: Monte Carlo Integration Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283 Acknowledgements and many slides courtesy: Thomas Funkhouser, Szymon

More information

Assignment #2. (Due date: 11/6/2012)

Assignment #2. (Due date: 11/6/2012) Computer Vision I CSE 252a, Fall 2012 David Kriegman Assignment #2 (Due date: 11/6/2012) Name: Student ID: Email: Problem 1 [1 pts] Calculate the number of steradians contained in a spherical wedge with

More information

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons

Lights, Surfaces, and Cameras. Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons Reflectance 1 Lights, Surfaces, and Cameras Light sources emit photons Surfaces reflect & absorb photons Cameras measure photons 2 Light at Surfaces Many effects when light strikes a surface -- could be:

More information

Inverse Rendering with a Morphable Model: A Multilinear Approach

Inverse Rendering with a Morphable Model: A Multilinear Approach ALDRIAN, SMITH: INVERSE RENDERING OF FACES WITH A MORPHABLE MODEL 1 Inverse Rendering with a Morphable Model: A Multilinear Approach Oswald Aldrian oswald@cs.york.ac.uk William A. P. Smith wsmith@cs.york.ac.uk

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Image Normalization Global Histogram Equalization. Make two images have same histogram. Or, pick a standard histogram, and make adjust each image to have that histogram. Apply

More information

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College

Computer Graphics. Shading. Based on slides by Dianna Xu, Bryn Mawr College Computer Graphics Shading Based on slides by Dianna Xu, Bryn Mawr College Image Synthesis and Shading Perception of 3D Objects Displays almost always 2 dimensional. Depth cues needed to restore the third

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Matthias Zwicker Universität Bern Herbst 2009 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation of physics Global

More information

Shading I Computer Graphics I, Fall 2008

Shading I Computer Graphics I, Fall 2008 Shading I 1 Objectives Learn to shade objects ==> images appear threedimensional Introduce types of light-material interactions Build simple reflection model Phong model Can be used with real time graphics

More information

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham

Shading / Light. Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Shading / Light Thanks to Srinivas Narasimhan, Langer-Zucker, Henrik Wann Jensen, Ravi Ramamoorthi, Hanrahan, Preetham Phong Illumination Model See Shirley, Ch 10 and http://en.wikipedia.org/wiki/phong_shading

More information

Illumination & Shading

Illumination & Shading Illumination & Shading Goals Introduce the types of light-material interactions Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware Why we need Illumination

More information

02 Shading and Frames. Steve Marschner CS5625 Spring 2016

02 Shading and Frames. Steve Marschner CS5625 Spring 2016 02 Shading and Frames Steve Marschner CS5625 Spring 2016 Light reflection physics Radiometry redux Power Intensity power per unit solid angle Irradiance power per unit area Radiance power per unit (solid

More information

Texture. Texture Maps

Texture. Texture Maps Texture Texture maps! Surface color and transparency! Environment and irradiance maps! Reflectance maps! Shadow maps! Displacement and bump maps Level of detail hierarchy Procedural shading and texturing

More information

Complex Shading Algorithms

Complex Shading Algorithms Complex Shading Algorithms CPSC 414 Overview So far Rendering Pipeline including recent developments Today Shading algorithms based on the Rendering Pipeline Arbitrary reflection models (BRDFs) Bump mapping

More information

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker

CMSC427 Shading Intro. Credit: slides from Dr. Zwicker CMSC427 Shading Intro Credit: slides from Dr. Zwicker 2 Today Shading Introduction Radiometry & BRDFs Local shading models Light sources Shading strategies Shading Compute interaction of light with surfaces

More information

Illumination from Shadows

Illumination from Shadows IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. Y, NO. Y, MON 2002 0 Illumination from Shadows Imari Sato, Yoichi Sato, and Katsushi Ikeuchi Abstract In this paper, we introduce a

More information

Motivation. My General Philosophy. Assumptions. Advanced Computer Graphics (Spring 2013) Precomputation-Based Relighting

Motivation. My General Philosophy. Assumptions. Advanced Computer Graphics (Spring 2013) Precomputation-Based Relighting Advanced Computer Graphics (Spring 2013) CS 283, Lecture 17: Precomputation-Based Real-Time Rendering Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation Previously: seen IBR. Use measured

More information

Local Reflection Models

Local Reflection Models Local Reflection Models Illumination Thus Far Simple Illumination Models Ambient + Diffuse + Attenuation + Specular Additions Texture, Shadows, Used in global algs! (Ray tracing) Problem: Different materials

More information

A question from Piazza

A question from Piazza Radiometry, Reflectance, Lights CSE 252A Lecture 6 A question from Piazza 1 Announcements HW1 posted HWO graded, will be returned today If anyone has any registration issues, talk to me. Appearance: lighting,

More information

CS 5625 Lec 2: Shading Models

CS 5625 Lec 2: Shading Models CS 5625 Lec 2: Shading Models Kavita Bala Spring 2013 Shading Models Chapter 7 Next few weeks Textures Graphics Pipeline Light Emission To compute images What are the light sources? Light Propagation Fog/Clear?

More information

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading

CENG 477 Introduction to Computer Graphics. Ray Tracing: Shading CENG 477 Introduction to Computer Graphics Ray Tracing: Shading Last Week Until now we learned: How to create the primary rays from the given camera and image plane parameters How to intersect these rays

More information

A Frequency Analysis of Light Transport

A Frequency Analysis of Light Transport A Frequency Analysis of Light Transport Eric Chan MIT-CSAIL Abstract Keywords: Light transport, Fourier analysis, signal processing Introduction Light in a scene is transported, occluded, and filtered

More information

Texture. Detail Representation

Texture. Detail Representation Page 1 Texture Procedural shading and texturing Applied and projected textures Material / light properties Shadow maps Spherical and higher order textures Spherical mappings Environment and irradiance

More information

Lecture 15: Shading-I. CITS3003 Graphics & Animation

Lecture 15: Shading-I. CITS3003 Graphics & Animation Lecture 15: Shading-I CITS3003 Graphics & Animation E. Angel and D. Shreiner: Interactive Computer Graphics 6E Addison-Wesley 2012 Objectives Learn that with appropriate shading so objects appear as threedimensional

More information

Real-Time Illumination Estimation from Faces for Coherent Rendering

Real-Time Illumination Estimation from Faces for Coherent Rendering Real-Time Illumination Estimation from Faces for Coherent Rendering Sebastian B. Knorr Daniel Kurz Metaio GmbH Figure 1: Our method enables coherent rendering of virtual augmentations (a,b) based on illumination

More information

Lecture 4: Reflection Models

Lecture 4: Reflection Models Lecture 4: Reflection Models CS 660, Spring 009 Kavita Bala Computer Science Cornell University Outline Light sources Light source characteristics Types of sources Light reflection Physics-based models

More information

Precomputed Radiance Transfer: Theory and Practice

Precomputed Radiance Transfer: Theory and Practice 1 Precomputed Radiance Transfer: Peter-Pike Sloan Microsoft Jaakko Lehtinen Helsinki Univ. of Techn. & Remedy Entertainment Jan Kautz MIT 2 Introduction Jan Kautz MIT 3 Introduction We see here an example

More information

Illumination in Computer Graphics

Illumination in Computer Graphics Illumination in Computer Graphics Ann McNamara Illumination in Computer Graphics Definition of light sources. Analysis of interaction between light and objects in a scene. Rendering images that are faithful

More information

Nine Points of Light: Acquiring Subspaces for Face Recognition under Variable Lighting

Nine Points of Light: Acquiring Subspaces for Face Recognition under Variable Lighting To Appear in CVPR 2001 Nine Points of Light: Acquiring Subspaces for Face Recognition under Variable Lighting Kuang-Chih Lee Jeffrey Ho David Kriegman Beckman Institute and Computer Science Department

More information

CPSC 314 LIGHTING AND SHADING

CPSC 314 LIGHTING AND SHADING CPSC 314 LIGHTING AND SHADING UGRAD.CS.UBC.CA/~CS314 slide credits: Mikhail Bessmeltsev et al 1 THE RENDERING PIPELINE Vertices and attributes Vertex Shader Modelview transform Per-vertex attributes Vertex

More information

Illumination. Illumination CMSC 435/634

Illumination. Illumination CMSC 435/634 Illumination CMSC 435/634 Illumination Interpolation Illumination Illumination Interpolation Illumination Illumination Effect of light on objects Mostly look just at intensity Apply to each color channel

More information

Shading. Brian Curless CSE 557 Autumn 2017

Shading. Brian Curless CSE 557 Autumn 2017 Shading Brian Curless CSE 557 Autumn 2017 1 Reading Optional: Angel and Shreiner: chapter 5. Marschner and Shirley: chapter 10, chapter 17. Further reading: OpenGL red book, chapter 5. 2 Basic 3D graphics

More information

CS-184: Computer Graphics. Today. Lecture 22: Radiometry! James O Brien University of California, Berkeley! V2014-S

CS-184: Computer Graphics. Today. Lecture 22: Radiometry! James O Brien University of California, Berkeley! V2014-S CS-184: Computer Graphics Lecture 22: Radiometry James O Brien University of California, Berkeley V2014-S-15-1.0 Today Radiometry: measuring light Local Illumination and Raytracing were discussed in an

More information

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing

Motivation. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing. Monte Carlo Path Tracing Advanced Computer Graphics (Spring 2013) CS 283, Lecture 11: Monte Carlo Path Tracing Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/sp13 Motivation General solution to rendering and global illumination

More information

Lighting and Shading. Slides: Tamar Shinar, Victor Zordon

Lighting and Shading. Slides: Tamar Shinar, Victor Zordon Lighting and Shading Slides: Tamar Shinar, Victor Zordon Why we need shading Suppose we build a model of a sphere using many polygons and color each the same color. We get something like But we want 2

More information

Shading. Why we need shading. Scattering. Shading. Objectives

Shading. Why we need shading. Scattering. Shading. Objectives Shading Why we need shading Objectives Learn to shade objects so their images appear three-dimensional Suppose we build a model of a sphere using many polygons and color it with glcolor. We get something

More information

CS5620 Intro to Computer Graphics

CS5620 Intro to Computer Graphics So Far wireframe hidden surfaces Next step 1 2 Light! Need to understand: How lighting works Types of lights Types of surfaces How shading works Shading algorithms What s Missing? Lighting vs. Shading

More information

Human Face Shape Analysis under Spherical Harmonics Illumination Considering Self Occlusion

Human Face Shape Analysis under Spherical Harmonics Illumination Considering Self Occlusion Human Face Shape Analysis under Spherical Harmonics Illumination Considering Self Occlusion Jasenko Zivanov Andreas Forster Sandro Schönborn Thomas Vetter jasenko.zivanov@unibas.ch forster.andreas@gmail.com

More information

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance

Radiometry. Radiometry. Measuring Angle. Solid Angle. Radiance Radiometry Radiometry Computer Vision I CSE5A ecture 5-Part II Read Chapter 4 of Ponce & Forsyth Solid Angle Irradiance Radiance BRDF ambertian/phong BRDF Measuring Angle Solid Angle By analogy with angle

More information

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models

Today. Global illumination. Shading. Interactive applications. Rendering pipeline. Computergrafik. Shading Introduction Local shading models Computergrafik Thomas Buchberger, Matthias Zwicker Universität Bern Herbst 2008 Today Introduction Local shading models Light sources strategies Compute interaction of light with surfaces Requires simulation

More information

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2

Illumination. Michael Kazhdan ( /657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Illumination Michael Kazhdan (601.457/657) HB Ch. 14.1, 14.2 FvDFH 16.1, 16.2 Ray Casting Image RayCast(Camera camera, Scene scene, int width, int height) { Image image = new Image(width, height); for

More information

Precomputed Radiance Transfer with Spatially-Varying Lighting Effects

Precomputed Radiance Transfer with Spatially-Varying Lighting Effects Precomputed Radiance Transfer with Spatially-Varying Lighting Effects Masahiro Fujita Keio University SFC Graduate School of Media and Governance syoyo@sfc.keio.ac.jp Takashi Kanai Keio University SFC

More information

Optics II. Reflection and Mirrors

Optics II. Reflection and Mirrors Optics II Reflection and Mirrors Geometric Optics Using a Ray Approximation Light travels in a straight-line path in a homogeneous medium until it encounters a boundary between two different media The

More information

Announcements. Photometric Stereo. Shading reveals 3-D surface geometry. Photometric Stereo Rigs: One viewpoint, changing lighting

Announcements. Photometric Stereo. Shading reveals 3-D surface geometry. Photometric Stereo Rigs: One viewpoint, changing lighting Announcements Today Photometric Stereo, next lecture return to stereo Photometric Stereo Introduction to Computer Vision CSE152 Lecture 16 Shading reveals 3-D surface geometry Two shape-from-x methods

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) CS380: Computer Graphics Illumination and Shading Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/cg/ Course Objectives (Ch. 10) Know how to consider lights during rendering models

More information

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface

Photometric stereo. Recovering the surface f(x,y) Three Source Photometric stereo: Step1. Reflectance Map of Lambertian Surface Photometric stereo Illumination Cones and Uncalibrated Photometric Stereo Single viewpoint, multiple images under different lighting. 1. Arbitrary known BRDF, known lighting 2. Lambertian BRDF, known lighting

More information

Re-rendering from a Sparse Set of Images

Re-rendering from a Sparse Set of Images Re-rendering from a Sparse Set of Images Ko Nishino, Drexel University Katsushi Ikeuchi, The University of Tokyo and Zhengyou Zhang, Microsoft Research Technical Report DU-CS-05-12 Department of Computer

More information

Building Illumination Coherent 3D Models of Large-Scale Outdoor Scenes

Building Illumination Coherent 3D Models of Large-Scale Outdoor Scenes Int J Comput Vis (2008) 78: 261 280 DOI 10.1007/s11263-007-0100-x Building Illumination Coherent 3D Models of Large-Scale Outdoor Scenes Alejandro Troccoli Peter Allen Received: 19 March 2007 / Accepted:

More information

Biased Monte Carlo Ray Tracing

Biased Monte Carlo Ray Tracing Biased Monte Carlo Ray Tracing Filtering, Irradiance Caching, and Photon Mapping Henrik Wann Jensen Stanford University May 23, 2002 Unbiased and Consistent Unbiased estimator: E{X} =... Consistent estimator:

More information

Computer Graphics. - Texturing Methods -

Computer Graphics. - Texturing Methods - Computer Graphics - Texturing Methods - Overview Last time BRDFs Shading Today Texturing Texture parameterization Procedural methods Procedural textures Fractal landscapes Next lecture Texture filtering

More information

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment

Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Relighting for an Arbitrary Shape Object Under Unknown Illumination Environment Yohei Ogura (B) and Hideo Saito Keio University, 3-14-1 Hiyoshi, Kohoku, Yokohama, Kanagawa 223-8522, Japan {y.ogura,saito}@hvrl.ics.keio.ac.jp

More information

Spring 2012 Final. CS184 - Foundations of Computer Graphics. University of California at Berkeley

Spring 2012 Final. CS184 - Foundations of Computer Graphics. University of California at Berkeley Spring 2012 Final CS184 - Foundations of Computer Graphics University of California at Berkeley Write your name HERE: Write your login HERE: Closed book. You may not use any notes or printed/electronic

More information

Lighting affects appearance

Lighting affects appearance Lighting affects appearance 1 Source emits photons Light And then some reach the eye/camera. Photons travel in a straight line When they hit an object they: bounce off in a new direction or are absorbed

More information

Simple Lighting/Illumination Models

Simple Lighting/Illumination Models Simple Lighting/Illumination Models Scene rendered using direct lighting only Photograph Scene rendered using a physically-based global illumination model with manual tuning of colors (Frederic Drago and

More information

Radiometry and reflectance

Radiometry and reflectance Radiometry and reflectance http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 16 Course announcements Homework 4 is still ongoing - Any questions?

More information

Image Processing 1 (IP1) Bildverarbeitung 1

Image Processing 1 (IP1) Bildverarbeitung 1 MIN-Fakultät Fachbereich Informatik Arbeitsbereich SAV/BV (KOGS) Image Processing 1 (IP1) Bildverarbeitung 1 Lecture 20: Shape from Shading Winter Semester 2015/16 Slides: Prof. Bernd Neumann Slightly

More information

Three Dimensional Geometry. Linear Programming

Three Dimensional Geometry. Linear Programming Three Dimensional Geometry Linear Programming A plane is determined uniquely if any one of the following is known: The normal to the plane and its distance from the origin is given, i.e. equation of a

More information

General Principles of 3D Image Analysis

General Principles of 3D Image Analysis General Principles of 3D Image Analysis high-level interpretations objects scene elements Extraction of 3D information from an image (sequence) is important for - vision in general (= scene reconstruction)

More information

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Path Tracing part 2. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Path Tracing part 2 Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Monte Carlo Integration Monte Carlo Integration The rendering (& radiance) equation is an infinitely recursive integral

More information

Shading and Recognition OR The first Mrs Rochester. D.A. Forsyth, UIUC

Shading and Recognition OR The first Mrs Rochester. D.A. Forsyth, UIUC Shading and Recognition OR The first Mrs Rochester D.A. Forsyth, UIUC Structure Argument: History why shading why shading analysis died reasons for hope Classical SFS+Critiques Primitives Reconstructions

More information

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture

Mosaics, Plenoptic Function, and Light Field Rendering. Last Lecture Mosaics, Plenoptic Function, and Light Field Rendering Topics in Image-ased Modeling and Rendering CSE291 J00 Lecture 3 Last Lecture Camera Models Pinhole perspective Affine/Orthographic models Homogeneous

More information

Light Transport CS434. Daniel G. Aliaga Department of Computer Science Purdue University

Light Transport CS434. Daniel G. Aliaga Department of Computer Science Purdue University Light Transport CS434 Daniel G. Aliaga Department of Computer Science Purdue University Topics Local and Global Illumination Models Helmholtz Reciprocity Dual Photography/Light Transport (in Real-World)

More information

Shading & Material Appearance

Shading & Material Appearance Shading & Material Appearance ACM. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/. MIT EECS 6.837 Matusik

More information

The Law of Reflection

The Law of Reflection If the surface off which the light is reflected is smooth, then the light undergoes specular reflection (parallel rays will all be reflected in the same directions). If, on the other hand, the surface

More information

BRDFs. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

BRDFs. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 BRDFs Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 The Rendering Equation Radiance Radiance is a measure of the quantity of light radiation reflected (and/or emitted) from a surface within

More information