CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

Size: px
Start display at page:

Download "CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University"

Transcription

1 CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

2 Course website: Slides will be available online Reading material will be posted online: Chapters from the new (released today!) book from Jon Kleinberg and David Easley from Cornell Whole book is available at: book /h /kl / t k b k

3 G(V, ( E) ) has expansion α: if S V: #edges leaving S α min( S, S ) S All edges with exactly one node in S S Or equivalently: α is the minimum ratio: # edges leaving min( S over all sets S, S ) S

4 Expansion gives us a measure of robustness if we want to disconnect l nodes, we need to cut α l edges Low expansion: α = High expansion: α = Star graph: α =

5 d regular graph (every node has deg. d): Expansions it at best d. (when S is 1 node) d) Is there a graph on n nodes (n ), max deg. d (const), so that expansion α remains const? Examples: Grid: d=4: α =2n/(n 2 /4) 0 (n/2 by n/2 square in the center) Complete binary tree: α 0 for S =(n/2)-1 Fact: for a random 3 regular graph on n nodes, there is some const α (α>0, indep. of n) such that w.h.p. the expansion of the graph is α

6 In a graph on n nodes with expansion α for all pairs of nodes s and t there is a path connecting them of O((log n) / α) edges. Proof: Let S j be a set of all nodes found within j steps of BFS from t. Then: S j+1 S j + α S j /d = S j (1+ α/d) In how many steps of BFS we reach >n/2 nodes? Need j so that: (1+ α/d) j > n/2, set j=d log(n)/α So, in O(log n) steps S j grows to Θ(n). And the diameter of G is O(log(n)/ α)

7 Just tbf before the edge (u,v) is placed dhow many hops is between u and v?

8 [Watts Strogatz Nature 98] How to have local edges (lots of triangles) and small diameter? Small world model [Watts Strogatz 1998]: Start with a low dimensional regular lattice Rewire: Add/remove edges to create shortcuts to join remote parts of the lattice For each edge with prob. p move the other end to a random vertex

9 [Watts Strogatz Nature 98] High clustering High clustering Low clustering High diameter Low diameter Low diameter Rewiring allows to interpolate between regular lattice and a random graph

10 Measure of clustering (local structure, i.e., ie triangles in a graph) Clustering coefficient C i of node i is: k i degree of node i C i =0 C i =1/3 C i =1 Clustering coefficient: C =1/n C i

11 1/n C i ng coefficient, C = 1 Clusterin Prob. of rewiring, p

12 Collaborations between film actors (IMDB) 225,226 nodes, avg. degree k=61 Electrical power grid: 4,941 nodes, k=2.67 Network of neurons 282 nodes, k=14 L... Average shortest path length C... Average clustering coefficient

13 People are able to find them! (without the global knowledge of the network)

14 People use different strategies: geography vs. occupation Criticism: Funneling: 31 of 64 chains go passed through 1 of 3 people p ass their final step Not all links/nodes are equal Is this reproducible in you vary conditions: High status person High participation rates: study from Columbia: 18 targets, 65kstartest, 75% dropout per step, only384 chains got through (about half to a stockbroker)

15

16 f relative frequency i... incomplete c... completed

17 s only knows locations of its friends and location of the target t. s does not know random links of anyone but itself. Geographic navigation: s forwards the message to the node closest to to t.

18 Model: Grid where each node has one random edge Why is this small world? Fact: A decentralized algorithm in Watts Strogatz model needs n 2/3 steps to reach t in expectation (even though paths of length log(n) exist). Proof: Do this in 1 d. n nodes on a ring plus one random directed edge per node. Lower bound on search time is now n 1/2.

19 Principle of deferred decision: assume random long range links aeo are only yceatedo created once you get to them. E i = event that long range link out of the new node points to some node in I. Then: P(E i )= 2x/n (haven t seen the random node i yet) Pick k, let E=event that any of first k nodes you see has long range link to I: P(E) = P(U k i E i ) = 2kx/n

20 P(E)=P(UP(U k i E i ) P(E i ) = 2kx/n Need k, x s.t. 2kx/n < 1 Choose: k=x= ½n ½ So, P(E) 2kx/n =2(½n ½ )/n= ½ Suppose s is outside I and E does not happen, then the algorithm must take min(k,x) steps to get to I.

21 Claim: Getting from s to t takes k ½n ½ steps. If we don t take a long random link, we must traverse ½n ½ steps to get in I. Expected dtime to get to I ½ + ½n 1/2 P(E doesn t occur) = ¼n 1/2

22 [Kleinberg 2001] Nodes still on a grid Each node has one long range link Prob. of long link: P(u v) ~ d(u,v) -α d(u,v) grid distance between u and v α parameter 0

23 Claim: For 2 d grid: α=22 we can get from s to t in O(log(n) 2 ) steps. StI Set I = d/2 Now: P(long range link points to I) = 1/log(n)

24 Small α: too many long links Big α: too many short links

25 Why distribution P(u v) ~ d(u,v) -dim works? Approx uniform over scales of resolution # points at distance d grows as d dim, prob. d -dim of each edge const. prob. of a link, independent of d

26 h(u,v) = tree distance (height of the least common ancestor) -α h(u,v) P(u v) ~ b How many nodes are at dist. h? (b-1)b h-1 P(u v) is approx uniform at all scales of resolution Path must exist a node creates d=k log 2 n edges Fact: For any direct subtree T one of v s d links points to T. By induction on T we can reach any node t in O(log(n)) steps.

27 Extension [Watts Dodds Newman 2002]: Multiple hierarchies geography, professor, religion, Q: how to analyze the model? Simulations: works for a range of alphas Biggest range of searchable hbl alphas for 2 or 3 hierarchies

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University, y http://cs224w.stanford.edu Due in 1 week: Oct 4 in class! The idea of the reaction papers is: To familiarize yourselves

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

beyond social networks

beyond social networks beyond social networks Small world phenomenon: high clustering C network >> C random graph low average shortest path l network ln( N)! neural network of C. elegans,! semantic networks of languages,! actor

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Lesson 18. Laura Ricci 08/05/2017

Lesson 18. Laura Ricci 08/05/2017 Lesson 18 WATTS STROGATZ AND KLEINBERG MODELS 08/05/2017 1 SMALL WORLD NETWORKS Many real networks are characterized by a diameter very low. In several social networks, individuals tend to group in clusters

More information

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200?

How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? How to explore big networks? Question: Perform a random walk on G. What is the average node degree among visited nodes, if avg degree in G is 200? Questions from last time Avg. FB degree is 200 (suppose).

More information

Network Mathematics - Why is it a Small World? Oskar Sandberg

Network Mathematics - Why is it a Small World? Oskar Sandberg Network Mathematics - Why is it a Small World? Oskar Sandberg 1 Networks Formally, a network is a collection of points and connections between them. 2 Networks Formally, a network is a collection of points

More information

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov Small-World Models and Network Growth Models Anastassia Semjonova Roman Tekhov Small world 6 billion small world? 1960s Stanley Milgram Six degree of separation Small world effect Motivation Not only friends:

More information

SI Networks: Theory and Application, Fall 2008

SI Networks: Theory and Application, Fall 2008 University of Michigan Deep Blue deepblue.lib.umich.edu 2008-09 SI 508 - Networks: Theory and Application, Fall 2008 Adamic, Lada Adamic, L. (2008, November 12). Networks: Theory and Application. Retrieved

More information

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search Math 443/543 Graph Theory Notes 0: Small world phenomenon and decentralized search David Glickenstein November 0, 008 Small world phenomenon The small world phenomenon is the principle that all people

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena

CSE 190 Lecture 16. Data Mining and Predictive Analytics. Small-world phenomena CSE 190 Lecture 16 Data Mining and Predictive Analytics Small-world phenomena Another famous study Stanley Milgram wanted to test the (already popular) hypothesis that people in social networks are separated

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

M.E.J. Newman: Models of the Small World

M.E.J. Newman: Models of the Small World A Review Adaptive Informatics Research Centre Helsinki University of Technology November 7, 2007 Vocabulary N number of nodes of the graph l average distance between nodes D diameter of the graph d is

More information

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 8 April 21, 2016 Web search and decentralized search on small-world networks Search for information Assume some resource of interest is stored at the vertices of a network: Web

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

ECE 158A - Data Networks

ECE 158A - Data Networks ECE 158A - Data Networks Homework 2 - due Tuesday Nov 5 in class Problem 1 - Clustering coefficient and diameter In this problem, we will compute the diameter and the clustering coefficient of a set of

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/24/2014 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 High dim. data

More information

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Navigation in Networks. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Navigation in Networks Networked Life NETS 112 Fall 2017 Prof. Michael Kearns The Navigation Problem You are an individual (vertex) in a very large social network You want to find a (short) chain of friendships

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

Midterm Review NETS 112

Midterm Review NETS 112 Midterm Review NETS 112 Part 1: Network Structure Is this a network? A B C D Part 1: Network Structure Is this a network? A B C D Yes -- G = (V, E), one or both can be empty Part 1: Network Structure What

More information

Small-world networks

Small-world networks Small-world networks c A. J. Ganesh, University of Bristol, 2015 Popular folklore asserts that any two people in the world are linked through a chain of no more than six mutual acquaintances, as encapsulated

More information

GIAN Course on Distributed Network Algorithms. Network Topologies and Interconnects

GIAN Course on Distributed Network Algorithms. Network Topologies and Interconnects GIAN Course on Distributed Network Algorithms Network Topologies and Interconnects Stefan Schmid @ T-Labs, 2011 The Many Faces and Flavors of Network Topologies Gnutella P2P. Social Networks. Internet.

More information

Today. Types of graphs. Complete Graphs. Trees. Hypercubes.

Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Today. Types of graphs. Complete Graphs. Trees. Hypercubes. Complete Graph. K n complete graph on n vertices. All edges are present. Everyone is my neighbor. Each vertex is adjacent to every other vertex.

More information

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model

6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model 6.207/14.15: Networks Lecture 5: Generalized Random Graphs and Small-World Model Daron Acemoglu and Asu Ozdaglar MIT September 23, 2009 1 Outline Generalized random graph models Graphs with prescribed

More information

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov

Algorithms and Applications in Social Networks. 2017/2018, Semester B Slava Novgorodov Algorithms and Applications in Social Networks 2017/2018, Semester B Slava Novgorodov 1 Lesson #1 Administrative questions Course overview Introduction to Social Networks Basic definitions Network properties

More information

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing

GIAN Course on Distributed Network Algorithms. Network Topologies and Local Routing GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing Stefan Schmid @ T-Labs, 2011 GIAN Course on Distributed Network Algorithms Network Topologies and Local Routing If you

More information

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior

Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Social, Information, and Routing Networks: Models, Algorithms, and Strategic Behavior Who? Prof. Aris Anagnostopoulos Prof. Luciana S. Buriol Prof. Guido Schäfer What will We Cover? Topics: Network properties

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Structure of Social Networks

Structure of Social Networks Structure of Social Networks Outline Structure of social networks Applications of structural analysis Social *networks* Twitter Facebook Linked-in IMs Email Real life Address books... Who Twitter #numbers

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 3/6/2012 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 2 In many data mining

More information

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds

ECS 289 / MAE 298, Lecture 9 April 29, Web search and decentralized search on small-worlds ECS 289 / MAE 298, Lecture 9 April 29, 2014 Web search and decentralized search on small-worlds Announcements HW2 and HW2b now posted: Due Friday May 9 Vikram s ipython and NetworkX notebooks posted Project

More information

Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4

Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4 Probabilistic embedding into trees: definitions and applications. Fall 2011 Lecture 4 Instructor: Mohammad T. Hajiaghayi Scribe: Anshul Sawant September 21, 2011 1 Overview Some problems which are hard

More information

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE

DO NOT RE-DISTRIBUTE THIS SOLUTION FILE Professor Kindred Math 104, Graph Theory Homework 3 Solutions February 14, 2013 Introduction to Graph Theory, West Section 2.1: 37, 62 Section 2.2: 6, 7, 15 Section 2.3: 7, 10, 14 DO NOT RE-DISTRIBUTE

More information

Behavioral Data Mining. Lecture 9 Modeling People

Behavioral Data Mining. Lecture 9 Modeling People Behavioral Data Mining Lecture 9 Modeling People Outline Power Laws Big-5 Personality Factors Social Network Structure Power Laws Y-axis = frequency of word, X-axis = rank in decreasing order Power Laws

More information

Example 1: An algorithmic view of the small world phenomenon

Example 1: An algorithmic view of the small world phenomenon Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 1: Jan 17, 2012 Scribes: Preethi Ambati and Azar Aliyev Example 1: An algorithmic view of the small world phenomenon The story

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

Networks and stability

Networks and stability Networks and stability Part 1A. Network topology www.weaklink.sote.hu csermelypeter@yahoo.com Peter Csermely 1. network topology 2. network dynamics 3. examples for networks 4. synthesis (complex equilibria,

More information

Parallel Graph Algorithms. Richard Peng Georgia Tech

Parallel Graph Algorithms. Richard Peng Georgia Tech Parallel Graph Algorithms Richard Peng Georgia Tech OUTLINE Model and problems Graph decompositions Randomized clusterings Interface with optimization THE MODEL The `scale up approach: Have a number of

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/25/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu 3 In many data mining

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu [Kumar et al. 99] 2/13/2013 Jure Leskovec, Stanford CS246: Mining Massive Datasets, http://cs246.stanford.edu

More information

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 11. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 11 Web Mining and Recommender Systems Triadic closure; strong & weak ties Triangles So far we ve seen (a little about) how networks can be characterized by their connectivity patterns What

More information

Simulations of the quadrilateral-based localization

Simulations of the quadrilateral-based localization Simulations of the quadrilateral-based localization Cluster success rate v.s. node degree. Each plot represents a simulation run. 9/15/05 Jie Gao CSE590-fall05 1 Random deployment Poisson distribution

More information

Complex Networks. Structure and Dynamics

Complex Networks. Structure and Dynamics Complex Networks Structure and Dynamics Ying-Cheng Lai Department of Mathematics and Statistics Department of Electrical Engineering Arizona State University Collaborators! Adilson E. Motter, now at Max-Planck

More information

CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99 CS258 S99 2

CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99 CS258 S99 2 Real Machines Interconnection Network Topology Design Trade-offs CS 258, Spring 99 David E. Culler Computer Science Division U.C. Berkeley Wide links, smaller routing delay Tremendous variation 3/19/99

More information

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS

CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS CS249: SPECIAL TOPICS MINING INFORMATION/SOCIAL NETWORKS Overview of Networks Instructor: Yizhou Sun yzsun@cs.ucla.edu January 10, 2017 Overview of Information Network Analysis Network Representation Network

More information

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research

Jure Leskovec, Cornell/Stanford University. Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Jure Leskovec, Cornell/Stanford University Joint work with Kevin Lang, Anirban Dasgupta and Michael Mahoney, Yahoo! Research Network: an interaction graph: Nodes represent entities Edges represent interaction

More information

Introduction to Algorithms I

Introduction to Algorithms I Summer School on Algorithms and Optimization Organized by: ACM Unit, ISI and IEEE CEDA. Tutorial II Date: 05.07.017 Introduction to Algorithms I (Q1) A binary tree is a rooted tree in which each node has

More information

Network Thinking. Complexity: A Guided Tour, Chapters 15-16

Network Thinking. Complexity: A Guided Tour, Chapters 15-16 Network Thinking Complexity: A Guided Tour, Chapters 15-16 Neural Network (C. Elegans) http://gephi.org/wp-content/uploads/2008/12/screenshot-celegans.png Food Web http://1.bp.blogspot.com/_vifbm3t8bou/sbhzqbchiei/aaaaaaaaaxk/rsc-pj45avc/

More information

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow

Introduction to Engineering Systems, ESD.00. Networks. Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow Introduction to Engineering Systems, ESD.00 Lecture 7 Networks Lecturers: Professor Joseph Sussman Dr. Afreen Siddiqi TA: Regina Clewlow The Bridges of Königsberg The town of Konigsberg in 18 th century

More information

An AVL tree with N nodes is an excellent data. The Big-Oh analysis shows that most operations finish within O(log N) time

An AVL tree with N nodes is an excellent data. The Big-Oh analysis shows that most operations finish within O(log N) time B + -TREES MOTIVATION An AVL tree with N nodes is an excellent data structure for searching, indexing, etc. The Big-Oh analysis shows that most operations finish within O(log N) time The theoretical conclusion

More information

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine

Hardness of Approximation for the TSP. Michael Lampis LAMSADE Université Paris Dauphine Hardness of Approximation for the TSP Michael Lampis LAMSADE Université Paris Dauphine Sep 2, 2015 Overview Hardness of Approximation What is it? How to do it? (Easy) Examples The PCP Theorem What is it?

More information

Small-World Datacenters

Small-World Datacenters 2 nd ACM Symposium on Cloud Computing Oct 27, 2011 Small-World Datacenters Ji-Yong Shin * Bernard Wong +, and Emin Gün Sirer * * Cornell University + University of Waterloo Motivation Conventional networks

More information

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich

(Social) Networks Analysis III. Prof. Dr. Daning Hu Department of Informatics University of Zurich (Social) Networks Analysis III Prof. Dr. Daning Hu Department of Informatics University of Zurich Outline Network Topological Analysis Network Models Random Networks Small-World Networks Scale-Free Networks

More information

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach

Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Topology Enhancement in Wireless Multihop Networks: A Top-down Approach Symeon Papavassiliou (joint work with Eleni Stai and Vasileios Karyotis) National Technical University of Athens (NTUA) School of

More information

Algorithmic and Economic Aspects of Networks. Nicole Immorlica

Algorithmic and Economic Aspects of Networks. Nicole Immorlica Algorithmic and Economic Aspects of Networks Nicole Immorlica Syllabus 1. Jan. 8 th (today): Graph theory, network structure 2. Jan. 15 th : Random graphs, probabilistic network formation 3. Jan. 20 th

More information

Small World Graph Clustering

Small World Graph Clustering Small World Graph Clustering Igor Kanovsky, Lilach Prego University of Haifa, Max Stern Academic College Israel 1 Clustering Problem Clustering problem : How to recognize communities within a huge graph.

More information

Peer-to-Peer Data Management

Peer-to-Peer Data Management Peer-to-Peer Data Management Wolf-Tilo Balke Sascha Tönnies Institut für Informationssysteme Technische Universität Braunschweig http://www.ifis.cs.tu-bs.de 10. Networkmodels 1. Introduction Motivation

More information

ECS 253 / MAE 253, Lecture 10 May 3, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 10 May 3, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 10 May 3, 2018 Web search and decentralized search on small-world networks Announcements First example of the problems introduced by using software routines rather than working

More information

6.856 Randomized Algorithms

6.856 Randomized Algorithms 6.856 Randomized Algorithms David Karger Handout #4, September 21, 2002 Homework 1 Solutions Problem 1 MR 1.8. (a) The min-cut algorithm given in class works because at each step it is very unlikely (probability

More information

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d )

kd-trees Idea: Each level of the tree compares against 1 dimension. Let s us have only two children at each node (instead of 2 d ) kd-trees Invented in 1970s by Jon Bentley Name originally meant 3d-trees, 4d-trees, etc where k was the # of dimensions Now, people say kd-tree of dimension d Idea: Each level of the tree compares against

More information

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3)

Lecture 7. s.t. e = (u,v) E x u + x v 1 (2) v V x v 0 (3) COMPSCI 632: Approximation Algorithms September 18, 2017 Lecturer: Debmalya Panigrahi Lecture 7 Scribe: Xiang Wang 1 Overview In this lecture, we will use Primal-Dual method to design approximation algorithms

More information

Extracting Information from Complex Networks

Extracting Information from Complex Networks Extracting Information from Complex Networks 1 Complex Networks Networks that arise from modeling complex systems: relationships Social networks Biological networks Distinguish from random networks uniform

More information

Physical Organization of Parallel Platforms. Alexandre David

Physical Organization of Parallel Platforms. Alexandre David Physical Organization of Parallel Platforms Alexandre David 1.2.05 1 Static vs. Dynamic Networks 13-02-2008 Alexandre David, MVP'08 2 Interconnection networks built using links and switches. How to connect:

More information

Fractional Cascading in Wireless. Jie Gao Computer Science Department Stony Brook University

Fractional Cascading in Wireless. Jie Gao Computer Science Department Stony Brook University Fractional Cascading in Wireless Sensor Networks Jie Gao Computer Science Department Stony Brook University 1 Sensor Networks Large number of small devices for environment monitoring 2 My recent work Lightweight,

More information

CPSC 536N: Randomized Algorithms Term 2. Lecture 10

CPSC 536N: Randomized Algorithms Term 2. Lecture 10 CPSC 536N: Randomized Algorithms 011-1 Term Prof. Nick Harvey Lecture 10 University of British Columbia In the first lecture we discussed the Max Cut problem, which is NP-complete, and we presented a very

More information

Erdős-Rényi Model for network formation

Erdős-Rényi Model for network formation Network Science: Erdős-Rényi Model for network formation Ozalp Babaoglu Dipartimento di Informatica Scienza e Ingegneria Università di Bologna www.cs.unibo.it/babaoglu/ Why model? Simpler representation

More information

Disclaimer. Lect 2: empirical analyses of graphs

Disclaimer. Lect 2: empirical analyses of graphs 462 Page 1 Lect 2: empirical analyses of graphs Tuesday, September 11, 2007 8:30 AM Disclaimer These are my personal notes from this lecture. They may be wrong or inaccurate, and have not carefully been

More information

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302

Topics. Trees Vojislav Kecman. Which graphs are trees? Terminology. Terminology Trees as Models Some Tree Theorems Applications of Trees CMSC 302 Topics VCU, Department of Computer Science CMSC 302 Trees Vojislav Kecman Terminology Trees as Models Some Tree Theorems Applications of Trees Binary Search Tree Decision Tree Tree Traversal Spanning Trees

More information

Kleinberg s Small-World Networks. Normalization constant have to be calculated:

Kleinberg s Small-World Networks. Normalization constant have to be calculated: Kleinberg s Small-World Networks Normalization constant have to be calculated: r v u d v u P ), ( 1 ~ ) ( Z v u d v u P r 1 ), ( 1 ) ( u i r i u d Z ), ( 1 Example Choose among 3 friends (1-dimension)

More information

Landmark-based routing

Landmark-based routing Landmark-based routing [Kleinberg04] J. Kleinberg, A. Slivkins, T. Wexler. Triangulation and Embedding using Small Sets of Beacons. Proc. 45th IEEE Symposium on Foundations of Computer Science, 2004. Using

More information

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization

An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization An Exploratory Journey Into Network Analysis A Gentle Introduction to Network Science and Graph Visualization Pedro Ribeiro (DCC/FCUP & CRACS/INESC-TEC) Part 1 Motivation and emergence of Network Science

More information

Scalable P2P architectures

Scalable P2P architectures Scalable P2P architectures Oscar Boykin Electrical Engineering, UCLA Joint work with: Jesse Bridgewater, Joseph Kong, Kamen Lozev, Behnam Rezaei, Vwani Roychowdhury, Nima Sarshar Outline Introduction to

More information

CSE Winter 2015 Quiz 1 Solutions

CSE Winter 2015 Quiz 1 Solutions CSE 101 - Winter 2015 Quiz 1 Solutions January 12, 2015 1. What is the maximum possible number of vertices in a binary tree of height h? The height of a binary tree is the length of the longest path from

More information

Highway Dimension and Provably Efficient Shortest Paths Algorithms

Highway Dimension and Provably Efficient Shortest Paths Algorithms Highway Dimension and Provably Efficient Shortest Paths Algorithms Andrew V. Goldberg Microsoft Research Silicon Valley www.research.microsoft.com/ goldberg/ Joint with Ittai Abraham, Amos Fiat, and Renato

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks

6. Overview. L3S Research Center, University of Hannover. 6.1 Section Motivation. Investigation of structural aspects of peer-to-peer networks , University of Hannover Random Graphs, Small-Worlds, and Scale-Free Networks Wolf-Tilo Balke and Wolf Siberski 05.12.07 * Original slides provided by K.A. Lehmann (University Tübingen, Germany) 6. Overview

More information

CS 310: Order Notation (aka Big-O and friends)

CS 310: Order Notation (aka Big-O and friends) CS 310: Order Notation (aka Big-O and friends) Chris Kauffman Week 1-2 Logistics At Home Read Weiss Ch 1-4: Java Review Read Weiss Ch 5: Big-O Get your java environment set up Compile/Run code for Max

More information

Locality- Sensitive Hashing Random Projections for NN Search

Locality- Sensitive Hashing Random Projections for NN Search Case Study 2: Document Retrieval Locality- Sensitive Hashing Random Projections for NN Search Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 18, 2017 Sham Kakade

More information

1 The range query problem

1 The range query problem CS268: Geometric Algorithms Handout #12 Design and Analysis Original Handout #12 Stanford University Thursday, 19 May 1994 Original Lecture #12: Thursday, May 19, 1994 Topics: Range Searching with Partition

More information

Assignment # 4 Selected Solutions

Assignment # 4 Selected Solutions Assignment # 4 Selected Solutions Problem 2.3.3 Let G be a connected graph which is not a tree (did you notice this is redundant?) and let C be a cycle in G. Prove that the complement of any spanning tree

More information

1 Degree Distributions

1 Degree Distributions Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 3: Jan 24, 2012 Scribes: Geoffrey Fairchild and Jason Fries 1 Degree Distributions Last time, we discussed some graph-theoretic

More information

Algorithm Analysis. (Algorithm Analysis ) Data Structures and Programming Spring / 48

Algorithm Analysis. (Algorithm Analysis ) Data Structures and Programming Spring / 48 Algorithm Analysis (Algorithm Analysis ) Data Structures and Programming Spring 2018 1 / 48 What is an Algorithm? An algorithm is a clearly specified set of instructions to be followed to solve a problem

More information

Copyright 2000, Kevin Wayne 1

Copyright 2000, Kevin Wayne 1 Chapter 3 - Graphs Undirected Graphs Undirected graph. G = (V, E) V = nodes. E = edges between pairs of nodes. Captures pairwise relationship between objects. Graph size parameters: n = V, m = E. Directed

More information

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility

Outline. CS38 Introduction to Algorithms. Approximation Algorithms. Optimization Problems. Set Cover. Set cover 5/29/2014. coping with intractibility Outline CS38 Introduction to Algorithms Lecture 18 May 29, 2014 coping with intractibility approximation algorithms set cover TSP center selection randomness in algorithms May 29, 2014 CS38 Lecture 18

More information

Trees, Trees and More Trees

Trees, Trees and More Trees Trees, Trees and More Trees August 9, 01 Andrew B. Kahng abk@cs.ucsd.edu http://vlsicad.ucsd.edu/~abk/ How You ll See Trees in CS Trees as mathematical objects Trees as data structures Trees as tools for

More information

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han

Chapter 1. Social Media and Social Computing. October 2012 Youn-Hee Han Chapter 1. Social Media and Social Computing October 2012 Youn-Hee Han http://link.koreatech.ac.kr 1.1 Social Media A rapid development and change of the Web and the Internet Participatory web application

More information

Lecture 1 September 4, 2013

Lecture 1 September 4, 2013 CS 84r: Incentives an Information in Networks Fall 013 Prof. Yaron Singer Lecture 1 September 4, 013 Scribe: Bo Waggoner 1 Overview In this course we will try to evelop a mathematical unerstaning for the

More information

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell

Nick Hamilton Institute for Molecular Bioscience. Essential Graph Theory for Biologists. Image: Matt Moores, The Visible Cell Nick Hamilton Institute for Molecular Bioscience Essential Graph Theory for Biologists Image: Matt Moores, The Visible Cell Outline Core definitions Which are the most important bits? What happens when

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lecture 6 Min Cut and Karger s Algorithm Scribes: Peng Hui How, Virginia Williams (05) Date: November 7, 07 Anthony Kim (06), Mary Wootters (07) Adapted from Virginia Williams lecture notes Minimum

More information

Exemples of LCP. (b,3) (c,3) (d,4) 38 d

Exemples of LCP. (b,3) (c,3) (d,4) 38 d This layout has been presented by G. Even and S. Even [ 00], and it is based on the notion of Layered Cross Product Def. A layered graph of l+1 layers G=(V 0, V 1,, V l, E) consists of l+1 layers of nodes;

More information

Union-Find Structures. Application: Connected Components in a Social Network

Union-Find Structures. Application: Connected Components in a Social Network Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 01 Union-Find Structures Union-Find 1 Application: Connected Components in a Social

More information

Switching for a Small World. Vilhelm Verendel. Master s Thesis in Complex Adaptive Systems

Switching for a Small World. Vilhelm Verendel. Master s Thesis in Complex Adaptive Systems Switching for a Small World Vilhelm Verendel Master s Thesis in Complex Adaptive Systems Division of Computing Science Department of Computer Science and Engineering Chalmers University of Technology Göteborg,

More information

A Document as a Small World. selecting the term which co-occurs in multiple clusters. domains, from earthquake sequences [6] to register

A Document as a Small World. selecting the term which co-occurs in multiple clusters. domains, from earthquake sequences [6] to register A Document as a Small World Yutaka Matsuo y Yukio Ohsawa z Mitsuru Ishizuka y y Graduate School of Engineering University oftokyo Tokyo 113-8656, Japan z Graduate School of Systems Management University

More information

Grids Geometry Computational Geometry

Grids Geometry Computational Geometry Grids Geometry Computational Geometry Grids You will encounter many problems whose solutions need grid representation map VLSI layout the most natural way to carve space into regions regular pattern rectangular

More information

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties

CSE 255 Lecture 13. Data Mining and Predictive Analytics. Triadic closure; strong & weak ties CSE 255 Lecture 13 Data Mining and Predictive Analytics Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

Constructing a G(N, p) Network

Constructing a G(N, p) Network Random Graph Theory Dr. Natarajan Meghanathan Professor Department of Computer Science Jackson State University, Jackson, MS E-mail: natarajan.meghanathan@jsums.edu Introduction At first inspection, most

More information

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties

CSE 158 Lecture 13. Web Mining and Recommender Systems. Triadic closure; strong & weak ties CSE 158 Lecture 13 Web Mining and Recommender Systems Triadic closure; strong & weak ties Monday Random models of networks: Erdos Renyi random graphs (picture from Wikipedia http://en.wikipedia.org/wiki/erd%c5%91s%e2%80%93r%c3%a9nyi_model)

More information

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 950 954 c International Academic Publishers Vol. 45, No. 5, May 15, 2006 Small World Properties Generated by a New Algorithm Under Same Degree of All

More information