Real-time full matrix capture with auto-focussing of known geometry through dual layered media

Size: px
Start display at page:

Download "Real-time full matrix capture with auto-focussing of known geometry through dual layered media"

Transcription

1 Real-time full matrix capture with auto-focussing of known geometry through dual layered media Mark Sutcliffe, Miles Weston, Ben Dutton and Ian Cooper TWI NDT Validation Centre Heol Cefn Gwrgan, Margam, Port Talbot, SA1 6ED Kelvin Donne Swansea Metropolitan University Mt Pleasant, Swansea, SA13 EZ, UK Abstract A full matrix capture technique is presented that allows for real-time imaging through a non-planar surface where the geometry is known. For an identified geometry the point of incidence at the refractive interface is calculated using Fermat s principle and iterative techniques for each possible transducer position which is pre-processed ahead of the inspection. This information is combined with the transducer s encoded position during the inspection process with post-processing of ultrasonic data performed over the graphic processing unit. This is shown to allow for rapid imaging of ultrasonic data by firstly reducing the need to auto-focus through the media, and secondly by exploiting the parallelisation power of the graphic card. To demonstrate this, a linear array transducer was mounted to a Perspex wedge where the technique was applied to generate ultrasonic imagery of side drilled holes through a curved surface. This is shown to offer significant performance over traditional full matrix imaging with low implementation and development costs. 1. Introduction Ultrasonic array imaging is a useful inspection technique for the identification and classification of defects within solid structures and is routinely used within a wide range of site and lab based applications. When imaging of complex geometries is required, coupling of a rigid linear array transducer to a non-planar surface can prove problematic where direct contact is not always possible, and is often overcome by coupling through an intermediate medium such as a shoe or a fluid as in the case of immersion testing. With the introduction of advanced ultrasonic imaging techniques such as Full Matrix Capture (FMC), the Total Focusing Method (TFM) (1) and Sampling Phased Array (SPA) (), imaging through a non-planar surface is a computationally intensive task, where it is necessary to calculate the time of flight from each transmit / receive element combination to a given pixel region of interest through the refractive boundary. While extensive investigation has been undertaken in the efficient imaging of such data (3), it is often applied during post-processing sometime after the inspection has been undertaken. This in part is due to the much larger datasets associated with FMC, but also due to the

2 number of calculations required to effectively image ultrasonic data for a non-planar surface. This paper describes a method that allows for real-time inspection of FMC acquired data for a non-planar surface applicable to immersion testing. A technique was explored that generated the focal calculations ahead of the inspection in relation to the position of the transducer along the length of the geometry. This information was stored to file for later retrieval based on the encoded transducer position at time of the actual inspection, and was combined with post-processing of the FMC imaging algorithm over the Graphic Processing Unit (GPU) to allow for rapid inspection. This was shown to provide an effective approach for a non-planar surface through dual media given that the geometry was well known and calculated ahead of time.. Theoretical Background.1 Full Matrix Capture Imaging FMC is a data acquisition technique that allows for the complete time domain signal to be captured from every element of a linear array probe. A technique first introduced to NDT by Holmes et all in 005 (1), and extensively explored for use with medical ultrasound for many years prior to this (4). Data is acquired using a transmit on one and receive on all data capture approach, with the first element initially acting as transmitter, with every element (n) acting as receiver. The process repeats until all elements have transmitted; generating a complete set of time domain signals containing n A-scans. Since the energy in the material at any moment is generated from only a single element, the technique is often referred to as a sequential data acquisition method. Imaging of FMC data is commonly achieved through the Total Focussing Method (TFM), where a grid of pixels representative of the region of interest is defined with relevant amplitude information from the full matrix of data being extracted, allowing every pixel in the image to be treated as a focal point allowing for fully focused imagery of the region-of-interest to be rendered. The algorithm used to image this data is generated through a standard sum and beam-forming approach as expressed in equation 1 (1) ; where I is the intensity value for pixel location x,z, which is determined from the time of flight calculations from each transmit (tx) and receive (rx) pair to the pixel region of interest (x,z) with c being the velocity in the medium. A Hilbert transform (h) is used to convert the real time domain signal into complex form allowing the signal magnitude (envelope) to be found. I( x, z) = h tx, rx (x tx x) z (xrx x) z c...(1) Where the transducer is placed normal to the surface this technique proves effective. However when dealing with a non-planar surfaces such a curved geometry with

3 immersion testing or imaging through a wedge it is necessary to introduce the velocity of this interface medium and the refractive boundary into the algorithm. This is commonly achieved by exploiting Snell s law and Fermat s principle..1 Snell s law and Fermat s Principle The direction of a beam at an interface point between two media of acoustic velocities ci and c can be calculated using the well-known Snell s law, and is expressed here in its most common form in equation where φ i and φ R represent the angle of incidence and the angle of refraction respectively. This equation is often used for angle beam inspection to determine the path ultrasonic energy will take as it leaves the transducer and propagates through the refractive interface into the second medium. With the equation holding true for both longitudinal and shear wave modes, setting φ R equal to 90 o for a refracted longitudinal wave mode, the first critical angle can be determined. Beyond this angle no longitudinal wave mode exists and shear wave mode will be the dominant mode of propagation. sin( φ i ) sin( φr ) =...() ci c px ci pz qx qz c... (3) It can be shown that Snell s law is derived from Fermat s principle of least time (5). Expressed here in figure 1 and equation 3; where px, pz is the location of point source P, and qx,qz is the location Q within the material. The point along the refractive interface at which the least travel time is determined is the point at which the maximum ultrasonic energy will be transmitted from the interface material into the test material. By adopting an iterative approach along this refractive interface the path from which the ultrasonic source is emitted to a given pixel region of interest can be determined for both a planar and non-planar surface. In the case of a non-planar surface, the angle of incidence from the point source P is of importance as mode conversion is a consideration..1 Focusing through dual media Expanding equation 1 to account for focusing through a refractive interface leads to equation 4, and is illustrated for a non-planar surface in Figure ; where I is the intensity value for pixel location x,z, which is determined from the time of flight calculations from each transmit (tx) and receive (rx) pair to the pixel region of interest (x,z) via the point at which the ultrasonic energy passes through the refractive interface (x txi, z txi for transmit and x rxi, z rxi for receive) to the pixel location. The velocity in the medium is c and the velocity though the interface material is ci. 3

4 Figure 1. Fermat s principle; where the time to get from point P to point Q will take the path of least time through the refractive interface. Figure. Fully focused imaging of FMC data where every pixel acts as a focal point with intensity values calculated from the summed contribution from all elements. I( x, z) = h tx, rx (x (x tx txi - x txi - x) ) z txi ci z ( z z ) (x - x) ( z z ) txi (x c rx - x rxi rxi ) rxi rxi...(4) 4

5 Determining the point of incidence from a transducer element through the refractive interface for a given pixel may be solved analytically for a planar surface, but for nonplanar surfaces it is necessary to solve this using a numerical or iterative approach. For computational simplicity an iterative approach has been explored for the work in this paper. Each focal calculation for each pixel was pre calculated and stored for later retrieval; this provided the benefit of computational efficiency during the inspection process, with additional gains made through parallelisation of the summation of data through the graphic processing unit.. The graphic processing unit CUDA is a parallel programming model first introduced in 006 by NVIDA to allow for complex computational problems to operate over its GPU architecture. It is built around a scalable array of multithreaded streaming multiprocessors that are designed to execute hundreds of threads concurrently, with thread management controlled by the Single Instruction - Multiple Thread (SIMT) architecture. A technique based on the supercomputers of the 1970 s, it is an architecture that is not suitable for general purpose threading (where there is a dependency between threads). Thread execution is performed in groups of 3 parallel threads referred to as warps, with each GPU having a limited amount of memory which is managed independently of the CPU. Implemented as a subset of the C programming language, each CUDA kernel is capable of executing only a limited amount of code. Originally developed for speeding up graphic operations, the GPU has evolved to allow for a high level of parallelisation where a single operation is required. An example of this would be in the case of 3D computer animation, where a typical data-set would be the vector information for objects within the virtual world, and an operation involving the rotation of all objects along a specific axis. As each vector may be rotated in isolation of all other objects a single instruction is executed against all vectors in memory in parallel. While the CPU offers greater flexibility in its parallel processing and threading architecture, it typically contains a smaller number of processing cores than that of the GPU. While a typical CPU may have 4-8 cores, it is common for an entry level GPU to have in excess of 96 cores. Furthermore due to the simplified threading architecture, issues of thread concurrency and thread management are less of an issue with the GPU. Given that the TFM algorithm has no internal dependency on data, it is an ideal candidate for post-processing over the GPU, as each calculation may be performed in isolation. 3. Experimental configuration A data acquisition and post-processing system was assembled for this work consisting of a Micropulse 5PA array controller. Data was acquired using the half matrix FMC technique and processed by the TFM algorithm using a desktop computer with two quad core 3GHz CPUs and 48GB of RAM with a NVDIA GTX 560TI 380 CUDA core graphic card. The maximum data transfer rate of this acquisition system was 5

6 approximately 7 MB/s. The transducer used was a GE 3 element linear array probe with 1 mm pitch and 5 MHz central frequency. This was attached to a single axis encoder with a resolution of 1 cycles per mm to record its position relative to the test specimen. A low carbon steel block containing 5 horizontal side drilled holes with a curved profile was used, which was attached to a custom made Perspex shoe for ease of inspection, and is illustrated in figure 3. Figure 3. Experimental configuration allowing for encoded tracking of transducer movement. Focal calculations were performed ahead of the inspection by simulating the transducers location relative to the curved refractive boundary in software at 1 mm increments. This information was stored for use during the inspection where the data was linked to the transducers encoded position. For the experimental configuration calculation of this data for the entire test specimen took approximately 65 minutes to complete. During the inspection process these calculations were retrieved with post-processing against the FMC acquired data performed over the graphic card. 4. Results The focusing algorithm was simulated in software to map a region of interest -15mm to 15mm horizontally and 15mm to 35mm vertically relative to the transducer for the experimental configuration described in section 3. The transducer was simulated to move over the entire width of the test specimen with focal calculations stored as separate files for each transducer location. The experimental configuration allowed for the tracking of the transducer locations during the inspection through the use of a wheel encoder. The use of this encoded information allowed for the retrieval of the appropriate focal calculations to be copied to memory. As looking up pre-calculated values is more computationally effective than calculating the time of flight calculations as needed imaging of the raw data was completed in a time-efficient manner. 6

7 The image was rendered at a resolution of 0.5mm per pixel producing an image of 10x80 pixels. The fully focused image of this test specimen is shown in figure 4, where each side drill hole is clearly visible at its correct location. Specifically each side drill hole is seen to lie on a horizontal axis, showing correct focussing through the curved interface. Imaging of this data was done live during the inspection with results provided in table 1, where the approach was shown to provide a real-time method of inspection for a complex surface if prior knowledge of the geometry is known. Figure 4. Actual imagery acquired from experimental system demonstrating accuracy of the focusing algorithm. Table 1. Time taken to generate imagery with and without pre-calculating the focal data required for the inspection (all times in milliseconds) Pre-calculated Non pre-calculated Task Time Get data 13 Load focal calculations 30 Render 6 TOTAL 49 Task Time Get data 13 Generate focal calculations 49,300 Render 6 TOTAL 49, Conclusions and Further Work An algorithm was presented to allow for focussing through non-planar geometry for FMC acquired data where there is prior knowledge of the geometry. Based on Fermat s principle an iterative solution was found whereby focal calculations were performed 7

8 ahead of the inspection. This when combined with post-processing over the graphic hardware was shown to allow for real-time inspection through a non-planar surface. The ability to perform analysis in real-time during the inspection makes the solution suitable for automated or repeated inspection on a number of components of an identical geometric configuration. A limitation of the algorithms presented here is that they do not take into account mode conversions that can occur where the geometry causes the ultrasound to deviate from the calculated path. However, this can be accounted for by adopting a technique allowing for multi-mode focussing of FMC data (6). Further efficiency gains may also be exploited by optimising the focal calculation algorithms. With FMC being a popular topic within NDT at present this illustrated focussing of FMC data through complex geometry can be accomplished at frame rates comparable to existing phased-array and traditional ultrasonic inspection techniques, with low implementation costs. Acknowledgements This work was completed in partnership with TWI NDT Validation Centre (Wales), Swansea Metropolitan University, the University of Wales and the Prince of Wales Innovation Scholarship scheme (POWIS). References and footnotes 1 C. Holmes, B. Drinkwater, and P. Wilcox, Post-processing of the full matrix of ultrasonic transmit receive array data for non-destructive evaluation, NDT & E International, vol. 38, no. 8, pp , Dec P. Arrays, Sampling phased array a new technique for ultrasonic signal processing and imaging, Insight, vol. 50, no. 3, pp , A. J. Hunter, B. W. Drinkwater, and P. D. Wilcox, Autofocusing ultrasonic imagery for non-destructive testing and evaluation of specimens with complicated geometries, NDT & E International, vol. 43, no., pp , Mar J. A. Jensen, S. I. Nikolov, K. L. Gammelmark, and M. H. Pedersen, Synthetic aperture ultrasound imaging, Ultrasonics, vol. 44, K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical Methods for Physics and Engineering. Cambridge University Press, 00, p J. Zhang, B. W. Drinkwater, P. D. Wilcox, and A. J. Hunter, Defect detection using ultrasonic arrays: The multi-mode total focusing method, NDT & E International, vol. 43, no., pp , Mar

Research on Correction and Optimization of Post-processing Imaging of Structure with Non-planar Interface Using Full Matrix Data of Ultrasonic Array

Research on Correction and Optimization of Post-processing Imaging of Structure with Non-planar Interface Using Full Matrix Data of Ultrasonic Array 19 th World Conference on Non-Destructive Testing 2016 Research on Correction and Optimiation of Post-processing Imaging of Structure with Non-planar Interface Using Full Matrix Data of Ultrasonic Array

More information

Measurement of Residual Thickness in Case of Corrosion Close to the Welds with an Adaptive Total Focusing Method

Measurement of Residual Thickness in Case of Corrosion Close to the Welds with an Adaptive Total Focusing Method 19 th World Conference on Non-Destructive Testing 2016 Measurement of Residual Thickness in Case of Corrosion Close to the Welds with an Adaptive Total Focusing Method Olivier ROY 1, hilippe BENOIST 1,

More information

Application of the Total Focusing Method for Improved Defect Characterization in the Production of Steel Tubes, Pipes and Plates

Application of the Total Focusing Method for Improved Defect Characterization in the Production of Steel Tubes, Pipes and Plates 19 th World Conference on Non-Destructive Testing 2016 Application of the Total Focusing Method for Improved Defect Characterization in the Production of Steel Tubes, Pipes and Plates Till SCHMITTE 1,

More information

DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION. Patrick Tremblay, Daniel Richard ZETEC, Canada

DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION. Patrick Tremblay, Daniel Richard ZETEC, Canada DEVELOPMENT AND VALIDATION OF A FULL MATRIX CAPTURE SOLUTION Patrick Tremblay, Daniel Richard ZETEC, Canada ABSTRACT For the last 15 years, phased array has completely changed the face of ultrasonic non-destructive

More information

Fast total focusing method for ultrasonic imaging

Fast total focusing method for ultrasonic imaging Fast total focusing method for ultrasonic imaging Ewen Carcreff,a), Gavin Dao 2 and Dominique Braconnier The Phased Array Company, 9365 Allen road, West Chester, Ohio, USA 2 Advanced OEM Solutions, 844

More information

RECONSTRUCTION OF PHASED ARRAY TECHNIQUES FROM THE FULL MATRIX CAPTURE DATA SET

RECONSTRUCTION OF PHASED ARRAY TECHNIQUES FROM THE FULL MATRIX CAPTURE DATA SET More Info at Open Access Database www.ndt.net/?id=18486 RECONSTRUCTION OF PHASED ARRAY TECHNIQUES FROM THE FULL MATRIX CAPTURE DATA SET R.L. Ten Grotenhuis, J.X. Zhang, A Sakuta, A. Hong Ontario Power

More information

Validation of aspects of BeamTool

Validation of aspects of BeamTool Vol.19 No.05 (May 2014) - The e-journal of Nondestructive Testing - ISSN 1435-4934 www.ndt.net/?id=15673 Validation of aspects of BeamTool E. GINZEL 1, M. MATHESON 2, P. CYR 2, B. BROWN 2 1 Materials Research

More information

VALIDATION OF THE SIMULATION SOFTWARE CIVA UT IN SEPARATED TRANSMIT/RECEIVE CONFIGURATIONS

VALIDATION OF THE SIMULATION SOFTWARE CIVA UT IN SEPARATED TRANSMIT/RECEIVE CONFIGURATIONS VALIDATION OF THE SIMULATION SOFTWARE CIVA UT IN SEPARATED TRANSMIT/RECEIVE CONFIGURATIONS Fabrice FOUCHER 1, Sébastien LONNE 1, Gwénaël TOULLELAN 2, Steve MAHAUT 2, Sylvain CHATILLON 2, Erica SCHUMACHER

More information

UMASIS, AN ANALYSIS AND VISUALIZATION TOOL FOR DEVELOPING AND OPTIMIZING ULTRASONIC INSPECTION TECHNIQUES

UMASIS, AN ANALYSIS AND VISUALIZATION TOOL FOR DEVELOPING AND OPTIMIZING ULTRASONIC INSPECTION TECHNIQUES UMASIS, AN ANALYSIS AND VISUALIZATION TOOL FOR DEVELOPING AND OPTIMIZING ULTRASONIC INSPECTION TECHNIQUES A.W.F. Volker, J. G.P. Bloom TNO Science & Industry, Stieltjesweg 1, 2628CK Delft, The Netherlands

More information

UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques

UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China UMASIS, an analysis and visualization tool for developing and optimizing ultrasonic inspection techniques Abstract Joost

More information

High Resolution Phased Array Imaging using the Total Focusing Method

High Resolution Phased Array Imaging using the Total Focusing Method 19 th World Conference on Non-Destructive Testing 2016 High Resolution Phased Array Imaging using the Total Focusing Method Wolfram A. Karl DEUTSCH 1, Werner ROYE 1, Helge RAST 1, Philippe BENOIST 2 1

More information

Simulation in NDT. Online Workshop in in September Software Tools for the Design of Phased Array UT Inspection Techniques

Simulation in NDT. Online Workshop in  in September Software Tools for the Design of Phased Array UT Inspection Techniques Simulation in NDT Online Workshop in www.ndt.net in September 2010 Software Tools for the Design of Phased Array UT Inspection Techniques Daniel RICHARD, David REILLY, Johan BERLANGER and Guy MAES Zetec,

More information

Corrosion detection and measurement improvement using advanced ultrasonic tools

Corrosion detection and measurement improvement using advanced ultrasonic tools 19 th World Conference on Non-Destructive Testing 2016 Corrosion detection and measurement improvement using advanced ultrasonic tools Laurent LE BER 1, Grégoire BENOIST 1, Pascal DAINELLI 2 1 M2M-NDT,

More information

High Resolution Phased Array Imaging using the Total Focusing Method

High Resolution Phased Array Imaging using the Total Focusing Method High Resolution Phased Array Imaging using the Total Focusing Method S. Kierspel, Wolfram A. Karl Deutsch, Helge Rast, Philippe Benoist 1, Venkat A 2 KARL DEUTSCH Pruef- und Messgeraetebau GmbH + Co KG

More information

Adaptive Focusing Technology for the Inspection of Variable Geometry. Composite Material

Adaptive Focusing Technology for the Inspection of Variable Geometry. Composite Material More info about this article: http://www.ndt.net/?id=22711 Adaptive Focusing Technology for the Inspection of Variable Geometry Composite Material Etienne GRONDIN 1 1 Olympus Scientific Solutions Americas,

More information

SAFT-Reconstruction in ultrasonic immersion technique using phased array transducers

SAFT-Reconstruction in ultrasonic immersion technique using phased array transducers SAFT-Reconstruction in ultrasonic immersion technique using phased array transducers J. Kitze, J. Prager, R. Boehm, U. Völz, H.-J. Montag Federal Institute for Materials Research and Testing Berlin, Division

More information

GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA

GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA OPARUS GPU ACCELERATED TOTAL FOCUSING METHOD IN CIVA Authors: Gilles ROUGERON, Jason LAMBERT, Ekaterina IAKOVLEVA, L. LACASSAGNE Presenter: Nicolas DOMINGUEZ QNDE 2013 Baltimore, Md, USA, 24/07/2013 CEA

More information

Full-Matrix Capture with a Customizable Phased Array Instrument

Full-Matrix Capture with a Customizable Phased Array Instrument Full-Matrix Capture with a Customizable Phased Array Instrument Gavin Dao 1, a), Dominique Braconnier 2, b) 2, c), and Matt Gruber 1 Advanced OEM Solutions 8044 Montgomery Road #700 Cincinnati OH, 45236,

More information

CALCULATING SNELL S LAW

CALCULATING SNELL S LAW CALCULATING SNELL S LAW What is Snell s Law? Snell s Law defines angular relationships of sound waves crossing an interface. The calculations for Snell s Law will come into play when we are conducting

More information

ADVANCED METHOD FOR ULTRASONIC PROBE CHARACTERIZATION

ADVANCED METHOD FOR ULTRASONIC PROBE CHARACTERIZATION ADVANCED METHOD FOR ULTRASONIC PROBE CHARACTERIZATION Manuel PLATEAU, Michel DELAIDE, Vincent CHARDOME, Eric CRUYSWEEGS, Jiri CERMAK, Francis LEEMANS, AIB-VINÇOTTE INTERNATIONAL, Brussels, Belgium. 1.

More information

Ultrasound Phased Array Imaging on Curved Surface for Weld Inspection of Elbow Pipe as a Replacement for Radiographic Inspection

Ultrasound Phased Array Imaging on Curved Surface for Weld Inspection of Elbow Pipe as a Replacement for Radiographic Inspection 19 th World Conference on Non-Destructive Testing 2016 Ultrasound Phased Array Imaging on Curved Surface for Weld Inspection of Elbow Pipe as a Replacement for Radiographic Inspection Choon-su PARK 1,

More information

PORTABLE PHASED-ARRAY ULTRASOUND FULL-FEATURED SYSTEM

PORTABLE PHASED-ARRAY ULTRASOUND FULL-FEATURED SYSTEM PORTABLE PHASED-ARRAY ULTRASOUND FULL-FEATURED SYSTEM GEKKO GEKKO not only offers the features of standard phased-array portable systems (angular scanning, electronic scanning, TOFD, etc.), new advanced

More information

Implementation of a GPU accelerated total focusing reconstruction method within CIVA software

Implementation of a GPU accelerated total focusing reconstruction method within CIVA software Implementation of a GPU accelerated total focusing reconstruction method within CIVA software Gilles Rougeron, Jason Lambert, Ekaterina Iakovleva, Lionel Lacassagne, Nicolas Dominguez To cite this version:

More information

ULTRASONIC NONDESTRUCTIVE TESTING OF COMPLEX COMPONENTS WITH FLEXIBLE PHASED-ARRAY TRANSDUCERS

ULTRASONIC NONDESTRUCTIVE TESTING OF COMPLEX COMPONENTS WITH FLEXIBLE PHASED-ARRAY TRANSDUCERS ULTRASONIC NONDESTRUCTIVE TESTING OF COMPLEX COMPONENTS WITH FLEXIBLE PHASED-ARRAY TRANSDUCERS 1 CEA-LIST, Gif-sur-Yvette, France 2 M2M, Les Ulis, France 3 IMASONIC, Voray-sur-l Ognon, France O. Casula

More information

Developments in Ultrasonic Phased Array Inspection III

Developments in Ultrasonic Phased Array Inspection III Developments in Ultrasonic Inspection III Ultrasonic Inspection of Welded Pipes Using Wave Mode-Converted at the Inner Surface of the Pipe R. Long, P. Cawley, Imperial College, UK; J. Russell, Rolls-Royce,

More information

John R. Mandeville Senior Consultant NDICS, Norwich, CT Jesse A. Skramstad President - NDT Solutions Inc., New Richmond, WI

John R. Mandeville Senior Consultant NDICS, Norwich, CT Jesse A. Skramstad President - NDT Solutions Inc., New Richmond, WI Enhanced Defect Detection on Aircraft Structures Automatic Flaw Classification Software (AFCS) John R. Mandeville Senior Consultant NDICS, Norwich, CT Jesse A. Skramstad President - NDT Solutions Inc.,

More information

Advanced ultrasonic 2D Phased-array probes

Advanced ultrasonic 2D Phased-array probes Advanced ultrasonic 2D Phased-array probes Frédéric REVERDY 1, G. ITHURRALDE 2, Nicolas DOMINGUEZ 1,2 1 CEA, LIST, F-91191, Gif-sur-Yvette cedex, France frederic.reverdy@cea.fr, nicolas.dominguez@cea.fr

More information

Plane Wave Imaging Using Phased Array Arno Volker 1

Plane Wave Imaging Using Phased Array Arno Volker 1 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16409 Plane Wave Imaging Using Phased Array

More information

NDE Inspection FMC and TFM

NDE Inspection FMC and TFM NDE Inspection FMC and TFM Homogeneous Material Modelling o Simulations replicating an experimental Full Matrix Capture (FMC) ultrasonic array inspection of a calibration block o Total Focusing Method

More information

Sizing and evaluation of planar defects based on Surface Diffracted Signal Loss technique by ultrasonic phased array

Sizing and evaluation of planar defects based on Surface Diffracted Signal Loss technique by ultrasonic phased array Sizing and evaluation of planar defects based on Surface Diffracted Signal Loss technique by ultrasonic phased array A. Golshani ekhlas¹, E. Ginzel², M. Sorouri³ ¹Pars Leading Inspection Co, Tehran, Iran,

More information

NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE

NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE NDT OF SPECIMEN OF COMPLEX GEOMETRY USING ULTRASONIC ADAPTIVE TECHNIQUES - THE F.A.U.S.T. SYSTEM INTRODUCTION O. Roy, S. Mahaut, M. Serre Commissariat a I'Energie Atomique CEAlCEREM, CE Saclay France Phased

More information

REAL-TIME ADAPTIVE IMAGING FOR ULTRASONIC NONDESTRUCTIVE TESTING OF STRUCTURES WITH IRREGULAR SHAPES

REAL-TIME ADAPTIVE IMAGING FOR ULTRASONIC NONDESTRUCTIVE TESTING OF STRUCTURES WITH IRREGULAR SHAPES REAL-TIME ADATIVE IMAGING FOR ULTRASONIC NONDESTRUCTIVE TESTING OF STRUCTURES WITH IRREGULAR SHAES Sébastien Robert, Léonard Le Jeune, Vincent Saint-Martin CEA-LIST, 91191 Gif-sur-Yvette Cedex, France

More information

Developments in Ultrasonic Phased Array Inspection IV

Developments in Ultrasonic Phased Array Inspection IV Developments in Ultrasonic Phased Array Inspection IV Phased Array UT Inspection System for BWR Bottom Head Penetrations P. Tremblay, J. Berlanger, Zetec, Canada T. Yagi, N. Shiokawa, IHI Corporation,

More information

M2M GEKKO. State-of-the-art phased-array flaw detector with TFM

M2M GEKKO. State-of-the-art phased-array flaw detector with TFM M2M GEKKO State-of-the-art phased-array flaw detector with TFM USER FRIENDLY FLAW DETECTOR Gekko is the only compact phased-array ultrasound testing (PAUT) instrumentation offering intuitive PA features

More information

Ultrasonic Multi-Skip Tomography for Pipe Inspection

Ultrasonic Multi-Skip Tomography for Pipe Inspection 18 th World Conference on Non destructive Testing, 16-2 April 212, Durban, South Africa Ultrasonic Multi-Skip Tomography for Pipe Inspection Arno VOLKER 1, Rik VOS 1 Alan HUNTER 1 1 TNO, Stieltjesweg 1,

More information

Imaging the Weld Volume Via the Total Focus Method. Ray TEN GROTENHUIS, Andrew. HONG, Ontario Power Generation Inc., Canada

Imaging the Weld Volume Via the Total Focus Method. Ray TEN GROTENHUIS, Andrew. HONG, Ontario Power Generation Inc., Canada 4th International CANDU In-service Inspection Workshop and NDT in Canada 2012 Conference, 2012 June 18-21, Toronto, Ontario ABSTRACT Imaging the Weld Volume Via the Total Focus Method Ray TEN GROTENHUIS,

More information

Enhanced Defect Detection and Characterisation by Signal Processing of Ultrasonic Array Data

Enhanced Defect Detection and Characterisation by Signal Processing of Ultrasonic Array Data ECNDT 2006 - Fr.1.1.4 Enhanced Defect Detection and Characterisation by Signal Processing of Ultrasonic Array Data Paul D. WILCOX, Caroline HOLMES, Bruce W. DRINKWATER, Department of Mechanical Engineering,

More information

Geometrical Optics INTRODUCTION. Wave Fronts and Rays

Geometrical Optics INTRODUCTION. Wave Fronts and Rays Geometrical Optics INTRODUCTION In this experiment, the optical characteristics of mirrors, lenses, and prisms will be studied based on using the following physics definitions and relationships plus simple

More information

The geometry of reflection and refraction Wave conversion and reflection coefficient

The geometry of reflection and refraction Wave conversion and reflection coefficient 7.2.2 Reflection and Refraction The geometry of reflection and refraction Wave conversion and reflection coefficient The geometry of reflection and refraction A wave incident on a boundary separating two

More information

ULTRAVISION 3.7R21. Product Bulletin. UltraVision, a complete UT and Phased Array inspection package!

ULTRAVISION 3.7R21. Product Bulletin. UltraVision, a complete UT and Phased Array inspection package! ULTRAVISION 3.7R21 Product Bulletin UltraVision, a complete UT and Phased Array inspection package! www.zetec.com Table of Content Table of Content... 2 Purpose of UltraVision 3.7R21... 3 Corrosion...

More information

UltraVision TOUCH 3.8R11

UltraVision TOUCH 3.8R11 UltraVision TOUCH 3.8R11 (PC and TOPAZ versions) Product Bulletin www.zetec.com Table of Content Table of Content... 2 UltraVision Touch 3.8R11... 3 Purpose of UltraVision Touch 3.8R11... 3 Important information

More information

INSPECTION USING SHEAR WAVE TIME OF FLIGHT DIFFRACTION (S-TOFD) TECHNIQUE

INSPECTION USING SHEAR WAVE TIME OF FLIGHT DIFFRACTION (S-TOFD) TECHNIQUE INSPECTION USING SHEAR WAVE TIME OF FIGHT DIFFRACTION (S-TOFD) TECHNIQUE G. Baskaran, Krishnan Balasubramaniam and C.V. Krishnamurthy Centre for Nondestructive Evaluation and Department of Mechanical Engineering,

More information

DEVELOPMENT OF A FAST INSPECTION SYSTEM FOR COMPLEX COMPOSITE STRUCTURE - THE INTACOM PROJECT

DEVELOPMENT OF A FAST INSPECTION SYSTEM FOR COMPLEX COMPOSITE STRUCTURE - THE INTACOM PROJECT Cooper, Ian and Nicholson, Ian and Yan, Dawei and Wright, Ben and Liaptsis, Dimos and Mineo, Carmelo (2013) Development of a fast inspection system for aerospace composite materials - the IntACom project.

More information

ScanMaster. Aluminum Plate Inspection Using Phased Array Technology

ScanMaster. Aluminum Plate Inspection Using Phased Array Technology Aluminum Plate Inspection Using Phased Array Technology PA Basics Applied: Electronic Scanning Spatial scanning by driving an active active aperture in a predefined sequence Faster inspection as there

More information

Phased-array applications for aircraft maintenance: fastener-hole inspection

Phased-array applications for aircraft maintenance: fastener-hole inspection Phased-array applications for aircraft maintenance: fastener-hole inspection Guillaume Neau 1, Emmanuel Guillorit 2, Luc Boyer 2 and Herve Tretout 2 1 BERCLI Phased Array Solutions, Berkeley, CA94703,

More information

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE

A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE A THREE-DIMENSIONAL PHASED ARRAY ULTRASONIC TESTING TECHNIQUE So KITAZAWA, Naoyuki KONO, Atsushi BABA and Yuji ADACHI HITACHI, Ltd., Japan Mitsuru ODAKURA HITACHI-GE Nuclear Energy, Ltd., Japan Introduction

More information

RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN

RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN RECONSTRUCTION OF A PISTON TRANSDUCER BEAM USING MULTI-GAUSSIAN BEAMS (MGB) AND ITS APPLICATIONS INTRODUCTION A. Minachi*, F. 1. Margetan** and R. B. Thompson** * Southwest Research Institute San Antonio,

More information

ULTRASONIC WAVE PROPAGATION THROUGH NOZZLES AND PIPES WITH

ULTRASONIC WAVE PROPAGATION THROUGH NOZZLES AND PIPES WITH ULTRASONIC WAVE PROPAGATION THROUGH NOZZLES AND PIPES WITH CLADDINGS AROUND THEIR INNER WALLS INTRODUCTION A. Minachi and R. B. Thompson Center for NDE Iowa State University Ames, Iowa 5001 J The inner

More information

ARIA Software. Total Focusing Method. - Real-Time TFM Imaging - Acquire all FMC data - FMC/TFM Wizard - TFM Viewer - Analysis Mode

ARIA Software. Total Focusing Method. - Real-Time TFM Imaging - Acquire all FMC data - FMC/TFM Wizard - TFM Viewer - Analysis Mode ARIA Software Total Focusing Method - Real-Time TFM Imaging - Acquire all FMC data - FMC/TFM Wizard - TFM Viewer - Analysis Mode Several Implementations Standard TFM Migration TFM Advanced TFM TFMp Adaptive

More information

Lamb wave interactions with delaminations in composite laminates using air-coupled ultrasonic visualisation

Lamb wave interactions with delaminations in composite laminates using air-coupled ultrasonic visualisation More Info at Open Access Database www.ndt.net/?id=17631 Lamb wave interactions with delaminations in composite laminates using air-coupled ultrasonic visualisation Rabi Sankar Panda 1, a, Durvasula V S

More information

Ultrasonic imaging of steel-adhesive and aluminum-adhesive joints using two dimensional array

Ultrasonic imaging of steel-adhesive and aluminum-adhesive joints using two dimensional array 14th Int. Symposium on Nondestructive Characterization of Materials (NDCM 2015) June 2226, 2015, Marina Del Rey, CA, USA More Info at Open Access Database www.ndt.net/?id=18133 Ultrasonic imaging of steel-adhesive

More information

RA Y -MODELING FOR COMPUTER SIMULATION OF ULTRASONIC TESTING

RA Y -MODELING FOR COMPUTER SIMULATION OF ULTRASONIC TESTING RA Y -MODELING FOR COMPUTER SIMULATION OF ULTRASONIC TESTING INTRODUCTION T. Furukawa and K. Date Department of Materials Processing, Faculty of Engineering Tohoku University Sendai, Miyagi, 9'iYJ-77,

More information

LONG RANGE ULTRASONIC TECHNOLOGY ON LARGE STEEL PLATES: AN ECHO TOMOGRAPHY TECHNIQUE WITH AUTOMATED DEFECT DETECTION CAPABILITY

LONG RANGE ULTRASONIC TECHNOLOGY ON LARGE STEEL PLATES: AN ECHO TOMOGRAPHY TECHNIQUE WITH AUTOMATED DEFECT DETECTION CAPABILITY LONG RANGE ULTRASONIC TECHNOLOGY ON LARGE STEEL PLATES: AN ECHO TOMOGRAPHY TECHNIQUE WITH AUTOMATED DEFECT DETECTION CAPABILITY G. Asfis 1, P. Stavrou 1, M. Deere 3, P. Chatzakos 2, D. Fuloria 3 1 CE.RE.TE.TH,

More information

Recent advances in aerospace inspection with ultrasonic phased arrays

Recent advances in aerospace inspection with ultrasonic phased arrays Recent advances in aerospace inspection with ultrasonic phased arrays David Lines Chief Engineer, Diagnostic Sonar Ltd., UK AeroNDT SEMINAR, Aerospace Testing Expo2007 27 th -29 th March 2007, Munich Content

More information

June 16-18, Toronto, Ontario

June 16-18, Toronto, Ontario Advances in Technologies For Feeder Pipe Inspections Ray TEN GROTENHUIS, Yadav VERMA, Thomas HITCHCOX, Alex SAKUTA Ontario Power Generation Inc. Inspection & Maintenance Division, NDE Projects Department

More information

RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS

RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS RECENT MODELLING ADVANCES FOR ULTRASONIC TOFD INSPECTIONS Michel DARMON 1, Adrien FERRAND 1, Vincent DORVAL 1, Sylvain CHATILLON 1 CEA LIST, Gif-sur-Yvette, France michel.darmon@cea.fr QNDE July 2014 OUTLINE

More information

COMPUTATIONALLY EFFICIENT RAY TRACING ALGORITHM FOR SIMULATION OF TRANSDUCER FIELDS IN ANISOTROPIC MATERIALS

COMPUTATIONALLY EFFICIENT RAY TRACING ALGORITHM FOR SIMULATION OF TRANSDUCER FIELDS IN ANISOTROPIC MATERIALS Proceedings of the National Seminar & Exhibition on Non-Destructive Evaluation NDE 2011, December 8-10, 2011 COMPUTATIONALLY EFFICIENT RAY TRACING ALGORITHM FOR SIMULATION OF TRANSDUCER FIELDS IN ANISOTROPIC

More information

KAUNAS UNIVERSITY OF TECHNOLOGY DETERMINATION OF POSITION OF DEFECTS IN RAILS USING ULTRASONIC PHASED ARRAYS

KAUNAS UNIVERSITY OF TECHNOLOGY DETERMINATION OF POSITION OF DEFECTS IN RAILS USING ULTRASONIC PHASED ARRAYS KAUNAS UNIVERSITY OF TECHNOLOGY FACULTY OF ELECTRICAL AND ELECTRONICS ENGINEERING Kireeti Maddela DETERMINATION OF POSITION OF DEFECTS IN RAILS USING ULTRASONIC PHASED ARRAYS Master s Degree Final Project

More information

Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis

Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis More Info at Open Access Database www.ndt.net/?id=15194 Finite Element Modeling and Multiphysics Simulation of Air Coupled Ultrasonic with Time Domain Analysis Bikash Ghose 1, a, Krishnan Balasubramaniam

More information

EXPERIMENTAL VALIDATION OF AN 8 ELEMENT EMAT PHASED ARRAY PROBE FOR LONGITUDINAL WAVE GENERATION

EXPERIMENTAL VALIDATION OF AN 8 ELEMENT EMAT PHASED ARRAY PROBE FOR LONGITUDINAL WAVE GENERATION EXPERIMENTAL VALIDATION OF AN 8 ELEMENT EMAT PHASED ARRAY PROBE FOR LONGITUDINAL WAVE GENERATION QNDE 2014 Florian Le Bourdais and Benoît Marchand CEA LIST, Centre de Saclay F-91191 Gif-sur-Yvette, France

More information

ECNDT Poster 7

ECNDT Poster 7 ECNDT 2006 - Poster 7 A Ray Technique to Calculate the Multiple Reflections and Leaky Wave Propagation from a Single or Multilayer Plate for the Detection of Critical Disbonds in Layered Media J. SADLER,

More information

NEW FEATURES FOR PHASED ARRAY TECHNIQUES INSPECTIONS : SIMULATION AND EXPERIMENTS

NEW FEATURES FOR PHASED ARRAY TECHNIQUES INSPECTIONS : SIMULATION AND EXPERIMENTS NEW FEATURES FOR PHASED ARRAY TECHNIQUES INSPECTIONS : SIMULATION AND EXPERIMENTS S. Mahaut 1, S. Chatillon 1, E. Kerbrat 1, J. Porre 1, P. Calmon 1 and O. Roy 2 1 CEA/LIST, Saclay, France; 2 M2M, Saint-Rémy,

More information

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging

CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging CUDA and OpenCL Implementations of 3D CT Reconstruction for Biomedical Imaging Saoni Mukherjee, Nicholas Moore, James Brock and Miriam Leeser September 12, 2012 1 Outline Introduction to CT Scan, 3D reconstruction

More information

Hybrid simulation model of ultrasonic inspection of pressure tubes in nuclear industry

Hybrid simulation model of ultrasonic inspection of pressure tubes in nuclear industry Hybrid simulation model of ultrasonic inspection of pressure tubes in nuclear industry Huan Zhao, Jeff Dobson, Anthony Gachagan, Timothy Lardner and Gordon Dobie Centre for Ultrasonic Engineering, University

More information

COMPLEX CONTOUR ULTRASONIC SCANNING SYSTEM APPLICATION AND TRAINING

COMPLEX CONTOUR ULTRASONIC SCANNING SYSTEM APPLICATION AND TRAINING COMPLEX CONTOUR ULTRASONIC SCANNING SYSTEM APPLICATION AND TRAINING SJ. Wormley and H. Zhang Center for Nondestructive Evaluation Iowa State University Ames, Iowa 50011-3042 INTRODUCTION It was anticipated

More information

FINITE ELEMENT MODELING OF TRANSIENT WAVE PHENOMENA AT

FINITE ELEMENT MODELING OF TRANSIENT WAVE PHENOMENA AT FINITE ELEMENT MODELING OF TRANSIENT WAVE PHENOMENA AT SOLIDIFLUID INTERFACES T. Xue, W. Lord, S. Udpa, L. Udpa and M. Mina Department of Electrical and Computer Engineering Iowa State University Ames,

More information

Probability of Detection Simulations for Ultrasonic Pulse-echo Testing

Probability of Detection Simulations for Ultrasonic Pulse-echo Testing 18th World Conference on Nondestructive Testing, 16-20 April 2012, Durban, South Africa Probability of Detection Simulations for Ultrasonic Pulse-echo Testing Jonne HAAPALAINEN, Esa LESKELÄ VTT Technical

More information

specular diffuse reflection.

specular diffuse reflection. Lesson 8 Light and Optics The Nature of Light Properties of Light: Reflection Refraction Interference Diffraction Polarization Dispersion and Prisms Total Internal Reflection Huygens s Principle The Nature

More information

A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY

A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY A FLEXIBLE PHASED ARRAY TRANSDUCER FOR CONTACT EXAMINATION OF COMPONENTS WITH COMPLEX GEOMETRY O. Casula 1, C. Poidevin 1, G. Cattiaux 2 and G. Fleury 3 1 CEA/LIST, Saclay, France; 2 IRSN/DES, Fontenay-aux-Roses,

More information

Monochromatic Transfer Matrix method for acoustic field simulation thorough media boundaries

Monochromatic Transfer Matrix method for acoustic field simulation thorough media boundaries Available online at www.sciencedirect.com Physics Physics Procedia 3 (2010) 00 (2009) 883 890 000 000 www.elsevier.com/locate/procedia International Congress on Ultrasonics, Universidad de Santiago de

More information

SIMULATING ARBITRARY-GEOMETRY ULTRASOUND TRANSDUCERS USING TRIANGLES

SIMULATING ARBITRARY-GEOMETRY ULTRASOUND TRANSDUCERS USING TRIANGLES Jørgen Arendt Jensen 1 Paper presented at the IEEE International Ultrasonics Symposium, San Antonio, Texas, 1996: SIMULATING ARBITRARY-GEOMETRY ULTRASOUND TRANSDUCERS USING TRIANGLES Jørgen Arendt Jensen,

More information

Using GPUs to Accelerate Synthetic Aperture Sonar Imaging via Backpropagation

Using GPUs to Accelerate Synthetic Aperture Sonar Imaging via Backpropagation Using GPUs to Accelerate Synthetic Aperture Sonar Imaging via Backpropagation GPU Technology Conference 2012 May 15, 2012 Thomas M. Benson, Daniel P. Campbell, Daniel A. Cook thomas.benson@gtri.gatech.edu

More information

Simulation of ultrasonic guided wave inspection in CIVA software platform

Simulation of ultrasonic guided wave inspection in CIVA software platform Simulation of ultrasonic guided wave inspection in CIVA software platform B. CHAPUIS, K. JEZZINE, V. BARONIAN, D. SEGUR and A. LHEMERY 18 April 2012 CIVA: Software for NDT Generalities WHY USING SIMULATION

More information

ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS

ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS ULTRASONIC INSPECT ABILITY MODELS FOR JET ENGINE FORGINGS INTRODUCTION T. A. Gray Center for Nondestructive Evaluation Iowa State University Ames, IA 50011 Ultrasonic inspections of axially symmetric forgings,

More information

Coupling of surface roughness to the performance of computer-generated holograms

Coupling of surface roughness to the performance of computer-generated holograms Coupling of surface roughness to the performance of computer-generated holograms Ping Zhou* and Jim Burge College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA *Corresponding author:

More information

CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects

CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects 17th World Conference on Nondestructive Testing, 25-28 Oct 2008, Shanghai, China CT Reconstruction with Good-Orientation and Layer Separation for Multilayer Objects Tong LIU 1, Brian Stephan WONG 2, Tai

More information

Advanced Image Reconstruction Methods for Photoacoustic Tomography

Advanced Image Reconstruction Methods for Photoacoustic Tomography Advanced Image Reconstruction Methods for Photoacoustic Tomography Mark A. Anastasio, Kun Wang, and Robert Schoonover Department of Biomedical Engineering Washington University in St. Louis 1 Outline Photoacoustic/thermoacoustic

More information

2. Fundamental Equations of Elastodynamic Finite Integration Technique

2. Fundamental Equations of Elastodynamic Finite Integration Technique 11th European Conference on Non-Destructive Testing (ECNDT 2014), October 6-10, 2014, Prague, Czech Republic More Info at Open Access Database www.ndt.net/?id=16455 Elastic Wave Modeling in Complex Geometries

More information

A Study of Time-of-Flight Diffraction Technique Using Photoelastic Visualisation

A Study of Time-of-Flight Diffraction Technique Using Photoelastic Visualisation A Study of Time-of-Flight Diffraction Technique Using Photoelastic Visualisation Edward Ginzel 1, Farhang Honarvar 2, and Amin Yaghootian 3 1- Materials Research Institute, Waterloo, Ontario, Canada 2-

More information

ULTRASONIC TESTING AND FLAW CHARACTERIZATION. Alex KARPELSON Kinectrics Inc., Toronto, Canada

ULTRASONIC TESTING AND FLAW CHARACTERIZATION. Alex KARPELSON Kinectrics Inc., Toronto, Canada ULTRASONIC TESTING AND FLAW CHARACTERIZATION Alex KARPELSON Kinectrics Inc., Toronto, Canada 1. Introduction Ultrasonic Testing (UT) is a commonly used inspection method. Various techniques are employed

More information

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics

Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics Adaptive-Mesh-Refinement Hydrodynamic GPU Computation in Astrophysics H. Y. Schive ( 薛熙于 ) Graduate Institute of Physics, National Taiwan University Leung Center for Cosmology and Particle Astrophysics

More information

MANTIS Compact Phased Array Ultrasonic (PAUT) Flaw Detector featuring TFM, TOFD and Conventional UT

MANTIS Compact Phased Array Ultrasonic (PAUT) Flaw Detector featuring TFM, TOFD and Conventional UT MANTIS Compact Phased Array Ultrasonic (PAUT) Flaw Detector featuring TFM, TOFD and Conventional UT MANTIS - Compact Phased Array Ultrasonic (PAUT) Flaw Detector The MANTIS is a cost-efficient, compact

More information

Progress in the Development of a FMC/TFM Based Ultrasonic System

Progress in the Development of a FMC/TFM Based Ultrasonic System 19 th World Conference on Non-Destructive Testing 2016 Progress in the Development of a FMC/TFM Based Ultrasonic System Raymond TEN GROTENHUIS 1, Andrew HONG 1, Yadav VERMA 1 1 Ontario Power Generation,

More information

APPLICATION OF ULTRASONIC BEAM MODELING TO PHASED ARRAY

APPLICATION OF ULTRASONIC BEAM MODELING TO PHASED ARRAY APPLICATION OF ULTRASONIC BEAM MODELING TO PHASED ARRAY TESTING OF COMPLEX GEOMETRY COMPONENTS INTRODUCflON O. Roy, S. Mahaut, M. Serre, Commissariat 11 l'energie Atomique, CEAlCEREM, CE Saclay France

More information

Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging

Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging Plane Wave Imaging for ultrasonic non-destructive testing: Generalization to multimodal imaging Léonard Le Jeune, Sébastien Robert, Eduardo Lopez Villaverde, Claire Prada To cite this version: Léonard

More information

Simulation of NDT Inspection in 3D Elastic Waveguide Involving Arbitrary Defect

Simulation of NDT Inspection in 3D Elastic Waveguide Involving Arbitrary Defect 19 th World Conference on Non-Destructive Testing 2016 Simulation of NDT Inspection in 3D Elastic Waveguide Involving Arbitrary Defect Vahan BARONIAN 1, Karim JEZZINE 2 1 CEA LIST, Gif-sur-Yvette, France

More information

A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals

A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals More Info at Open Access Database www.ndt.net/?id=15210 A method and algorithm for Tomographic Imaging of highly porous specimen using Low Frequency Acoustic/Ultrasonic signals Subodh P S 1,a, Reghunathan

More information

ADVANCED PHASED ARRAY TECHNOLOGIES

ADVANCED PHASED ARRAY TECHNOLOGIES 3CNEND- 3ª Conferência Nacional em Ensaios Não Destrutivos ADVANCED PHASED ARRAY TECHNOLOGIES Dr.-Ing. Werner Roye Karl Deutsch Pruef- und Messgeraetebau GmbH + Co KG, Wuppertal, Germany Email: roye@karldeutsch.de

More information

Rapid, low-cost full-waveform mapping and analysis using ultrasonic phased arrays

Rapid, low-cost full-waveform mapping and analysis using ultrasonic phased arrays Rapid, low-cost full-waveform mapping and analysis using ultrasonic phased arrays David I A Lines Diagnostic Sonar Ltd. Livingston, West Lothian, EH54 7BX, UK Tel: +44 (0)1506 411877 Fax: +44 (0)1506 412410

More information

Applications of Phased Array Techniques to NDT of Industrial Structures

Applications of Phased Array Techniques to NDT of Industrial Structures The 2 nd International Conference on Technical Inspection and NDT (TINDT2008)- October 2008 - Tehran, Iran Applications of Phased Array Techniques to NDT of Industrial Structures Laurent Le ber 1, Olivier

More information

SIGNAL PROCESSING ADVANCEMENTS FOR CASS UT EXAMINATIONS. T. Seuaciuc-Osório, M. Dennis, D. MacDonald, EPRI, USA D. Braconnier, D.B. Ltd.

SIGNAL PROCESSING ADVANCEMENTS FOR CASS UT EXAMINATIONS. T. Seuaciuc-Osório, M. Dennis, D. MacDonald, EPRI, USA D. Braconnier, D.B. Ltd. SIGNAL PROCESSING ADVANCEMENTS FOR CASS UT EXAMINATIONS T. Seuaciuc-Osório, M. Dennis, D. MacDonald, EPRI, USA D. Braconnier, D.B. Ltd., Japan INTRODUCTION Regulatory requirements mandate that the welds

More information

VALIDATION 3D RAY TRACING FOR UT EXAMINATION OF THE NOZZLE

VALIDATION 3D RAY TRACING FOR UT EXAMINATION OF THE NOZZLE VALIDATION 3D RAY TRACING FOR UT EXAMINATION OF THE NOZZLE INNER BLEND REGION INTRODUCTION Douglas MacDonald Greg Selby EPRI NDE Center Charlotte, NC 28221 Mathew Koshy Weidlinger Associates, Inc. Los

More information

Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT

Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT Fresnel Zone based Frequency domain reconstruction of Ultrasonic data- Fresnel SAFT Aswath Rangarajan Abstract An Ultrasound Synthetic Aperture Imaging method based on the Fresnel Zone concept is presented

More information

SIZING THE HEIGHT OF DISCONTINUITIES, THEIR CHARACTERISATION IN PLANAR / VOLUMETRIC BY PHASED ARRAY TECHNIQUE BASED ON DIFFRACTED ECHOES

SIZING THE HEIGHT OF DISCONTINUITIES, THEIR CHARACTERISATION IN PLANAR / VOLUMETRIC BY PHASED ARRAY TECHNIQUE BASED ON DIFFRACTED ECHOES 1 1 SIZING THE HEIGHT OF DISCONTINUITIES, THEIR CHARACTERISATION IN PLANAR / VOLUMETRIC BY PHASED ARRAY TECHNIQUE BASED ON DIFFRACTED ECHOES G. Nardoni, M. Certo, P. Nardoni, M. Feroldi, D. Nardoni I&T

More information

Abstract. Introduction. Kevin Todisco

Abstract. Introduction. Kevin Todisco - Kevin Todisco Figure 1: A large scale example of the simulation. The leftmost image shows the beginning of the test case, and shows how the fluid refracts the environment around it. The middle image

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 3 Refraction of light In this Experiment you will learn that the bending of light crossing the boundary of two

More information

Evaluation of the imaging performance of a CFRP-adapted TFM algorithm

Evaluation of the imaging performance of a CFRP-adapted TFM algorithm Evaluation of the imaging performance of a CFRP-adapted TFM algorithm More info about this article: http://www.ndt.net/?id=22766 Abstract Jan-Carl Grager 1,2, Hubert Mooshofer 1 and Christian U Grosse

More information

Tutorial 1: Welded Frame - Problem Description

Tutorial 1: Welded Frame - Problem Description Tutorial 1: Welded Frame - Problem Description Introduction In this first tutorial, we will analyse a simple frame: firstly as a welded frame, and secondly as a pin jointed truss. In each case, we will

More information

Rapid Imaging of Microstructure using Spatially Resolved Acoustic Spectroscopy

Rapid Imaging of Microstructure using Spatially Resolved Acoustic Spectroscopy 1st International Symposium on Laser Ultrasonics: Science, Technology and Applications July 16-18 2008, Montreal, Canada Rapid Imaging of Microstructure using Spatially Resolved Acoustic Spectroscopy Steve

More information

Other Major Component Inspection I

Other Major Component Inspection I Other Major Component Inspection I Mechanized UT inspections on complex nozzle geometries S. Farley, R. Jansohn, Westinghouse Electric Germany, Germany; H. Ernst, Schweizerischer Verein für technische

More information