Lecture # 16: Review for Final Exam

Size: px
Start display at page:

Download "Lecture # 16: Review for Final Exam"

Transcription

1 AerE 344 Lecture Notes Lecture # 6: Review for Final Exam Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 5, U.S.A

2 AerE343L: Dimensional Analysis and Similitude Commonly used nondimensional parameters: Euler number, Eu VL Reynolds number, Re Froude Number, Fr Strohal Number, Str p V V M ach Number, M c Weber Number, We V lg pressureforce inertial force inertial force viscous force inertial force gravity force inertial force compressiblity force l centrifugal force V inertial force V l inertial force surface tension force Similitude: Geometric similarity: the model have the same shape as the prototype. Kinematic similarity: condition where the velocity ratio is a constant between all corresponding points in the flow field. Dynamic similarity: Forces which act on corresponding masses in the model flow and prototype flow are in the same ratio through out the entire flow

3 Measurement Uncertainties Error is the difference between the experimentally-determined value and its true value; therefore, as error decreases, accuracy is said to increase. A error A measured A true Total error, U, can be considered to be composed of two components: a random (precision) component, a systematic (bias) component, We usually don t know these exactly, so we estimate them with P and B, respectively. E A m A true E relative A A error true U B P Repeatability Reproducibility Precision Error Both Bias and Precision Errors Bias error True value X= precision error measured value X= X

4 Measurement Uncertainties p p p V Bernoulli V p p static total static total ) ( ),( R R R P B U Uncertainty in velocity V: J i i i R J i i i R P X R P B X R B ; M j i i j B B For a large number of samples (N>) i i S P N k k i i N k i k i i X N X X X N S ;

5 Pressure Measurement Techniques Deadweight gauges: Elastic-element gauges: Electrical Pressure transducers: Wall Pressure measurements Remote connection Cavity mounting Flush mounting Pressure Measurements inside Flow Field:

6 Velocity measurement techniques Pitot Static Probe Advantage: Simple cheap Disadvantage: averaged velocity only Single point measurements Low measurement accuracy p V p stat ( p V p stat,( Bernoulli ) )

7 Velocity measurement techniques Hotwire Probe Advantage: High accuracy High dynamic response V Flow Field The rate of which heat is removed from the sensor is directly related to the velocity of the fluid flowing over the sensor Disadvantage: Single point measurements Fragile, easy to broke Much more expansive compared with pitot-static probe. Current flow through wire dt mc dt w i R w q ( V, T Constant-current anemometry Constant-temperature anemometry w )

8 AerE3L: The nature of light Light as electromagnetic waves. Light as photons. Color of light Index of reflection n c / v c 3x 8 m/ s

9 Index of refraction: Shadowgraph and Schlieren technique n c / v Depend on variation of index of refraction in a transparent medium and the resulting effect on a light beam passing through the test section Shadowgraph systems: are used to indicate the variation of the second derivatives (normal to the light beam) of the index of refraction. shadowgraph depicting the flow generated by a bullet at supersonic speeds. (by Andrew Davidhazy ) Schlieren Systems: are used to indicate the variation of the first derivative of the index of refraction Schlieren images of the muzzle blast and supersonic bullet from firing a.3-6 caliber high-powered rifle (by Gary S. Settles )

10 Visualization of a Schockwaves using Schlieren technique After turning on the Supersonic jet Before turning on the Supersonic jet

11 Schlieren vs. Shadowgraph Shadowgraph Displays a mere shadow Shows light ray displacement Contrast level responds to No knife edge used n y Schlieren Displays a focused image Shows ray refraction angle, Contrast level responds to n y Knife edge used for cutoff

12 Y (mm) Particle Image Velocimetry (PIV) Advantage: Whole flow field measurements Non-intrusive measurements Disadvantage: Low temporal resolution Very expansive compared with hotwire anemometers and pitotstatic probes. To seed fluid flows with small tracer particles (~µm), and assume the tracer particles moving with the same velocity as the low fluid flows. To measure the displacements (L) of the tracer particles between known time interval (t). The local velocity of fluid flow is calculated by U= L/t. t=t L L U t t= t +t 8 spanwise vorticity (/s) m/s 6 4 GA(W)- airfoil - -4 shadow region -6 A. t=t B. t=t + s Classic -D PIV measurement X (mm) C. Derived Velocity field

13 PIV System Setup Particle tracers: Illumination system: Camera: Synchronizer: Host computer: to track the fluid movement. to illuminate the flow field in the interest region. to capture the images of the particle tracers. the control the timing of the laser illumination and camera acquisition. to store the particle images and conduct image processing. seed flow with tracer particles Illumination system (Laser and optics) camera Synchronizer Host computer

14 Advanced PIV techniques Stereoscopic PIV technique Dual-plane stereoscopic PIV technique 3-D PTV technique Holograph PIV techniques Defocus PIV technique Z X Laser Sheet Lobed nozzle S-polarized laser beam Mirror # Laser sheet with S-polarization direction Mirror # cylinder lens Polarizer cube P-polarized laser beam Laser sheet with P-polarization direction Measurement region 8mm by 8mm Half wave (/) plate Polarizing beam splitter cubes Double-pulsed Nd:YAG Laser set A Double-pulsed Nd:YAG Laser set B Mirror #4 high-resolution CCD camera 4 65mm Host computer Synchronizer Mirror # mm high-resolution CCD camera 3 Camera Camera Stereo PIV technique high-resolution CCD camera high-resolution CCD camera

15 Laminar Flows and Turbulent Flows ' ' ; ' w w w v v v u u u... ),,, ( T t t dt t z y x u T u ' ' ; ' w v u ') ( ') ( ; ') ( ') ( w v dt u T u T t t o

16 Boundary Layer Flow at y, u. 99U Displacement thickness: y Momentum thickness:

17 Review of Quasi-D Nozzle Flow da A ( M ) du u Throat M= u increasing M< M> Throat M= u decreasing M> M<

18 P increasing P increasing st, nd and 3 rd critic conditions st critic condition st critic condition 3st critic condition

19 Lab #: Flow visualization by using smoke wind tunnel Path line Streak lines Streamline Streamlines (experiment)

20 Lab#: Wind Tunnel Calibration A E Settling chamber Contraction section V Test section 4 p A p E p C * q T C * V q =.5*V Linear curve fitting Experimental data P = P A -P E (Pa)

21 Lab #3: Pressure Sensor Calibration and Uncertainty Analysis Task #: Pressure Sensor Calibration experiment A pressure sensor Setra pressure transducer with a range of +/- 5 inho It has two pressure ports: one for total pressure and one for static (or reference) pressure. A computer data acquisition system to measure the output voltage from the manometer. A manometer of known accuracy Mensor Digital Pressure Gage, Model, Range of +/- inho A plenum and a hand pump to pressurize it. Tubing to connect pressure sensors and plenum Lab output: Calibration curve Repeatability of your results Uncertainty of your measurements tubing Setra pressure transducer (to be calibrated) Mensor Digital Pressure Gage A computer A plenum hand pump

22 cp --> Cp Lab#4 Measurements of Pressure Distributions around a Circular Cylinder Y P Incoming flow R Cp distribution around a cylinder P P V C p V V ( V sin ) 4sin V X EFD CFD AFD theta (rad ) --> Angle, Deg.

23 Y (inches) Lab#5: Airfoil Pressure Distribution Measurements NACA airfoil with 3 pressure tabs X (inches).4 Lift Coefficient, C l L V C l c C L = Experimental data Drag Coefficient, C d D V C d c Experimental data Angle of Attack (degrees) Angle of Attack (degrees)

24 y x 8 mm Pressure rake with 4 total pressure probes (the distance between the probes d=mm) Lab 6: Airfoil Wake Measurements and Hotwire Anemometer Calibration y x )] ) ( ( ) ( [ )] ) ( ( ) ( [ dy U y U U y U C C C U da U y U U y U U C U D C D D

25 y Lab 7: Hot wire measurements in the wake of an airfoil Pressure rake with 4 total pressure probes (the distance between the probes d=mm) x 8 mm Lab#3 Test conditions: Velocity: V=5 m/s Angle of attack: AOA=, and deg. Date sampling rate: f=hz Number of samples:, (s in time) No. of points: ~5 points Gap between points: ~. inches Lab#4 Hotwire probe

26 Lab#8: Measurements of Boundary Layer over a Flat Plate To conduct velocity profile measurements at downstream locations. Displacement thickness: To determine boundary layer thickness and drag coefficient based on the velocity measurement results. Momentum thickness: Drag coefficient: C d L Pitot rake Y X

27 Lab#9: Visualization of Shockwaves using Schlieren technique Underexpanded flow Flow close to 3 rd critical Overexpanded flow nd critical shock is at nozzle exit Tank with compressed air Test section st critical shock is almost at the nozzle throat.

28 Lab#: Set Up a Schlieren and/or Shadowgraph System to Visualize a Thermal Plume Point Source Candle plume

29 Lab#: Pressure Measurements in a de Laval Nozzle Tank with compressed air Test section Tap No. Distance downstream of throat (inches) Area (Sq. inches)

30 Y /C * Lift Coefficient, C l Y /C * Lab#: PIV measurements of the Unsteady Vortex Structures in the Wake of an Airfoil L V C l c C L = Experimental data Airfoil stall m/s GA(W)- airfoil shadow region Before stall -6 vort: Angle of Attack (degrees) X/C * Drag Coefficient, C d D V C d c Experimental data - 5 m/s GA(W)- airfoil shadow region After stall.5 Airfoil stall -4 vort: X/C * 8 Angle of Attack (degrees)

31 Y pixel Y pixel Lab#3: Stereoscopic PIV technique and Applications X Laser Sheet Z Camera Camera Stereo PIV technique 8 8 Re C 5,; 5. deg. X/C = X pixel Displacement vectors in left camera 5 5 X pixel Displacement vectors in right camera

Lecture # 11: Particle image velocimetry

Lecture # 11: Particle image velocimetry AerE 344 Lecture Notes Lecture # 11: Particle image velocimetry Dr. Hui Hu Dr. Rye M Waldman Department of Aerospace Engineering Iowa State University Ames, Iowa 50011, U.S.A Sources/ Further reading:

More information

Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A

Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A AerE 311L & AerE343L Lecture Notes Lecture # 14: Advanced Particle Image Velocimetry Technique Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 511, U.S.A Particle-based techniques:

More information

Particle Image Velocimetry Part - 3

Particle Image Velocimetry Part - 3 AerE 545X class notes #5 Particle Image Velocimetry Part - 3 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A PIV System Setup Particle tracers: Illumination system:

More information

Measurements in Fluid Mechanics

Measurements in Fluid Mechanics Measurements in Fluid Mechanics 13.1 Introduction The purpose of this chapter is to provide the reader with a basic introduction to the concepts and techniques applied by engineers who measure flow parameters

More information

Particle Image Velocimetry Part - 1

Particle Image Velocimetry Part - 1 AerE 545X class notes #23 Particle Image Velocimetry Part - 1 Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Announcement Room 1058, Sweeney Hall for Lab#4 (LDV

More information

SPC 307 Aerodynamics. Lecture 1. February 10, 2018

SPC 307 Aerodynamics. Lecture 1. February 10, 2018 SPC 307 Aerodynamics Lecture 1 February 10, 2018 Sep. 18, 2016 1 Course Materials drahmednagib.com 2 COURSE OUTLINE Introduction to Aerodynamics Review on the Fundamentals of Fluid Mechanics Euler and

More information

Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A

Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A AerE 311L & AerE343L Lecture Notes Lecture # 13: Particle Image Velocimetry Technique Hui Hu Department of Aerospace Engineering, Iowa State University Ames, Iowa 50011, U.S.A Particle-based Flow Diagnostic

More information

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS

PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS PARTICLE IMAGE VELOCIMETRY (PIV) AND VOLUMETRIC VELOCIMETRY (V3V) SYSTEMS VERSATILE, UPGRADEABLE FLUID MECHANICS MEASUREMENT SOLUTIONS UNDERSTANDING, ACCELERATED FULL SPECTRUM OF GLOBAL VELOCITY SYSTEMS

More information

Recent Progress of NPLS Technique and Its Applications. in Measuring Supersonic Flows

Recent Progress of NPLS Technique and Its Applications. in Measuring Supersonic Flows Abstract APCOM & ISCM 11-14 th December, 2013, Singapore Recent Progress of NPLS Technique and Its Applications in Measuring Supersonic Flows YI Shi-he, *CHEN Zhi, HE Lin, ZHAO Yu-xin, TIAN Li-feng, WU

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 2 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University

More information

Introduction to Modern Measurement Technology

Introduction to Modern Measurement Technology Introduction to Modern Measurement Technology and Applications in Coastal and Ocean Engineering Kuang-An Chang Ocean Engineering Program Department of Civil Engineering Texas A&M University What Do We

More information

Flow Field of Truncated Spherical Turrets

Flow Field of Truncated Spherical Turrets Flow Field of Truncated Spherical Turrets Kevin M. Albarado 1 and Amelia Williams 2 Aerospace Engineering, Auburn University, Auburn, AL, 36849 Truncated spherical turrets are used to house cameras and

More information

Module 3: Velocity Measurement Lecture 14: Analysis of PIV data. The Lecture Contains: Flow Visualization. Test Cell Flow Quality

Module 3: Velocity Measurement Lecture 14: Analysis of PIV data. The Lecture Contains: Flow Visualization. Test Cell Flow Quality The Lecture Contains: Flow Visualization Test Cell Flow Quality Influence of End-Plates Introduction To Data Analysis Principle of Operation of PIV Various Aspects of PIV Measurements Recording of the

More information

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Introduction to CFX. Workshop 2. Transonic Flow Over a NACA 0012 Airfoil. WS2-1. ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workshop 2 Transonic Flow Over a NACA 0012 Airfoil. Introduction to CFX WS2-1 Goals The purpose of this tutorial is to introduce the user to modelling flow in high speed external aerodynamic applications.

More information

Hydrodynamic Instability and Particle Image Velocimetry

Hydrodynamic Instability and Particle Image Velocimetry Hydrodynamic Instability and Particle Image Velocimetry Instabilities in lid-driven cavities First important investigations of hydrodynamic instabilities were published by v. Helmholtz (1868), Lord Rayleigh

More information

Time-resolved PIV measurements with CAVILUX HF diode laser

Time-resolved PIV measurements with CAVILUX HF diode laser Time-resolved PIV measurements with CAVILUX HF diode laser Author: Hannu Eloranta, Pixact Ltd 1 Introduction Particle Image Velocimetry (PIV) is a non-intrusive optical technique to measure instantaneous

More information

U k i E i, j,k, INTRODUCTION PHYSICS OF FLUIDS VOLUME 14, NUMBER 7 JULY 2002

U k i E i, j,k, INTRODUCTION PHYSICS OF FLUIDS VOLUME 14, NUMBER 7 JULY 2002 PHYSICS OF FLUIDS VOLUME 14, NUMBER 7 JULY 2002 Simultaneous measurements of all three components of velocity and vorticity vectors in a lobed jet flow by means of dual-plane stereoscopic particle image

More information

Laser speckle based background oriented schlieren measurements in a fire backlayering front

Laser speckle based background oriented schlieren measurements in a fire backlayering front Laser speckle based background oriented schlieren measurements in a fire backlayering front Philipp Bühlmann 1*, Alexander H. Meier 1, Martin Ehrensperger 1, Thomas Rösgen 1 1: ETH Zürich, Institute of

More information

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering

Debojyoti Ghosh. Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering Debojyoti Ghosh Adviser: Dr. James Baeder Alfred Gessow Rotorcraft Center Department of Aerospace Engineering To study the Dynamic Stalling of rotor blade cross-sections Unsteady Aerodynamics: Time varying

More information

ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS. Chittiappa Muthanna

ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS. Chittiappa Muthanna ADVANCED MEASUREMENT TECHNIQUES IN HYDRODYNAMICS Chittiappa Muthanna Outline Why use these techniques? Constant temperature anemometry Laser Doppler Velocimetry PIV Measuring Shapes and Deformations 2

More information

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder

High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder High-Lift Aerodynamics: STAR-CCM+ Applied to AIAA HiLiftWS1 D. Snyder Aerospace Application Areas Aerodynamics Subsonic through Hypersonic Aeroacoustics Store release & weapons bay analysis High lift devices

More information

Pulsating flow around a stationary cylinder: An experimental study

Pulsating flow around a stationary cylinder: An experimental study Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 2-22, 2 (pp24-244) Pulsating flow around a stationary cylinder: An experimental study A. DOUNI & D.

More information

Particle Image Velocimetry on a Turbulent Jet

Particle Image Velocimetry on a Turbulent Jet Particle Image Velocimetry on a Turbulent Jet by Arash Sonei Master Thesis in Aerospace Master Thesis in Fluid Mechanics University of Bologna, Forli, Italy Royal Institute of Technology, Stockholm, Sweden

More information

Introduction to ANSYS CFX

Introduction to ANSYS CFX Workshop 03 Fluid flow around the NACA0012 Airfoil 16.0 Release Introduction to ANSYS CFX 2015 ANSYS, Inc. March 13, 2015 1 Release 16.0 Workshop Description: The flow simulated is an external aerodynamics

More information

ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE

ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE 24 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES ACTIVE SEPARATION CONTROL WITH LONGITUDINAL VORTICES GENERATED BY THREE TYPES OF JET ORIFICE SHAPE Hiroaki Hasegawa*, Makoto Fukagawa**, Kazuo

More information

Effect of Leading Edge Porosity on the Flow Field of an Air Launched Grenade

Effect of Leading Edge Porosity on the Flow Field of an Air Launched Grenade Effect of Leading Edge Porosity on the Flow Field of an Air Launched Grenade Zachary M. Hall Aerospace Engineering Department Auburn University, AL 36849 Abstract Reported are the results of experiments

More information

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji

Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji Polish Academy of Sciences Institute of Fundamental Technological Research Turbulencja w mikrokanale i jej wpływ na proces emulsyfikacji S. Błoński, P.Korczyk, T.A. Kowalewski PRESENTATION OUTLINE 0 Introduction

More information

Demonstration of the applicability of a Background Oriented Schlieren (BOS) method

Demonstration of the applicability of a Background Oriented Schlieren (BOS) method Demonstration of the applicability of a Background Oriented Schlieren (BOS) method H. Richard, M. Raffel, M. Rein, J. Kompenhans, G.E.A. Meier Institut für Strömungsmechanik Deutsches Zentrum für Luft-

More information

Measurement Techniques. Digital Particle Image Velocimetry

Measurement Techniques. Digital Particle Image Velocimetry Measurement Techniques Digital Particle Image Velocimetry Heat and Mass Transfer Laboratory (LTCM) Sepideh Khodaparast Marco Milan Navid Borhani 1 Content m Introduction m Particle Image Velocimetry features

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Pre-Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew Opyd, Dong-Hwan

More information

Optical Flow Technique for Supersonic Jet Measurements

Optical Flow Technique for Supersonic Jet Measurements Optical Flow Technique for Supersonic Jet Measurements H. D. Lim, Jie Wu, T. H. New, Shengxian Shi International Science Index, Mechanical and Mechatronics Engineering waset.org/publication/10003353 1

More information

FLOWING FLUIDS AND PRESSURE VARIATION

FLOWING FLUIDS AND PRESSURE VARIATION Chapter 4 Pressure differences are (often) the forces that move fluids FLOWING FLUIDS AND PRESSURE VARIATION Fluid Mechanics, Spring Term 2011 e.g., pressure is low at the center of a hurricane. For your

More information

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING

NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Review of the Air Force Academy No.3 (35)/2017 NUMERICAL 3D TRANSONIC FLOW SIMULATION OVER A WING Cvetelina VELKOVA Department of Technical Mechanics, Naval Academy Nikola Vaptsarov,Varna, Bulgaria (cvetelina.velkova1985@gmail.com)

More information

GLASGOW 2003 INTEGRATING CFD AND EXPERIMENT

GLASGOW 2003 INTEGRATING CFD AND EXPERIMENT GLASGOW 2003 INTEGRATING CFD AND EXPERIMENT A Detailed CFD and Experimental Investigation of a Benchmark Turbulent Backward Facing Step Flow Stephen Hall & Tracie Barber University of New South Wales Sydney,

More information

Physics 4C Chabot College Scott Hildreth

Physics 4C Chabot College Scott Hildreth Physics 4C Chabot College Scott Hildreth Snell s Law with Microwave Optics Experiment Goals: Experimentally verify Snell s Law holds for microwaves. Lab Safety Note! Although the microwaves in this experiment

More information

Chapter 4 FLUID KINEMATICS

Chapter 4 FLUID KINEMATICS Fluid Mechanics: Fundamentals and Applications, 2nd Edition Yunus A. Cengel, John M. Cimbala McGraw-Hill, 2010 Chapter 4 FLUID KINEMATICS Lecture slides by Hasan Hacışevki Copyright The McGraw-Hill Companies,

More information

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS

THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS March 18-20, 2013 THE EFFECTS OF THE PLANFORM SHAPE ON DRAG POLAR CURVES OF WINGS: FLUID-STRUCTURE INTERACTION ANALYSES RESULTS Authors: M.R. Chiarelli, M. Ciabattari, M. Cagnoni, G. Lombardi Speaker:

More information

An Experimental and Computational Investigation of a 3D, l/h=5 Transonic Cavity Flow. Prof Kevin Knowles Dr Simon Ritchie Dr Nick Lawson

An Experimental and Computational Investigation of a 3D, l/h=5 Transonic Cavity Flow. Prof Kevin Knowles Dr Simon Ritchie Dr Nick Lawson An Experimental and Computational Investigation of a 3D, l/h=5 Transonic Cavity Flow Prof Kevin Knowles Dr Simon Ritchie Dr Nick Lawson Overview Background Experimental Studies Computational Studies Results

More information

THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER

THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER Journal of Engineering Science and Technology Vol. 5, No. 3 (2010) 361-372 School of Engineering, Taylor s University College THE INTERACTION OF A COLD ATOMISED SPRAY WITH A CIRCULAR CYLINDER A. AROUSSI

More information

Visualization of Shock Wave Phenomenon around a Sharp Cone Model at Hypersonic Mach Number in a Shock Tunnel using High Speed Schlieren Facility

Visualization of Shock Wave Phenomenon around a Sharp Cone Model at Hypersonic Mach Number in a Shock Tunnel using High Speed Schlieren Facility Journal of Applied Fluid Mechanics, Vol. 12, No. 2, pp. 461-468, 2019. Available online at www.jafmonline.net, ISSN 1735-3572, EISSN 1735-3645. DOI: 10.18869/acadpub.jafm.75.254.29250 Visualization of

More information

EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER. Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D.

EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER. Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D. EXPERIMENTAL INVESTIGATION OF THE FLOW PATTERN BEHIND CYLINDER Ing. Rut Vitkovičová, Ing. Vladislav Skála, Ing. Jan Čížek Ph.D. Abstract Investigation of the flow behind bluff bodies, especially for cylinder,

More information

FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES

FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES FLOW VISUALISATION AROUND A SOLID SPHERE ON A ROUGH BED UNDER REGULAR WAVES H.P.V.Vithana 1, Richard Simons 2 and Martin Hyde 3 Flow visualization using Volumetric Three-component Velocimetry (V3V) was

More information

Quantitative flow visualization using the hydraulic analogy

Quantitative flow visualization using the hydraulic analogy Experiments in Fluids 27 (2000) 165 169 Springer-Verlag 2000 Quantitative flow visualization using the hydraulic analogy S. L. Rani, M. S. Wooldridge 165 Abstract The current work describes the development

More information

Particle Image Velocimetry for Fluid Dynamics Measurements

Particle Image Velocimetry for Fluid Dynamics Measurements Particle Image Velocimetry for Fluid Dynamics Measurements Lyes KADEM, Ph.D; Eng kadem@encs.concordia.ca Laboratory for Cardiovascular Fluid Dynamics MIE Concordia University Presentation - A bit of history

More information

Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival.

Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival. Historical Background Human beings are extremely interested in the observation of nature, as this was and still is of utmost importance for their survival. (www.copyright-free-images.com) 1 Historical

More information

Flow Visualization around Generic Bridge Shapes using Particle Image Velocimetry

Flow Visualization around Generic Bridge Shapes using Particle Image Velocimetry Flow Visualization around Generic Bridge Shapes using Particle Image Velocimetry by Harold Bosch 1 and Kornel Kerenyi 2 ABSTRACT This paper examines the flow field around generic bridge shape models using

More information

Estimation of Flow Field & Drag for Aerofoil Wing

Estimation of Flow Field & Drag for Aerofoil Wing Estimation of Flow Field & Drag for Aerofoil Wing Mahantesh. HM 1, Prof. Anand. SN 2 P.G. Student, Dept. of Mechanical Engineering, East Point College of Engineering, Bangalore, Karnataka, India 1 Associate

More information

PIV and LDV measurements behind a backward facing step

PIV and LDV measurements behind a backward facing step PIV and LDV measurements behind a backward facing step M.T. Pilloni, C. Schram, M.L. Riethmulle/^ ^ Mechanical Engineering Department, 09123 Cagliari, Italy ^ von Karman Institute for Fluid Dynamics, 1640

More information

Industrial applications of image based measurement techniques in aerodynamics: problems, progress and future needs

Industrial applications of image based measurement techniques in aerodynamics: problems, progress and future needs Industrial applications of image based measurement techniques in aerodynamics: problems, progress and future needs Jürgen Kompenhans 1 Department Experimental Methods, Institute of Aerodynamics and Flow

More information

Simulation of Turbulent Flow around an Airfoil

Simulation of Turbulent Flow around an Airfoil 1. Purpose Simulation of Turbulent Flow around an Airfoil ENGR:2510 Mechanics of Fluids and Transfer Processes CFD Lab 2 (ANSYS 17.1; Last Updated: Nov. 7, 2016) By Timur Dogan, Michael Conger, Andrew

More information

Modelling the Unsteady Loads of Plunging Airfoils in Attached, Light and Deep Stall Conditions

Modelling the Unsteady Loads of Plunging Airfoils in Attached, Light and Deep Stall Conditions Modelling the Unsteady Loads of Plunging Airfoils in Attached, Light and Deep Stall Conditions N. Chiereghin, D.J.Cleaver, I. Gursul, S.Bull DiPart 2017 Partnership with Contents Introduction Aims and

More information

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim

Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon Kim, Hogeon Kim Transition Flow and Aeroacoustic Analysis of NACA0018 Satish Kumar B, Fred Mendonç a, Ghuiyeon

More information

Presentation summary

Presentation summary Nantes - 2014 Aérojoules project: Vertical axis Wind Turbine Blade Aerodynamic optimisation MICHAEL O CONNOR 1 Presentation summary I. Aérojoules project Aim of the study II. Understanding Blade aerodynamics

More information

CFD Analysis of conceptual Aircraft body

CFD Analysis of conceptual Aircraft body CFD Analysis of conceptual Aircraft body Manikantissar 1, Dr.Ankur geete 2 1 M. Tech scholar in Mechanical Engineering, SD Bansal college of technology, Indore, M.P, India 2 Associate professor in Mechanical

More information

Using Flow Visualization for PCB Thermal Design and Optimization

Using Flow Visualization for PCB Thermal Design and Optimization Thermal Minutes Using Flow Visualization for PCB Thermal Design and Optimization FLOW DIRECTION Figure 1. Top View of Flow Around Equal Sized Components, Depicting Reversed Flow in the Wake of the Component

More information

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil

Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1 Verification and Validation of Turbulent Flow around a Clark-Y Airfoil 1. Purpose ME:5160 Intermediate Mechanics of Fluids CFD LAB 2 (ANSYS 19.1; Last Updated: Aug. 7, 2018) By Timur Dogan, Michael Conger,

More information

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence

CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence CFD Analysis of 2-D Unsteady Flow Past a Square Cylinder at an Angle of Incidence Kavya H.P, Banjara Kotresha 2, Kishan Naik 3 Dept. of Studies in Mechanical Engineering, University BDT College of Engineering,

More information

The Transonic Wind Tunnel Göttingen (TWG)

The Transonic Wind Tunnel Göttingen (TWG) The Transonic Wind Tunnel Göttingen (TWG) www.dnw.aero The TWG is a closed circuit, Göttingen Type, wind tunnel for sub-, trans-, and supersonic flow research and development tests at air, space, and surface

More information

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction

COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY. Abstract. I. Introduction COMPUTATIONAL AND EXPERIMENTAL INTERFEROMETRIC ANALYSIS OF A CONE-CYLINDER-FLARE BODY John R. Cipolla 709 West Homeway Loop, Citrus Springs FL 34434 Abstract A series of computational fluid dynamic (CFD)

More information

Particle Image Velocimetry measurements on a birdlike airfoil

Particle Image Velocimetry measurements on a birdlike airfoil Studienarbeit Particle Image Velocimetry measurements on a birdlike airfoil Alba Pascual Massana Matr.Nr. 2957551 Tutor: Dipl.-Ing. Stephan Bansmer Institut of Fluid Mechanics Prof. Dr.-Ing. Rolf Radespiel

More information

Flow Structures Extracted from Visualization Images: Vector Fields and Topology

Flow Structures Extracted from Visualization Images: Vector Fields and Topology Flow Structures Extracted from Visualization Images: Vector Fields and Topology Tianshu Liu Department of Mechanical & Aerospace Engineering Western Michigan University, Kalamazoo, MI 49008, USA We live

More information

Vortex Generator Induced Flow in a High Re Boundary Layer

Vortex Generator Induced Flow in a High Re Boundary Layer Vortex Generator Induced Flow in a High Re Boundary Layer C M Velte 1, C Braud 2, S Coudert 2 and J-M Foucaut 3 1 Wind Energy Department, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark 2-3

More information

Computational Study of Unsteady Flows around Dragonfly and Smooth Airfoils at Low Reynolds Numbers

Computational Study of Unsteady Flows around Dragonfly and Smooth Airfoils at Low Reynolds Numbers 46th AIAA Aerospace Sciences Meeting and Exhibit 7 - January 8, Reno, Nevada AIAA 8-85 Computational Study of Unsteady Flows around Dragonfly and Smooth Airfoils at Low Reynolds Numbers H. Gao, Hui Hu,

More information

Computer Vision and Measurements in Aerospace Applications

Computer Vision and Measurements in Aerospace Applications Computer Vision and Measurements in Aerospace Applications ianshu Liu Department of Mechanical and Aeronautical Engineering Western Michigan University Kalamazoo, M 49008 Objective o build a unified theoretical

More information

Evaluation of aero-optical distortion effects in PIV

Evaluation of aero-optical distortion effects in PIV Evaluation of aero-optical distortion effects in PIV by G.E. Elsinga (1), B.W. van Oudheusden (2) and F. Scarano (3) Delft University of Technology Department of Aerospace Engineering PO Box 558, 26 GB

More information

On the flow and noise of a two-dimensional step element in a turbulent boundary layer

On the flow and noise of a two-dimensional step element in a turbulent boundary layer On the flow and noise of a two-dimensional step element in a turbulent boundary layer Danielle J. Moreau 1, Jesse L. Coombs 1 and Con J. Doolan 1 Abstract This paper presents results of a study on the

More information

Modeling External Compressible Flow

Modeling External Compressible Flow Tutorial 3. Modeling External Compressible Flow Introduction The purpose of this tutorial is to compute the turbulent flow past a transonic airfoil at a nonzero angle of attack. You will use the Spalart-Allmaras

More information

International Journal of Advance Engineering and Research Development A COMPREHENSIVE STUDY OF SHOCK BOUNDARY LAYER INTERACTION AND VARIOUS TECHNIQUES

International Journal of Advance Engineering and Research Development A COMPREHENSIVE STUDY OF SHOCK BOUNDARY LAYER INTERACTION AND VARIOUS TECHNIQUES Scientific Journal of Impact Factor (SJIF): 5.71 International Journal of Advance Engineering and Research Development Volume 5, Issue 04, April -2018 e-issn (O): 2348-4470 p-issn (P): 2348-6406 A COMPREHENSIVE

More information

Particle Velocimetry Data from COMSOL Model of Micro-channels

Particle Velocimetry Data from COMSOL Model of Micro-channels Particle Velocimetry Data from COMSOL Model of Micro-channels P.Mahanti *,1, M.Keebaugh 1, N.Weiss 1, P.Jones 1, M.Hayes 1, T.Taylor 1 Arizona State University, Tempe, Arizona *Corresponding author: GWC

More information

Multi-Scale Stereoscopic PIV measurements of a Jet in a Cross-Flow

Multi-Scale Stereoscopic PIV measurements of a Jet in a Cross-Flow Multi-Scale Stereoscopic PIV measurements of a Jet in a Cross-Flow Nicolas Lanitis 1,*, James R. Dawson 1 1: Department of Engineering, University of Cambridge, Cambridge, UK * correspondent author: nl258@cam.ac.uk

More information

INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM

INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM INVESTIGATION OF FLOW BEHAVIOR PASSING OVER A CURVETURE STEP WITH AID OF PIV SYSTEM Noor Y. Abbas Department of Mechanical Engineering, Al Nahrain University, Baghdad, Iraq E-Mail: noor13131979@gmail.com

More information

Volumetric 3-Component Velocimetry (V3V)

Volumetric 3-Component Velocimetry (V3V) Volumetric 3-Component Velocimetry (V3V) FLUID MECHANICS V3V System TRUST. SCIENCE. INNOVATION. Introducing V3V Technology Volumetric 3-Component Velocimetry (V3V) System The V3V System brings laser diagnostic

More information

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations

Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Experimental and Numerical Analysis of Near Wall Flow at the Intake Valve and its Influence on Large-Scale Fluctuations Frank Hartmann, Stefan Buhl, Florian Gleiß, Christian Hasse Philipp Barth, Martin

More information

2D FLUID DEFORMATION INDUCED BY A ROTATIONAL RECIPROCATING PLATE IMPELLER IN A CYLINDRICAL VESSEL

2D FLUID DEFORMATION INDUCED BY A ROTATIONAL RECIPROCATING PLATE IMPELLER IN A CYLINDRICAL VESSEL 14 th European Conference on Mixing Warszawa, 10-13 September 2012 2D FLUID DEFORMATION INDUCED BY A ROTATIONAL RECIPROCATING PLATE IMPELLER IN A CYLINDRICAL VESSEL Yoshiyuki Komoda a, Saki Senda a, Hiroshi

More information

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics

Inviscid Flows. Introduction. T. J. Craft George Begg Building, C41. The Euler Equations. 3rd Year Fluid Mechanics Contents: Navier-Stokes equations Inviscid flows Boundary layers Transition, Reynolds averaging Mixing-length models of turbulence Turbulent kinetic energy equation One- and Two-equation models Flow management

More information

9.9 Coherent Structure Detection in a Backward-Facing Step Flow

9.9 Coherent Structure Detection in a Backward-Facing Step Flow 9.9 Coherent Structure Detection in a Backward-Facing Step Flow Contributed by: C. Schram, P. Rambaud, M. L. Riethmuller 9.9.1 Introduction An algorithm has been developed to automatically detect and characterize

More information

Chapter 6 : Results and Discussion

Chapter 6 : Results and Discussion Refinement and Verification of the Virginia Tech Doppler Global Velocimeter (DGV) 86 Chapter 6 : Results and Discussion 6.1 Background The tests performed as part of this research were the second attempt

More information

Thermal and Flow Modeling & Validation of an Exhaust Gas Particulate Matter Sensor

Thermal and Flow Modeling & Validation of an Exhaust Gas Particulate Matter Sensor Thermal and Flow Modeling & Validation of an Exhaust Gas Particulate Matter Sensor A. Lourdhusamy, B. Henderson, J. Steppan, V. Wang, J. Fitzpatrick, K. Allmendinger EmiSense Technologies, LLC Salt Lake

More information

Compressible Flow in a Nozzle

Compressible Flow in a Nozzle SPC 407 Supersonic & Hypersonic Fluid Dynamics Ansys Fluent Tutorial 1 Compressible Flow in a Nozzle Ahmed M Nagib Elmekawy, PhD, P.E. Problem Specification Consider air flowing at high-speed through a

More information

Figure 1. Schematic representation of the flow past a finite-height square prism mounted normal to a ground plane and partially immersed in a flat-pla

Figure 1. Schematic representation of the flow past a finite-height square prism mounted normal to a ground plane and partially immersed in a flat-pla Local flow field of a surface-mounted finite square prism N. Rostamy, J.F. McClean, D. Sumner, D.J. Bergstrom, J.D. Bugg Department of Mechanical Engineering, University of Saskatchewan 57 Campus Drive,

More information

Wind Tunnel Validation of Computational Fluid Dynamics-Based Aero-Optics Model

Wind Tunnel Validation of Computational Fluid Dynamics-Based Aero-Optics Model Wind Tunnel Validation of Computational Fluid Dynamics-Based Aero-Optics Model D. Nahrstedt & Y-C Hsia, Boeing Directed Energy Systems E. Jumper & S. Gordeyev, University of Notre Dame J. Ceniceros, Boeing

More information

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND

MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND MOMENTUM AND HEAT TRANSPORT INSIDE AND AROUND A CYLINDRICAL CAVITY IN CROSS FLOW G. LYDON 1 & H. STAPOUNTZIS 2 1 Informatics Research Unit for Sustainable Engrg., Dept. of Civil Engrg., Univ. College Cork,

More information

TFI s Windows-based Device Control software provides a powerful, easy-to-use interface for controlling and operating the Cobra Probe.

TFI s Windows-based Device Control software provides a powerful, easy-to-use interface for controlling and operating the Cobra Probe. COBRA PROBE The is a 4-hole pressure probe that provides dynamic, 3-component velocity and local pressure measurements in real-time. The features a linear frequency-response from 0 Hz (mean flow) to more

More information

Technical Specifications for High speed PIV and High speed PIV-PLIF system

Technical Specifications for High speed PIV and High speed PIV-PLIF system Technical Specifications for High speed PIV and High speed PIV-PLIF system MODULE A. HIGH SPEED PIV (3-C) A1. Double Cavity High Speed Laser (up to 10 khz): The vendor should provide Dual Head (DH) laser

More information

Particle Image Velocimetry

Particle Image Velocimetry Particle Image Velocimetry Fundamentals and Application TMR 7: Experimental Methods Fall 2015 Chittiappa Muthanna Overview Basic Principle Components Correlation analysis Practical issues Laser Safety

More information

Interaction between a tethered sphere and a free surface flow

Interaction between a tethered sphere and a free surface flow Fluid Structure Interaction and Moving Boundary Problems 205 Interaction between a tethered sphere and a free surface flow M. Greco 1, S. Malavasi 2 & D. Mirauda 1 1 Department I.F.A., Basilicata University,

More information

Simulation of Turbulent Flow over the Ahmed Body

Simulation of Turbulent Flow over the Ahmed Body Simulation of Turbulent Flow over the Ahmed Body 58:160 Intermediate Mechanics of Fluids CFD LAB 4 By Timur K. Dogan, Michael Conger, Maysam Mousaviraad, and Fred Stern IIHR-Hydroscience & Engineering

More information

Temperature and velocity measurement fields of fluids using a schlieren system

Temperature and velocity measurement fields of fluids using a schlieren system Temperature and velocity measurement fields of fluids using a schlieren system Adrian Martínez-González, 1,2 J. A. Guerrero-Viramontes, 1,3, * and David Moreno-Hernández 1,4 1 Centro de Investigaciones

More information

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo

MSC Software Aeroelastic Tools. Mike Coleman and Fausto Gill di Vincenzo MSC Software Aeroelastic Tools Mike Coleman and Fausto Gill di Vincenzo MSC Software Confidential 2 MSC Software Confidential 3 MSC Software Confidential 4 MSC Software Confidential 5 MSC Flightloads An

More information

ICIASF th International Congress on Instrumentation in Aerospace Simulation Facilities. DLR Göttingen, Germany

ICIASF th International Congress on Instrumentation in Aerospace Simulation Facilities. DLR Göttingen, Germany ICIASF 3 2 th International Congress on Instrumentation in Aerospace Simulation Facilities DLR Göttingen, Germany August 25-29, 23 Application of Particle Image Velocimetry under Cryogenic Conditions H.Richard,

More information

How to Enter and Analyze a Wing

How to Enter and Analyze a Wing How to Enter and Analyze a Wing Entering the Wing The Stallion 3-D built-in geometry creation tool can be used to model wings and bodies of revolution. In this example, a simple rectangular wing is modeled

More information

Reflection, Refraction and Polarization of Light

Reflection, Refraction and Polarization of Light Reflection, Refraction and Polarization of Light Physics 246/Spring2012 In today's laboratory several properties of light, including the laws of reflection, refraction, total internal reflection and polarization,

More information

Estimating Vertical Drag on Helicopter Fuselage during Hovering

Estimating Vertical Drag on Helicopter Fuselage during Hovering Estimating Vertical Drag on Helicopter Fuselage during Hovering A. A. Wahab * and M.Hafiz Ismail ** Aeronautical & Automotive Dept., Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310

More information

13. Brewster angle measurement

13. Brewster angle measurement 13. Brewster angle measurement Brewster angle measurement Objective: 1. Verification of Malus law 2. Measurement of reflection coefficient of a glass plate for p- and s- polarizations 3. Determination

More information

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil

Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Express Introductory Training in ANSYS Fluent Workshop 04 Fluid Flow Around the NACA0012 Airfoil Dimitrios Sofialidis Technical Manager, SimTec Ltd. Mechanical Engineer, PhD PRACE Autumn School 2013 -

More information

Wind tunnel testing of a generic telescope enclosure

Wind tunnel testing of a generic telescope enclosure Wind tunnel testing of a generic telescope enclosure Tait S. Pottebaum *a and Douglas G. MacMynowski b a Graduate Aeronautical Laboratories; b Control and Dynamical Systems California Institute of Technology,

More information

Strengths of horseshoe vortices around a circular cylinder with an upstream cavity

Strengths of horseshoe vortices around a circular cylinder with an upstream cavity Journal of Mechanical Science and Technology 23 (29) 1773~1778 Journal of Mechanical Science and Technology www.springerlink.com/content/1738-494x DOI 1.17/s1226-9-62-2 Strengths of horseshoe vortices

More information

Simulation of Turbulent Flow in an Asymmetric Diffuser

Simulation of Turbulent Flow in an Asymmetric Diffuser Simulation of Turbulent Flow in an Asymmetric Diffuser 1. Purpose 58:160 Intermediate Mechanics of Fluids CFD LAB 3 By Tao Xing and Fred Stern IIHR-Hydroscience & Engineering The University of Iowa C.

More information

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes

2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes 2011 Optical Science & Engineering PhD Qualifying Examination Optical Sciences Track: Advanced Optics Time allowed: 90 minutes Answer all four questions. All questions count equally. 3(a) A linearly polarized

More information

4. ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC September, METU, Ankara

4. ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC September, METU, Ankara 4. ANKARA INTERNATIONAL AEROSPACE CONFERENCE AIAC-2007-004 10-12 September, 2007 - METU, Ankara TIP-LEAKAGE VORTEX MINIMIZATION IN DUCTED AXIAL FANS USING NOVEL PRESSURE SIDE TIP PLATFORM EXTENSIONS Cengiz

More information