Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech

Size: px
Start display at page:

Download "Invariant Measures of Convex Sets. Eitan Grinspun, Columbia University Peter Schröder, Caltech"

Transcription

1 Invariant Measures of Convex Sets Eitan Grinspun, Columbia University Peter Schröder, Caltech

2 What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R n e.g., points, edges, faces?

3 What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R n CLOSED + BOUNDED e.g., points, edges, faces?

4 What will we measure? Subject to be measured, S an object living in n-dim space convex, compact subset of R n + finite unions and intersections e.g., points, edges, faces a mesh

5 What is a reasonable measure? Properties a measure is scalar-valued empty set additivity normalization (parallelotope, P)

6 What is a reasonable measure? real number, coordinate-frame invariant Properties a measure is scalar-valued empty set additivity normalization (parallelotope, P)

7 What is a reasonable measure? real number, coordinate-frame invariant Properties a measure is scalar-valued empty set additivity normalization (parallelotope, P) example: volume Other measures?

8 Other Measures Elementary symmetric functions area/2 length/4

9 Invariant Measures Intrinsic volumes n measures in n dimensions how to generalize to compact convex sets? Geometric probability measure points in set probability of hitting set

10 Geometric probability Blindly throw darts count number of hits Darts: k-dim subspaces of n-d points lines planes volumes k=0 n=2

11 Geometric probability Indicator function, input: a dart, ω output (point dart): 1 if dart hits body 0 if dart misses body k=0 n=

12 Geometric probability Indicator function, input: a dart, ω output (point dart): 1 if dart hits body 0 if dart misses body in general, output is # hits k=1 n=2k=0 n=

13 Geometric probability Throw N random darts to estimate area R C k=0 n=2

14 Geometric probability Throw N random darts to estimate area Throw all the darts you have

15 Geometric probability Throw N random darts to estimate area Throw all the darts you have 2 nd intrinsic volume of C measure of darts (k=0,n=2) hitting target C

16 Example: lines in R 3 Measure of lines through rectangle, prop. to area of R two ways to explain consider each fixed line orientation in turn consider each point on the rectangle in turn

17 Example: lines in R 3 Additivity in action consider the union of two rectangles

18 Example: lines in R 3 Additivity in action consider the union of two rectangles

19 Example: lines in R 3 Additivity in action consider the union of two rectangles

20 Example: lines in R 3 Additivity in action consider the union of two rectangles

21 Example: lines in R 3 Additivity in action consider the union of two rectangles inclusion - exclusion principle

22 Example: planes in R 3 Measure of planes along a curve, consider simplest curve: line segment proportional to length

23 Example: planes in R 3 Measure of planes along a curve, consider simplest curve: line segment proportional to length

24 Example: planes in R 3 Measure of planes along a curve, consider polyline proportional to length

25 Example: planes in R 3 Measure of planes hitting parallelotope, consider particularly useful polyline indicator fn. for c = indicator fn. for P c y P z x

26 Example: planes in R 3 Measure of planes hitting parallelotope, consider particularly useful polyline indicator fn. for c = indicator fn. for P proportional to length of polyline x 2 x 3 x 1

27 Example: planes in R 3 Measure of planes hitting parallelotope, consider particularly useful polyline indicator fn. for c = indicator fn. for P proportional to length of polyline for general shape E, x 2 x 3 x 1

28 Recap Axioms it is a measure Euclidian motion invariance additivity some normalization µ k (C) for compact convex set is the measure of all linear varieties of dim. n-k meeting C

29 But wait Do we have all of them? there is one missing recall: elementary symmetric functions

30 But wait Do we have all of them? there is one missing recall: elementary symmetric functions what about e 0 (x 1,x 2,,x n )?

31 Euler characteristic Symmetric function of order zero for any compact, convex set: Euler characteristic is this a measure?

32 Euler characteristic Symmetric function of order zero for any compact, convex set: homework! Euler characteristic χ is this a measure?

33 Euler characteristic Is it additive? χ(e 1 ) = 1 e 2 χ(e 2 ) = 1 e 1

34 Euler characteristic Is it additive? χ(e 1 ) = 1 e 1 e 2 e 2 χ(e 2 ) = 1 e 1

35 Euler characteristic Is it additive? χ(e 1 ) = 1 e 1 e 1 e 2 χ(e 1 e 2 ) = 1 e 1 e 2 e 2 χ(e 2 ) = 1

36 Euler characteristic Is it additive? χ(e 1 ) = 1 e 1 e 2 e 2 χ(e 2 ) = 1 e 1 χ(e 1 e 2 ) = = 1

37 Euler characteristic Is it additive? yes Is it invariant under rigid-body motion? yes

38 Continuity Our final axiom measure should be continuous

39 Example: lines in R 3 Measure of lines through planar surface limit process gives surface area for arbitrary planar surface (not just for R)

40 Example: lines in R 3 Measure of lines through planar surface limit process gives surface area for arbitrary planar surface (not just for R) disjoint union of rectangles

41 Example: lines in R 3 Measure of lines through planar surface limit process gives surface area for arbitrary planar surface (not just for R) disjoint union of rectangles

42 Example: lines in R 3 Area of a (non-planar, disjoint) surface, D 1. partition into planar regions, C i Çáëàçáåí=ìåáçå

43 Example: lines in R 3 Area of a (non-planar, disjoint) surface, D 1. partition into planar regions, C i 2. add areas of each region åìãäéê=çñ=íáãéë=ω=ãééíë=a

44 Example: lines in R 3 Area of a (non-planar, disjoint) surface, D 1. partition into planar regions, C i 2. add areas of each region åìãäéê=çñ=íáãéë=ω=ãééíë=a

45 Here s the clincher

46 Hadwiger (1957) These measures form a basis for all continuous, additive, rigid motion invariant measures on ring of convex sets.

47 Hadwiger (1957) These measures form a basis for all continuous, additive, rigid motion invariant measures on ring of convex sets. FUNDAMENAL RESULT

48 Putting it together Steiner, Cauchy, Hadwiger expand a convex set outward by epsilon ãáå=çáëí~ååé=íç=ëéí

49 Putting it together Steiner, Cauchy, Hadwiger expand a convex set outward by epsilon ãáå=çáëí~ååé=íç=ëéí the increase in volume is a polynomial in ε the coefficients are the intrinsic volumes!

50 Steiner example in R 3 volume area mean width Euler charac.

51 Steiner example in R 3 volume area mean width Euler charac. Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

52 Steiner example in R 3 Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

53 Steiner example in R 3 = surface area Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

54 Steiner example in R 3 = surface area Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

55 Steiner example in R 3 = surface area = total mean curvature Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

56 Steiner example in R 3 = surface area = total mean curvature` Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2

57 Steiner example in R 3 = surface area = total mean curvature` Rewrite as boundary integral: symmetric even f n of principal curvatures: H 0 =1, H 1 =(κ 1 +κ 2 ), H 2 =κ 1 κ 2 = Euler charac.

58 A Steiner walk-through, 2d Inflate a planar polygon by epsilon A What is the new area?

59 A Steiner walk-through, 2d Each edge contributes a rectangle

60 A Steiner walk-through, 2d Each vertex contributes a sector

61 A Steiner walk-through, 3d Inflate a polyhedron What is the new volume?

62 A Steiner walk-through, 3d Each face contributes a parallelotope

63 A Steiner walk-through, 3d Each edge contributes a wedge of a cylinder

64 A Steiner walk-through, 3d Each vertex contributes a spherical wedge

65 A Steiner walk-through, 3d α Each vertex contributes a spherical wedge

66 A Steiner walk-through, 3d

67 A Steiner walk-through, 3d

68 A Steiner walk-through, 3d

69 A Steiner walk-through, 3d

70 A Steiner walk-through, 3d

71 How to use? Want to measure deformation? only very few measures need apply volume, area, mean width, χ Define curvatures of polyhedra? deal with convexity issue kçêã~ä=åóåäé `çüéåjpíéáåéêljçêî~å

Invariant Measures. The Smooth Approach

Invariant Measures. The Smooth Approach Invariant Measures Mathieu Desbrun & Peter Schröder 1 The Smooth Approach On this show lots of derivatives tedious expressions in coordinates For what? only to discover that there are invariant measures

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance.

We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. Solid geometry We have set up our axioms to deal with the geometry of space but have not yet developed these ideas much. Let s redress that imbalance. First, note that everything we have proven for the

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES

INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES INTRODUCTION TO THE HOMOLOGY GROUPS OF COMPLEXES RACHEL CARANDANG Abstract. This paper provides an overview of the homology groups of a 2- dimensional complex. It then demonstrates a proof of the Invariance

More information

Week 7 Convex Hulls in 3D

Week 7 Convex Hulls in 3D 1 Week 7 Convex Hulls in 3D 2 Polyhedra A polyhedron is the natural generalization of a 2D polygon to 3D 3 Closed Polyhedral Surface A closed polyhedral surface is a finite set of interior disjoint polygons

More information

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO

Solid Modelling. Graphics Systems / Computer Graphics and Interfaces COLLEGE OF ENGINEERING UNIVERSITY OF PORTO Solid Modelling Graphics Systems / Computer Graphics and Interfaces 1 Solid Modelling In 2D, one set 2D line segments or curves does not necessarily form a closed area. In 3D, a collection of surfaces

More information

Euler s Theorem. Brett Chenoweth. February 26, 2013

Euler s Theorem. Brett Chenoweth. February 26, 2013 Euler s Theorem Brett Chenoweth February 26, 2013 1 Introduction This summer I have spent six weeks of my holidays working on a research project funded by the AMSI. The title of my project was Euler s

More information

Motion Planning. O Rourke, Chapter 8

Motion Planning. O Rourke, Chapter 8 O Rourke, Chapter 8 Outline Translating a polygon Moving a ladder Shortest Path (Point-to-Point) Goal: Given disjoint polygons in the plane, and given positions s and t, find the shortest path from s to

More information

Chapter 4 Concepts from Geometry

Chapter 4 Concepts from Geometry Chapter 4 Concepts from Geometry An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Line Segments The line segment between two points and in R n is the set of points on the straight line joining

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Rebecca Robinson May 15, 2007 Euler Characteristic Rebecca Robinson 1 PLANAR GRAPHS 1 Planar graphs v = 5, e = 4, f = 1 v e + f = 2 v = 6, e = 7, f = 3 v = 4, e = 6, f = 4 v e + f

More information

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017

DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU /858B Fall 2017 DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B Fall 2017 LECTURE 10: DISCRETE CURVATURE DISCRETE DIFFERENTIAL GEOMETRY: AN APPLIED INTRODUCTION Keenan Crane CMU 15-458/858B

More information

Computational Geometry

Computational Geometry Casting a polyhedron CAD/CAM systems CAD/CAM systems allow you to design objects and test how they can be constructed Many objects are constructed used a mold Casting Casting A general question: Given

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

1 Euler characteristics

1 Euler characteristics Tutorials: MA342: Tutorial Problems 2014-15 Tuesday, 1-2pm, Venue = AC214 Wednesday, 2-3pm, Venue = AC201 Tutor: Adib Makroon 1 Euler characteristics 1. Draw a graph on a sphere S 2 PROBLEMS in such a

More information

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions

Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Math 366 Lecture Notes Section 11.4 Geometry in Three Dimensions Simple Closed Surfaces A simple closed surface has exactly one interior, no holes, and is hollow. A sphere is the set of all points at a

More information

1 Appendix to notes 2, on Hyperbolic geometry:

1 Appendix to notes 2, on Hyperbolic geometry: 1230, notes 3 1 Appendix to notes 2, on Hyperbolic geometry: The axioms of hyperbolic geometry are axioms 1-4 of Euclid, plus an alternative to axiom 5: Axiom 5-h: Given a line l and a point p not on l,

More information

Euler Characteristic

Euler Characteristic Euler Characteristic Beifang Chen September 2, 2015 1 Euler Number There are two rules to follow when one counts the number of objects of finite sets. Given two finite sets A, B, we have (1) Addition Principle

More information

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering

Collision Detection. Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering RBE 550 MOTION PLANNING BASED ON DR. DMITRY BERENSON S RBE 550 Collision Detection Jane Li Assistant Professor Mechanical Engineering & Robotics Engineering http://users.wpi.edu/~zli11 Euler Angle RBE

More information

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK

CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK CS6702 GRAPH THEORY AND APPLICATIONS 2 MARKS QUESTIONS AND ANSWERS 1 UNIT I INTRODUCTION CS6702 GRAPH THEORY AND APPLICATIONS QUESTION BANK 1. Define Graph. 2. Define Simple graph. 3. Write few problems

More information

Part IV. 2D Clipping

Part IV. 2D Clipping Part IV 2D Clipping The Liang-Barsky algorithm Boolean operations on polygons Outline The Liang-Barsky algorithm Boolean operations on polygons Clipping The goal of clipping is mainly to eliminate parts

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

arxiv: v2 [cs.cg] 3 May 2015

arxiv: v2 [cs.cg] 3 May 2015 Contact Representations of Graphs in 3D Md. Jawaherul Alam, William Evans, Stephen G. Kobourov, Sergey Pupyrev, Jackson Toeniskoetter, and Torsten Ueckerdt 3 arxiv:50.00304v [cs.cg] 3 May 05 Department

More information

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15

CS337 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics. Bin Sheng Representing Shape 9/20/16 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

Finitely additive measures on o-minimal sets

Finitely additive measures on o-minimal sets University of Massachusetts tibor beke@uml.edu July 27, 2009 locally examples Hadwiger s formula to do locally set-up work topologically (over R, the real reals) could also take real-closed base field

More information

MATH 890 HOMEWORK 2 DAVID MEREDITH

MATH 890 HOMEWORK 2 DAVID MEREDITH MATH 890 HOMEWORK 2 DAVID MEREDITH (1) Suppose P and Q are polyhedra. Then P Q is a polyhedron. Moreover if P and Q are polytopes then P Q is a polytope. The facets of P Q are either F Q where F is a facet

More information

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2)

COMP331/557. Chapter 2: The Geometry of Linear Programming. (Bertsimas & Tsitsiklis, Chapter 2) COMP331/557 Chapter 2: The Geometry of Linear Programming (Bertsimas & Tsitsiklis, Chapter 2) 49 Polyhedra and Polytopes Definition 2.1. Let A 2 R m n and b 2 R m. a set {x 2 R n A x b} is called polyhedron

More information

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15

CS123 INTRODUCTION TO COMPUTER GRAPHICS. Describing Shapes. Constructing Objects in Computer Graphics 1/15 Describing Shapes Constructing Objects in Computer Graphics 1/15 2D Object Definition (1/3) Lines and polylines: Polylines: lines drawn between ordered points A closed polyline is a polygon, a simple polygon

More information

Topology - I. Michael Shulman WOMP 2004

Topology - I. Michael Shulman WOMP 2004 Topology - I Michael Shulman WOMP 2004 1 Topological Spaces There are many different ways to define a topological space; the most common one is as follows: Definition 1.1 A topological space (often just

More information

Lecture 0: Reivew of some basic material

Lecture 0: Reivew of some basic material Lecture 0: Reivew of some basic material September 12, 2018 1 Background material on the homotopy category We begin with the topological category TOP, whose objects are topological spaces and whose morphisms

More information

Geometric structures on 2-orbifolds

Geometric structures on 2-orbifolds Geometric structures on 2-orbifolds Section 1: Manifolds and differentiable structures S. Choi Department of Mathematical Science KAIST, Daejeon, South Korea 2010 Fall, Lectures at KAIST S. Choi (KAIST)

More information

Final Exam, F11PE Solutions, Topology, Autumn 2011

Final Exam, F11PE Solutions, Topology, Autumn 2011 Final Exam, F11PE Solutions, Topology, Autumn 2011 Question 1 (i) Given a metric space (X, d), define what it means for a set to be open in the associated metric topology. Solution: A set U X is open if,

More information

Contents. Preface... VII. Part I Classical Topics Revisited

Contents. Preface... VII. Part I Classical Topics Revisited Contents Preface........................................................ VII Part I Classical Topics Revisited 1 Sphere Packings........................................... 3 1.1 Kissing Numbers of Spheres..............................

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 18: Putting Lines Together: Polylines and Polygons Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book

More information

Lectures in Discrete Differential Geometry 3 Discrete Surfaces

Lectures in Discrete Differential Geometry 3 Discrete Surfaces Lectures in Discrete Differential Geometry 3 Discrete Surfaces Etienne Vouga March 19, 2014 1 Triangle Meshes We will now study discrete surfaces and build up a parallel theory of curvature that mimics

More information

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices:

Example: The following is an example of a polyhedron. Fill the blanks with the appropriate answer. Vertices: 11.1: Space Figures and Cross Sections Polyhedron: solid that is bounded by polygons Faces: polygons that enclose a polyhedron Edge: line segment that faces meet and form Vertex: point or corner where

More information

Restricted-Orientation Convexity in Higher-Dimensional Spaces

Restricted-Orientation Convexity in Higher-Dimensional Spaces Restricted-Orientation Convexity in Higher-Dimensional Spaces ABSTRACT Eugene Fink Derick Wood University of Waterloo, Waterloo, Ont, Canada N2L3G1 {efink, dwood}@violetwaterlooedu A restricted-oriented

More information

Lecture 15: The subspace topology, Closed sets

Lecture 15: The subspace topology, Closed sets Lecture 15: The subspace topology, Closed sets 1 The Subspace Topology Definition 1.1. Let (X, T) be a topological space with topology T. subset of X, the collection If Y is a T Y = {Y U U T} is a topology

More information

Solid Modeling. Ron Goldman Department of Computer Science Rice University

Solid Modeling. Ron Goldman Department of Computer Science Rice University Solid Modeling Ron Goldman Department of Computer Science Rice University Solids Definition 1. A model which has a well defined inside and outside. 2. For each point, we can in principle determine whether

More information

Solid Modeling Lecture Series. Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba

Solid Modeling Lecture Series. Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Solid Modeling 25.353 Lecture Series Prof. Gary Wang Department of Mechanical and Manufacturing Engineering The University of Manitoba Information complete, unambiguous, accurate solid model Solid Modeling

More information

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011

Shape Modeling. Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell. CS 523: Computer Graphics, Spring 2011 CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry Primer Smooth Definitions Discrete Theory in a Nutshell 2/15/2011 1 Motivation Geometry processing: understand geometric characteristics,

More information

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9.

As a consequence of the operation, there are new incidences between edges and triangles that did not exist in K; see Figure II.9. II.4 Surface Simplification 37 II.4 Surface Simplification In applications it is often necessary to simplify the data or its representation. One reason is measurement noise, which we would like to eliminate,

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D

From curves to surfaces. Parametric surfaces and solid modeling. Extrusions. Surfaces of revolution. So far have discussed spline curves in 2D From curves to surfaces Parametric surfaces and solid modeling CS 465 Lecture 12 2007 Doug James & Steve Marschner 1 So far have discussed spline curves in 2D it turns out that this already provides of

More information

Basics of Combinatorial Topology

Basics of Combinatorial Topology Chapter 7 Basics of Combinatorial Topology 7.1 Simplicial and Polyhedral Complexes In order to study and manipulate complex shapes it is convenient to discretize these shapes and to view them as the union

More information

Decomposing Coverings and the Planar Sensor Cover Problem

Decomposing Coverings and the Planar Sensor Cover Problem Intro. previous work. Restricted Strip Cover Decomposing Multiple Coverings Decomposing Coverings and the Planar Sensor Cover Problem Matt Gibson Kasturi Varadarajan presented by Niv Gafni 2012-12-12 Intro.

More information

Collision Detection CS434. Daniel G. Aliaga Department of Computer Science Purdue University

Collision Detection CS434. Daniel G. Aliaga Department of Computer Science Purdue University Collision Detection CS434 Daniel G. Aliaga Department of Computer Science Purdue University Some Applications Animations/games Robotic planning Haptics Some collision detection approaches Minkowski Sum

More information

CLASSIFICATION OF SURFACES

CLASSIFICATION OF SURFACES CLASSIFICATION OF SURFACES JUSTIN HUANG Abstract. We will classify compact, connected surfaces into three classes: the sphere, the connected sum of tori, and the connected sum of projective planes. Contents

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Normals of subdivision surfaces and their control polyhedra I. Ginkel, a, J. Peters b, and G. Umlauf a, a University of Kaiserslautern, Germany b University of Florida, Gainesville, FL, USA Abstract For

More information

Parameterization of triangular meshes

Parameterization of triangular meshes Parameterization of triangular meshes Michael S. Floater November 10, 2009 Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to

More information

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College

Topological Data Analysis - I. Afra Zomorodian Department of Computer Science Dartmouth College Topological Data Analysis - I Afra Zomorodian Department of Computer Science Dartmouth College September 3, 2007 1 Acquisition Vision: Images (2D) GIS: Terrains (3D) Graphics: Surfaces (3D) Medicine: MRI

More information

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling

Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Computer Graphics Prof. Sukhendu Das Dept. of Computer Science and Engineering Indian Institute of Technology, Madras Lecture - 24 Solid Modelling Welcome to the lectures on computer graphics. We have

More information

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial

LECTURE 1 Basic definitions, the intersection poset and the characteristic polynomial R. STANLEY, HYPERPLANE ARRANGEMENTS LECTURE Basic definitions, the intersection poset and the characteristic polynomial.. Basic definitions The following notation is used throughout for certain sets of

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

5 Graphs

5 Graphs 5 Graphs jacques@ucsd.edu Some of the putnam problems are to do with graphs. They do not assume more than a basic familiarity with the definitions and terminology of graph theory. 5.1 Basic definitions

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

TWO CONTRIBUTIONS OF EULER

TWO CONTRIBUTIONS OF EULER TWO CONTRIBUTIONS OF EULER SIEMION FAJTLOWICZ. MATH 4315 Eulerian Tours. Although some mathematical problems which now can be thought of as graph-theoretical, go back to the times of Euclid, the invention

More information

Optimal detection of intersections between convex polyhedra

Optimal detection of intersections between convex polyhedra 1 2 Optimal detection of intersections between convex polyhedra Luis Barba Stefan Langerman 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Abstract For a polyhedron P in R d, denote by P its combinatorial complexity,

More information

Robustness of Boolean operations on subdivision-surface models

Robustness of Boolean operations on subdivision-surface models Robustness of Boolean operations on subdivision-surface models Di Jiang 1, Neil Stewart 2 1 Université de Montréal, Dép t. Informatique CP6128, Succ. CentreVille, Montréal, H3C 3J7, Qc, Canada jiangdi@umontreal.ca

More information

Triangle meshes I. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2017

Triangle meshes I. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2017 Triangle meshes I CS 4620 Lecture 2 2017 Steve Marschner 1 spheres Andrzej Barabasz approximate sphere Rineau & Yvinec CGAL manual 2017 Steve Marschner 2 finite element analysis PATRIOT Engineering 2017

More information

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder]

Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Differential Geometry: Circle Patterns (Part 1) [Discrete Conformal Mappinngs via Circle Patterns. Kharevych, Springborn and Schröder] Preliminaries Recall: Given a smooth function f:r R, the function

More information

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality

Planar Graphs. 1 Graphs and maps. 1.1 Planarity and duality Planar Graphs In the first half of this book, we consider mostly planar graphs and their geometric representations, mostly in the plane. We start with a survey of basic results on planar graphs. This chapter

More information

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger

Definitions. Topology/Geometry of Geodesics. Joseph D. Clinton. SNEC June Magnus J. Wenninger Topology/Geometry of Geodesics Joseph D. Clinton SNEC-04 28-29 June 2003 Magnus J. Wenninger Introduction Definitions Topology Goldberg s polyhedra Classes of Geodesic polyhedra Triangular tessellations

More information

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F:

CS 177 Homework 1. Julian Panetta. October 22, We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: CS 177 Homework 1 Julian Panetta October, 009 1 Euler Characteristic 1.1 Polyhedral Formula We want to show for any polygonal disk consisting of vertex set V, edge set E, and face set F: V E + F = 1 First,

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

Lecture notes for Topology MMA100

Lecture notes for Topology MMA100 Lecture notes for Topology MMA100 J A S, S-11 1 Simplicial Complexes 1.1 Affine independence A collection of points v 0, v 1,..., v n in some Euclidean space R N are affinely independent if the (affine

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Matching and Planarity

Matching and Planarity Matching and Planarity Po-Shen Loh June 010 1 Warm-up 1. (Bondy 1.5.9.) There are n points in the plane such that every pair of points has distance 1. Show that there are at most n (unordered) pairs of

More information

Triangle meshes I. CS 4620 Lecture 2

Triangle meshes I. CS 4620 Lecture 2 Triangle meshes I CS 4620 Lecture 2 2014 Steve Marschner 1 spheres Andrzej Barabasz approximate sphere Rineau & Yvinec CGAL manual 2014 Steve Marschner 2 finite element analysis PATRIOT Engineering 2014

More information

Normals of subdivision surfaces and their control polyhedra

Normals of subdivision surfaces and their control polyhedra Computer Aided Geometric Design 24 (27 112 116 www.elsevier.com/locate/cagd Normals of subdivision surfaces and their control polyhedra I. Ginkel a,j.peters b,,g.umlauf a a University of Kaiserslautern,

More information

MA651 Topology. Lecture 4. Topological spaces 2

MA651 Topology. Lecture 4. Topological spaces 2 MA651 Topology. Lecture 4. Topological spaces 2 This text is based on the following books: Linear Algebra and Analysis by Marc Zamansky Topology by James Dugundgji Fundamental concepts of topology by Peter

More information

Isotopy classes of crossing arcs in hyperbolic alternating links

Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova (Rutgers Isotopy University, Newark) classes of crossing arcs in hyperbolic 1 altern / 21 Isotopy classes of crossing arcs in hyperbolic alternating links Anastasiia Tsvietkova Rutgers

More information

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University

Greedy Routing in Wireless Networks. Jie Gao Stony Brook University Greedy Routing in Wireless Networks Jie Gao Stony Brook University A generic sensor node CPU. On-board flash memory or external memory Sensors: thermometer, camera, motion, light sensor, etc. Wireless

More information

Math 414 Lecture 2 Everyone have a laptop?

Math 414 Lecture 2 Everyone have a laptop? Math 44 Lecture 2 Everyone have a laptop? THEOREM. Let v,...,v k be k vectors in an n-dimensional space and A = [v ;...; v k ] v,..., v k independent v,..., v k span the space v,..., v k a basis v,...,

More information

Lecture 5: Simplicial Complex

Lecture 5: Simplicial Complex Lecture 5: Simplicial Complex 2-Manifolds, Simplex and Simplicial Complex Scribed by: Lei Wang First part of this lecture finishes 2-Manifolds. Rest part of this lecture talks about simplicial complex.

More information

Math 311. Polyhedra Name: A Candel CSUN Math

Math 311. Polyhedra Name: A Candel CSUN Math 1. A polygon may be described as a finite region of the plane enclosed by a finite number of segments, arranged in such a way that (a) exactly two segments meets at every vertex, and (b) it is possible

More information

Clipping a Mesh Against a Plane

Clipping a Mesh Against a Plane Clipping a Mesh Against a Plane David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

Physically-Based Modeling and Animation. University of Missouri at Columbia

Physically-Based Modeling and Animation. University of Missouri at Columbia Overview of Geometric Modeling Overview 3D Shape Primitives: Points Vertices. Curves Lines, polylines, curves. Surfaces Triangle meshes, splines, subdivision surfaces, implicit surfaces, particles. Solids

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 5 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3.

TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. TOPOLOGY, DR. BLOCK, FALL 2015, NOTES, PART 3. 301. Definition. Let m be a positive integer, and let X be a set. An m-tuple of elements of X is a function x : {1,..., m} X. We sometimes use x i instead

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

66 III Complexes. R p (r) }.

66 III Complexes. R p (r) }. 66 III Complexes III.4 Alpha Complexes In this section, we use a radius constraint to introduce a family of subcomplexes of the Delaunay complex. These complexes are similar to the Čech complexes but differ

More information

What is Set? Set Theory. Notation. Venn Diagram

What is Set? Set Theory. Notation. Venn Diagram What is Set? Set Theory Peter Lo Set is any well-defined list, collection, or class of objects. The objects in set can be anything These objects are called the Elements or Members of the set. CS218 Peter

More information

Intro to Curves Week 1, Lecture 2

Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University Outline Math review Introduction to 2D curves

More information

9.5 Equivalence Relations

9.5 Equivalence Relations 9.5 Equivalence Relations You know from your early study of fractions that each fraction has many equivalent forms. For example, 2, 2 4, 3 6, 2, 3 6, 5 30,... are all different ways to represent the same

More information

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1

Scientific Computing WS 2018/2019. Lecture 12. Jürgen Fuhrmann Lecture 12 Slide 1 Scientific Computing WS 2018/2019 Lecture 12 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 12 Slide 1 Recap For more discussion of mesh generation, see J.R. Shewchuk: Lecture Notes on Delaunay

More information

Tripod Configurations

Tripod Configurations Tripod Configurations Eric Chen, Nick Lourie, Nakul Luthra Summer@ICERM 2013 August 8, 2013 Eric Chen, Nick Lourie, Nakul Luthra (S@I) Tripod Configurations August 8, 2013 1 / 33 Overview 1 Introduction

More information

Curvature Berkeley Math Circle January 08, 2013

Curvature Berkeley Math Circle January 08, 2013 Curvature Berkeley Math Circle January 08, 2013 Linda Green linda@marinmathcircle.org Parts of this handout are taken from Geometry and the Imagination by John Conway, Peter Doyle, Jane Gilman, and Bill

More information

Introduction to 2D and 3D Computer Graphics. Realistic Rendering. -- Solids Modeling --

Introduction to 2D and 3D Computer Graphics. Realistic Rendering. -- Solids Modeling -- Introduction to 2D and 3D Computer Graphics Realistic Rendering -- Solids Modeling -- CS447/547 10-1 CS447/547 10-2 Solid objects can be defined......by sweeping an object along a trajectory through space...this

More information

Computer Aided Design. Solid models and B-REP

Computer Aided Design. Solid models and B-REP Solid models and B-REP 1 Classical modelling problem : the intersection 3 independent representations of the intersection : - a 3D NURBS curve (giving points in the global XYZ coordinate system) - a 2D

More information

Some Open Problems in Graph Theory and Computational Geometry

Some Open Problems in Graph Theory and Computational Geometry Some Open Problems in Graph Theory and Computational Geometry David Eppstein Univ. of California, Irvine Dept. of Information and Computer Science ICS 269, January 25, 2002 Two Models of Algorithms Research

More information

Curvature, Finite Topology, and Foliations

Curvature, Finite Topology, and Foliations Characterizations of Complete Embedded Minimal Surfaces: Finite Curvature, Finite Topology, and Foliations Michael Nagle March 15, 2005 In classifying minimal surfaces, we start by requiring them to be

More information

Sung-Eui Yoon ( 윤성의 )

Sung-Eui Yoon ( 윤성의 ) Path Planning for Point Robots Sung-Eui Yoon ( 윤성의 ) Course URL: http://sglab.kaist.ac.kr/~sungeui/mpa Class Objectives Motion planning framework Classic motion planning approaches 2 3 Configuration Space:

More information

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2

CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 CS 536 Computer Graphics Intro to Curves Week 1, Lecture 2 David Breen, William Regli and Maxim Peysakhov Department of Computer Science Drexel University 1 Outline Math review Introduction to 2D curves

More information

Surface Topology ReebGraph

Surface Topology ReebGraph Sub-Topics Compute bounding box Compute Euler Characteristic Estimate surface curvature Line description for conveying surface shape Extract skeletal representation of shapes Morse function and surface

More information

Linear Complexity Hexahedral Mesh Generation

Linear Complexity Hexahedral Mesh Generation Linear Complexity Hexahedral Mesh Generation David Eppstein Department of Information and Computer Science University of California, Irvine, CA 92717 http://www.ics.uci.edu/ eppstein/ Tech. Report 95-51

More information