ECE 158A - Data Networks

Size: px
Start display at page:

Download "ECE 158A - Data Networks"

Transcription

1 ECE 158A - Data Networks Homework 2 - due Tuesday Nov 5 in class Problem 1 - Clustering coefficient and diameter In this problem, we will compute the diameter and the clustering coefficient of a set of simple networks. Given a network N, recall that the diameter d(n) is defined as follows. For a pair of nodes u, v in N, we define their minimum distance d min (u, v) as the length of the shortest path connecting them. The diameter is then defined as d(n) = max d min(u, v), u,v that is, the maximum of the minimum distance over all pairs of nodes. Given a network N, recall that the clustering coefficient is defined as C(N) = # of closed triangles # of connected triples, where a triangle is a triple of nodes u, v, w such that there is an edge between each pair of them (edge (u, v), edge (u, w), edge (v, w)), and a triple of nodes u, v, w is connected if there exist at least two edges among (u, v), (u, w), (v, w). We argued in class that two desirable properties of networks are small diameter large clustering. For this reason, it is a good idea to make sure you understand how to evaluate these two properties. This first problem checks your ability to perform such a computation. 1) Compute the diameter and the clustering coefficient of the two networks in Fig.1. 2) Compute the diameter and the clustering coefficient of the two networks in Fig.2. 3) For each n 4, define the network N n as follows. There are n nodes positioned on a circle. Each node is connected to its 4 nearest neighbors (2 on its 1

2 Figure 1: Two networks. Figure 2: Other two networks. left, 2 on its right). Fig.3 depicts N 30. Compute and plot the diameter and the clustering coefficient of the network N n as a function of n. (Hint: start from small values of n, and then generalize). 2

3 Figure 3: The network N 30. Problem 2 - Clustering coefficient in small-world networks We now consider the model of small-world random network proposed by Watts and Strogatz, and we will observe how the clustering coefficient changes when the randomness increases. This model is only slightly different than the one examined in class as links are rewired rather than added at random. The parameters of interest are the number of nodes n, the number of neighbors d and the rewiring probability p. A network is constructed according to the following process. n nodes, indexed by 1, 2,..., n, are positioned on a ring. Each node is connected with an edge to its d-nearest neighbors on each of its sides, for a total of 2d edges for each node. The 2d nearest neighbors of node i {1,..., n} are {(i d)modn, (i d + 1)MODn,..., (i 1)MODn, (i+1)modn,..., (i+d)modn}, where amodb is the remainder of the integer division of a by b. The resulting network is denoted by N 0 (see Fig.4a, for n = 16 and d = 4), whose structure is regular. Each edge is rewired with probability p, independently of the others. That is, for each edge e = (i, j) in the network N 0, with probability p one of the extremes of e (say i) is rewired to a node k i, j that is not currently connected to i. This originates the network N p, two instances of which are represented in Fig.4b and Fig.4c (in the latter the rewiring parameter p is larger). Tuning the rewiring parameter p allows to gradually transform the regular network N 0 (for p = 0, see the leftmost network in Fig.5), into a random network N 1 (for p = 1, see the rightmost network in Fig.5). For small values of p the network is highly clustered but also has a large diameter, while for values of p 3

4 Figure 4: Small-world network. close to one the network has a small diameter but low clustering. The networks N p for intermediate values 0 < p < 1 are the ones of interest (see the central network in Fig.5) that have both high clustering and low diameter. Figure 5: Increasing the value of p increases randomness. 1) Using a programming language of your choice, write a computer program that takes n, d, p as inputs, and generates a random small-world network parameters n, d and p. Notice that a network with n nodes can be represented by a n n matrix A (called the adjacency matrix), whose element a i,j (i-th row, j-th column) is 1 is nodes i and j are connected and 0 otherwise. Proceed as follows: The adjacency matrix A 0 of the network N 0 can be easily generated by starting from a matrix with all zero entries, and setting to 1 the elements corresponding to the d-nearest neighbors (observe that A 0 is symmetric, and that each row and each column has exactly 2d nonzero entries). The adjacency matrix A p of the network N p can be generated as follows. Scan all entries a i,j = 1 of A 0 (corresponding to edges e = (i, j)) for all i < j, one by one (we need to scan only half of its elements because A 0 must be symmetric). For each considered a i,j with probability 1 p do nothing. With probability p select one among i and j (each with probability 1/2) 4

5 and set a i,j = a j,i = 0 (edge deleted); if i was chosen select a random k i, j such that (i, k) is not currently an edge ad set a i,k = a k,i = 1 (edge added); if j was chosen select a random k i, j such that (j, k) is not currently an edge ad set a j,k = a k,j = 1 (edge added). Your program needs to output the matrix A p. You need to turn in your code, and to plot instances of A p in the case of n = 16, d = 2 and p {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. 2) We now want to check that increasing the randomness of a small-world network (that is, increasing p) reduces its clustering coefficient. Remember that the clustering coefficient of a network N p (with adjacency matrix A p )is defined as # of closed triangles C(N p ) = # of connected triples, where a triangle is a triple of nodes i, j, k such that a i,j = a i,k = a j,k = 1, and a triple i, j, k is connected is at least two among a i,j, a i,k, a j,k are equal to 1. Write a computer program that, given an adjacency matrix as the input, computes the clustering coefficient of the corresponding network. An easy way to do this is to consider all unordered triples of nodes i, j, k {1,..., n} (that is, if the triple i, j, k is considered then the triple i, k, j must not be considered), and count how many of them form a triangle and how many of them are connected triples. 3) With n = 16, d = 2 and p {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, plot C(N p ) as a function of p. To obtain a smooth plot, you may want to run the steps 1) and 2) multiple times. 5

6 Problem 3 - geographic routing in small world networks We now consider another generative model of small world networks discussed in class. Start with a grid of n nodes and add to it random connections in the following way. For each pair of nodes (x, y) in the grid, add an edge between them with probability P (x, y) = 1 e 1/ x y α (1) where x y is the grid distance between x and y and α > 0 is the parameter of the model. Consider two nodes a and b at the opposite corners of the grid. 1. As n (our graph gets larger and larger) show mathematically that the random connections are added according to the power law P (a, b) 1 x y α. (2) 2. Using a programming language of your choice, implement the following local greedy algorithm to route a packet from a to b. Send the packet on the outgoing link connecting to the node closest to b as possible. Using an initial grid of size 100x100 and adding random connections as described above, count the number of hops required to reach b and average over multiple realizations of the random graph. Perform the experiment for different values of α and determine the value of α for which the average number of hops is minimum. Repeat the experiment for larger grid sizes. 3. (Extra points) Repeat the experiment at point 2, using Dijkstra s algorithm. Is the optimal value of α different in this case? Explain your findings. 4. (Extra points). What is the degree distribution of the model considered in this Problem? How does it differ from Kleinberg s model discussed in class? 6

7 Problem 4 - Heavy tail versus exponential tail In class we encountered the Pareto distribution, and the exponential distribution. In this problem we will visually understand why the former is said to be a heavy-tail distribution. A continuous random variable has the Pareto distribution with parameters α > 0 and x m > 0 if its probability density function is given by { x α α m f P (x; α, x m ) = x for x x α+1 m, 0 for x < x m. The mean is given by m P (α, x m ) = { xmα α 1 for α > 1, for α 1. A continuous random variable has the Exponential distribution with parameter λ > 0 if its probability density function is given by { λe λx for x 0, f E (x; λ) = 0 for x < 0. The mean is given by m E (λ) = 1/λ. 1) Fix a value of λ of your choice, and (using the programming language of your choice) plot f E (x; λ) in log-log scale. 2) For α {1, 2, 3, 4, 5, 6, 7, 8}, consider the distribution f P (x; α, x m ) such that m P (α, x m ) = m E (λ). That is, for each α you have to set xmα α 1 = 1/λ, and compute the corresponding value of x m (call it x m (α)). 3) For α {1, 2, 3, 4, 5, 6, 7, 8}, plot f P (x; α, x m (α)), for the value of x m (α) computed in part 2), in the same figure were you plotted f E (x; λ). You should now have an understating why the Pareto distribution is said to have an heavy tail. Explain your understanding. 7

Using graph theoretic measures to predict the performance of associative memory models

Using graph theoretic measures to predict the performance of associative memory models Using graph theoretic measures to predict the performance of associative memory models Lee Calcraft, Rod Adams, Weiliang Chen and Neil Davey School of Computer Science, University of Hertfordshire College

More information

CAIM: Cerca i Anàlisi d Informació Massiva

CAIM: Cerca i Anàlisi d Informació Massiva 1 / 72 CAIM: Cerca i Anàlisi d Informació Massiva FIB, Grau en Enginyeria Informàtica Slides by Marta Arias, José Balcázar, Ricard Gavaldá Department of Computer Science, UPC Fall 2016 http://www.cs.upc.edu/~caim

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

CSCI5070 Advanced Topics in Social Computing

CSCI5070 Advanced Topics in Social Computing CSCI5070 Advanced Topics in Social Computing Irwin King The Chinese University of Hong Kong king@cse.cuhk.edu.hk!! 2012 All Rights Reserved. Outline Graphs Origins Definition Spectral Properties Type of

More information

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns

Models of Network Formation. Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Models of Network Formation Networked Life NETS 112 Fall 2017 Prof. Michael Kearns Roadmap Recently: typical large-scale social and other networks exhibit: giant component with small diameter sparsity

More information

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008

Lesson 4. Random graphs. Sergio Barbarossa. UPC - Barcelona - July 2008 Lesson 4 Random graphs Sergio Barbarossa Graph models 1. Uncorrelated random graph (Erdős, Rényi) N nodes are connected through n edges which are chosen randomly from the possible configurations 2. Binomial

More information

Signal Processing for Big Data

Signal Processing for Big Data Signal Processing for Big Data Sergio Barbarossa 1 Summary 1. Networks 2.Algebraic graph theory 3. Random graph models 4. OperaGons on graphs 2 Networks The simplest way to represent the interaction between

More information

Small-world networks

Small-world networks Small-world networks c A. J. Ganesh, University of Bristol, 2015 Popular folklore asserts that any two people in the world are linked through a chain of no more than six mutual acquaintances, as encapsulated

More information

2. CONNECTIVITY Connectivity

2. CONNECTIVITY Connectivity 2. CONNECTIVITY 70 2. Connectivity 2.1. Connectivity. Definition 2.1.1. (1) A path in a graph G = (V, E) is a sequence of vertices v 0, v 1, v 2,..., v n such that {v i 1, v i } is an edge of G for i =

More information

Overlay (and P2P) Networks

Overlay (and P2P) Networks Overlay (and P2P) Networks Part II Recap (Small World, Erdös Rényi model, Duncan Watts Model) Graph Properties Scale Free Networks Preferential Attachment Evolving Copying Navigation in Small World Samu

More information

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs

Advanced Operations Research Techniques IE316. Quiz 1 Review. Dr. Ted Ralphs Advanced Operations Research Techniques IE316 Quiz 1 Review Dr. Ted Ralphs IE316 Quiz 1 Review 1 Reading for The Quiz Material covered in detail in lecture. 1.1, 1.4, 2.1-2.6, 3.1-3.3, 3.5 Background material

More information

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov

Small-World Models and Network Growth Models. Anastassia Semjonova Roman Tekhov Small-World Models and Network Growth Models Anastassia Semjonova Roman Tekhov Small world 6 billion small world? 1960s Stanley Milgram Six degree of separation Small world effect Motivation Not only friends:

More information

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University

CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University CS 322: (Social and Information) Network Analysis Jure Leskovec Stanford University Course website: http://snap.stanford.edu/na09 Slides will be available online Reading material will be posted online:

More information

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 16. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 16 Dr. Ted Ralphs IE406 Lecture 16 1 Reading for This Lecture Bertsimas 7.1-7.3 IE406 Lecture 16 2 Network Flow Problems Networks are used to model

More information

OPPA European Social Fund Prague & EU: We invest in your future.

OPPA European Social Fund Prague & EU: We invest in your future. OPPA European Social Fund Prague & EU: We invest in your future. European Social Fund Prague & EU: We invests in your future. Combinatorial optimisation The shortest paths in a graph Přemysl Šůcha (suchap@fel.cvut.cz)

More information

Graphs. The ultimate data structure. graphs 1

Graphs. The ultimate data structure. graphs 1 Graphs The ultimate data structure graphs 1 Definition of graph Non-linear data structure consisting of nodes & links between them (like trees in this sense) Unlike trees, graph nodes may be completely

More information

Hypercubes. (Chapter Nine)

Hypercubes. (Chapter Nine) Hypercubes (Chapter Nine) Mesh Shortcomings: Due to its simplicity and regular structure, the mesh is attractive, both theoretically and practically. A problem with the mesh is that movement of data is

More information

Random Graph Model; parameterization 2

Random Graph Model; parameterization 2 Agenda Random Graphs Recap giant component and small world statistics problems: degree distribution and triangles Recall that a graph G = (V, E) consists of a set of vertices V and a set of edges E V V.

More information

ECS 253 / MAE 253, Lecture 10 May 3, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 10 May 3, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 10 May 3, 2018 Web search and decentralized search on small-world networks Announcements First example of the problems introduced by using software routines rather than working

More information

Math Summer 2012

Math Summer 2012 Math 481 - Summer 2012 Final Exam You have one hour and fifty minutes to complete this exam. You are not allowed to use any electronic device. Be sure to give reasonable justification to all your answers.

More information

1 Homophily and assortative mixing

1 Homophily and assortative mixing 1 Homophily and assortative mixing Networks, and particularly social networks, often exhibit a property called homophily or assortative mixing, which simply means that the attributes of vertices correlate

More information

Gaussian and Exponential Architectures in Small-World Associative Memories

Gaussian and Exponential Architectures in Small-World Associative Memories and Architectures in Small-World Associative Memories Lee Calcraft, Rod Adams and Neil Davey School of Computer Science, University of Hertfordshire College Lane, Hatfield, Herts AL1 9AB, U.K. {L.Calcraft,

More information

CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms

CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms CSC 8301 Design & Analysis of Algorithms: Kruskal s and Dijkstra s Algorithms Professor Henry Carter Fall 2016 Recap Greedy algorithms iterate locally optimal choices to construct a globally optimal solution

More information

1 Degree Distributions

1 Degree Distributions Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture 3: Jan 24, 2012 Scribes: Geoffrey Fairchild and Jason Fries 1 Degree Distributions Last time, we discussed some graph-theoretic

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 2 Part 4: Dividing Networks into Clusters The problem l Graph partitioning

More information

Solutions to Assignment# 4

Solutions to Assignment# 4 Solutions to Assignment# 4 Liana Yepremyan 1 Nov.12: Text p. 651 problem 1 Solution: (a) One example is the following. Consider the instance K = 2 and W = {1, 2, 1, 2}. The greedy algorithm would load

More information

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns

How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns How Do Real Networks Look? Networked Life NETS 112 Fall 2014 Prof. Michael Kearns Roadmap Next several lectures: universal structural properties of networks Each large-scale network is unique microscopically,

More information

Chapter 3. Sukhwinder Singh

Chapter 3. Sukhwinder Singh Chapter 3 Sukhwinder Singh PIXEL ADDRESSING AND OBJECT GEOMETRY Object descriptions are given in a world reference frame, chosen to suit a particular application, and input world coordinates are ultimately

More information

Deterministic small-world communication networks

Deterministic small-world communication networks Information Processing Letters 76 (2000) 83 90 Deterministic small-world communication networks Francesc Comellas a,,javierozón a, Joseph G. Peters b a Departament de Matemàtica Aplicada i Telemàtica,

More information

Chapter 10. Fundamental Network Algorithms. M. E. J. Newman. May 6, M. E. J. Newman Chapter 10 May 6, / 33

Chapter 10. Fundamental Network Algorithms. M. E. J. Newman. May 6, M. E. J. Newman Chapter 10 May 6, / 33 Chapter 10 Fundamental Network Algorithms M. E. J. Newman May 6, 2015 M. E. J. Newman Chapter 10 May 6, 2015 1 / 33 Table of Contents 1 Algorithms for Degrees and Degree Distributions Degree-Degree Correlation

More information

Introduction to network metrics

Introduction to network metrics Universitat Politècnica de Catalunya Version 0.5 Complex and Social Networks (2018-2019) Master in Innovation and Research in Informatics (MIRI) Instructors Argimiro Arratia, argimiro@cs.upc.edu, http://www.cs.upc.edu/~argimiro/

More information

Assignment 5: Solutions

Assignment 5: Solutions Algorithm Design Techniques Assignment 5: Solutions () Port Authority. [This problem is more commonly called the Bin Packing Problem.] (a) Suppose K = 3 and (w, w, w 3, w 4 ) = (,,, ). The optimal solution

More information

beyond social networks

beyond social networks beyond social networks Small world phenomenon: high clustering C network >> C random graph low average shortest path l network ln( N)! neural network of C. elegans,! semantic networks of languages,! actor

More information

Final Exam. Advanced Methods for Data Analysis (36-402/36-608) Due Thursday May 8, 2014 at 11:59pm

Final Exam. Advanced Methods for Data Analysis (36-402/36-608) Due Thursday May 8, 2014 at 11:59pm Final Exam Advanced Methods for Data Analysis (36-402/36-608) Due Thursday May 8, 2014 at 11:59pm Instructions: you will submit this take-home final exam in three parts. 1. Writeup. This will be a complete

More information

REGULAR GRAPHS OF GIVEN GIRTH. Contents

REGULAR GRAPHS OF GIVEN GIRTH. Contents REGULAR GRAPHS OF GIVEN GIRTH BROOKE ULLERY Contents 1. Introduction This paper gives an introduction to the area of graph theory dealing with properties of regular graphs of given girth. A large portion

More information

Cluster Analysis. Angela Montanari and Laura Anderlucci

Cluster Analysis. Angela Montanari and Laura Anderlucci Cluster Analysis Angela Montanari and Laura Anderlucci 1 Introduction Clustering a set of n objects into k groups is usually moved by the aim of identifying internally homogenous groups according to a

More information

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies:

UNIT 5 GRAPH. Application of Graph Structure in real world:- Graph Terminologies: UNIT 5 CSE 103 - Unit V- Graph GRAPH Graph is another important non-linear data structure. In tree Structure, there is a hierarchical relationship between, parent and children that is one-to-many relationship.

More information

CS 6824: The Small World of the Cerebral Cortex

CS 6824: The Small World of the Cerebral Cortex CS 6824: The Small World of the Cerebral Cortex T. M. Murali September 1, 2016 Motivation The Watts-Strogatz paper set off a storm of research. It has nearly 30,000 citations. Even in 2004, it had more

More information

All Shortest Paths. Questions from exercises and exams

All Shortest Paths. Questions from exercises and exams All Shortest Paths Questions from exercises and exams The Problem: G = (V, E, w) is a weighted directed graph. We want to find the shortest path between any pair of vertices in G. Example: find the distance

More information

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity

Geometry: 3D coordinates Attributes. e.g. normal, color, texture coordinate. Connectivity Mesh Data Structures res Data Structures What should be stored? Geometry: 3D coordinates Attributes eg normal, color, texture coordinate Per vertex, per face, per edge Connectivity Adjacency relationships

More information

CSC 8301 Design & Analysis of Algorithms: Linear Programming

CSC 8301 Design & Analysis of Algorithms: Linear Programming CSC 8301 Design & Analysis of Algorithms: Linear Programming Professor Henry Carter Fall 2016 Iterative Improvement Start with a feasible solution Improve some part of the solution Repeat until the solution

More information

Small-World Datacenters

Small-World Datacenters 2 nd ACM Symposium on Cloud Computing Oct 27, 2011 Small-World Datacenters Ji-Yong Shin * Bernard Wong +, and Emin Gün Sirer * * Cornell University + University of Waterloo Motivation Conventional networks

More information

Lecture 4: Graph Algorithms

Lecture 4: Graph Algorithms Lecture 4: Graph Algorithms Definitions Undirected graph: G =(V, E) V finite set of vertices, E finite set of edges any edge e = (u,v) is an unordered pair Directed graph: edges are ordered pairs If e

More information

Exercise set #2 (29 pts)

Exercise set #2 (29 pts) (29 pts) The deadline for handing in your solutions is Nov 16th 2015 07:00. Return your solutions (one.pdf le and one.zip le containing Python code) via e- mail to Becs-114.4150@aalto.fi. Additionally,

More information

In this edition of HowStuffWorks, we'll find out precisely what information is used by routers in determining where to send a packet.

In this edition of HowStuffWorks, we'll find out precisely what information is used by routers in determining where to send a packet. How Routing Algorithms Work by Roozbeh Razavi If you have read the HowStuffWorks article How Routers Work, then you know that a router is used to manage network traffic and find the best route for sending

More information

Scalable P2P architectures

Scalable P2P architectures Scalable P2P architectures Oscar Boykin Electrical Engineering, UCLA Joint work with: Jesse Bridgewater, Joseph Kong, Kamen Lozev, Behnam Rezaei, Vwani Roychowdhury, Nima Sarshar Outline Introduction to

More information

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University

Algorithms IV. Dynamic Programming. Guoqiang Li. School of Software, Shanghai Jiao Tong University Algorithms IV Dynamic Programming Guoqiang Li School of Software, Shanghai Jiao Tong University Dynamic Programming Shortest Paths in Dags, Revisited Shortest Paths in Dags, Revisited The special distinguishing

More information

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial.

A graph is finite if its vertex set and edge set are finite. We call a graph with just one vertex trivial and all other graphs nontrivial. 2301-670 Graph theory 1.1 What is a graph? 1 st semester 2550 1 1.1. What is a graph? 1.1.2. Definition. A graph G is a triple (V(G), E(G), ψ G ) consisting of V(G) of vertices, a set E(G), disjoint from

More information

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone:

MA4254: Discrete Optimization. Defeng Sun. Department of Mathematics National University of Singapore Office: S Telephone: MA4254: Discrete Optimization Defeng Sun Department of Mathematics National University of Singapore Office: S14-04-25 Telephone: 6516 3343 Aims/Objectives: Discrete optimization deals with problems of

More information

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes

Small World Properties Generated by a New Algorithm Under Same Degree of All Nodes Commun. Theor. Phys. (Beijing, China) 45 (2006) pp. 950 954 c International Academic Publishers Vol. 45, No. 5, May 15, 2006 Small World Properties Generated by a New Algorithm Under Same Degree of All

More information

TELCOM2125: Network Science and Analysis

TELCOM2125: Network Science and Analysis School of Information Sciences University of Pittsburgh TELCOM2125: Network Science and Analysis Konstantinos Pelechrinis Spring 2015 Figures are taken from: M.E.J. Newman, Networks: An Introduction 2

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/11cs8 Homework problem sessions are in CSB 601, 6:1-7:1pm on Oct. (Wednesday), Oct. 1 (Wednesday), and on Oct. 19 (Wednesday);

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University, y http://cs224w.stanford.edu Due in 1 week: Oct 4 in class! The idea of the reaction papers is: To familiarize yourselves

More information

Answers to Homework 12: Systems of Linear Equations

Answers to Homework 12: Systems of Linear Equations Math 128A Spring 2002 Handout # 29 Sergey Fomel May 22, 2002 Answers to Homework 12: Systems of Linear Equations 1. (a) A vector norm x has the following properties i. x 0 for all x R n ; x = 0 only if

More information

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search

Math 443/543 Graph Theory Notes 10: Small world phenomenon and decentralized search Math 443/543 Graph Theory Notes 0: Small world phenomenon and decentralized search David Glickenstein November 0, 008 Small world phenomenon The small world phenomenon is the principle that all people

More information

How Routing Algorithms Work

How Routing Algorithms Work How Routing Algorithms Work A router is used to manage network traffic and find the best route for sending packets. But have you ever thought about how routers do this? Routers need to have some information

More information

Module 10. Network Simplex Method:

Module 10. Network Simplex Method: Module 10 1 Network Simplex Method: In this lecture we shall study a specialized simplex method specifically designed to solve network structured linear programming problems. This specialized algorithm

More information

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns

MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns MIDTERM EXAMINATION Networked Life (NETS 112) November 21, 2013 Prof. Michael Kearns This is a closed-book exam. You should have no material on your desk other than the exam itself and a pencil or pen.

More information

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Dynamic Programming Computer Science 385 Design and Analysis of Algorithms Siena College Spring 29 Topic Notes: Dynamic Programming We next consider dynamic programming, a technique for designing algorithms to solve problems

More information

Package fastnet. September 11, 2018

Package fastnet. September 11, 2018 Type Package Title Large-Scale Social Network Analysis Version 0.1.6 Package fastnet September 11, 2018 We present an implementation of the algorithms required to simulate largescale social networks and

More information

CALCULATION OF INFERENCE IN AD-HOC NETWORK

CALCULATION OF INFERENCE IN AD-HOC NETWORK CALCULATION OF INFERENCE IN AD-HOC NETWORK POOJA GROVER, 2 NEHA GUPTA, 3 RANJIT KUMAR Asst. Prof., Department of Computer Science & Engineering, MDU, Rohtak, India-3300 2 Lecturer, Department of Information

More information

LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS

LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS LATIN SQUARES AND THEIR APPLICATION TO THE FEASIBLE SET FOR ASSIGNMENT PROBLEMS TIMOTHY L. VIS Abstract. A significant problem in finite optimization is the assignment problem. In essence, the assignment

More information

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms

CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms CSC 8301 Design & Analysis of Algorithms: Warshall s, Floyd s, and Prim s algorithms Professor Henry Carter Fall 2016 Recap Space-time tradeoffs allow for faster algorithms at the cost of space complexity

More information

Package fastnet. February 12, 2018

Package fastnet. February 12, 2018 Type Package Title Large-Scale Social Network Analysis Version 0.1.4 Package fastnet February 12, 2018 We present an implementation of the algorithms required to simulate largescale social networks and

More information

Function approximation using RBF network. 10 basis functions and 25 data points.

Function approximation using RBF network. 10 basis functions and 25 data points. 1 Function approximation using RBF network F (x j ) = m 1 w i ϕ( x j t i ) i=1 j = 1... N, m 1 = 10, N = 25 10 basis functions and 25 data points. Basis function centers are plotted with circles and data

More information

Lecture 3: Totally Unimodularity and Network Flows

Lecture 3: Totally Unimodularity and Network Flows Lecture 3: Totally Unimodularity and Network Flows (3 units) Outline Properties of Easy Problems Totally Unimodular Matrix Minimum Cost Network Flows Dijkstra Algorithm for Shortest Path Problem Ford-Fulkerson

More information

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #19. Loops: Continue Statement Example

Introduction to Programming in C Department of Computer Science and Engineering. Lecture No. #19. Loops: Continue Statement Example Introduction to Programming in C Department of Computer Science and Engineering Lecture No. #19 Loops: Continue Statement Example Let us do a sample program using continue statements, I will introduce

More information

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks

ECS 253 / MAE 253, Lecture 8 April 21, Web search and decentralized search on small-world networks ECS 253 / MAE 253, Lecture 8 April 21, 2016 Web search and decentralized search on small-world networks Search for information Assume some resource of interest is stored at the vertices of a network: Web

More information

Shortest path problems

Shortest path problems Next... Shortest path problems Single-source shortest paths in weighted graphs Shortest-Path Problems Properties of Shortest Paths, Relaxation Dijkstra s Algorithm Bellman-Ford Algorithm Shortest-Paths

More information

Quaternions and Exponentials

Quaternions and Exponentials Quaternions and Exponentials Michael Kazhdan (601.457/657) HB A.6 FvDFH 21.1.3 Announcements OpenGL review II: Today at 9:00pm, Malone 228 This week's graphics reading seminar: Today 2:00-3:00pm, my office

More information

Solutions to Problem 1 of Homework 3 (10 (+6) Points)

Solutions to Problem 1 of Homework 3 (10 (+6) Points) Solutions to Problem 1 of Homework 3 (10 (+6) Points) Sometimes, computing extra information can lead to more efficient divide-and-conquer algorithms. As an example, we will improve on the solution to

More information

Peer-to-Peer Networks 15 Self-Organization. Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg

Peer-to-Peer Networks 15 Self-Organization. Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg Peer-to-Peer Networks 15 Self-Organization Christian Schindelhauer Technical Faculty Computer-Networks and Telematics University of Freiburg Gnutella Connecting Protokoll - Ping Ping participants query

More information

Networks in economics and finance. Lecture 1 - Measuring networks

Networks in economics and finance. Lecture 1 - Measuring networks Networks in economics and finance Lecture 1 - Measuring networks What are networks and why study them? A network is a set of items (nodes) connected by edges or links. Units (nodes) Individuals Firms Banks

More information

Erdös-Rényi Graphs, Part 2

Erdös-Rényi Graphs, Part 2 Graphs and Networks Lecture 3 Erdös-Rényi Graphs, Part 2 Daniel A. Spielman September 5, 2013 3.1 Disclaimer These notes are not necessarily an accurate representation of what happened in class. They are

More information

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University

CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University CS224W: Social and Information Network Analysis Jure Leskovec, Stanford University http://cs224w.stanford.edu 10/4/2011 Jure Leskovec, Stanford CS224W: Social and Information Network Analysis, http://cs224w.stanford.edu

More information

Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression

Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression Chapter 5 Dynamic Programming Exercise 5.1 Write an algorithm to find the maximum value that can be obtained by an appropriate placement of parentheses in the expression x 1 /x /x 3 /... x n 1 /x n, where

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

Analytical reasoning task reveals limits of social learning in networks

Analytical reasoning task reveals limits of social learning in networks Electronic Supplementary Material for: Analytical reasoning task reveals limits of social learning in networks Iyad Rahwan, Dmytro Krasnoshtan, Azim Shariff, Jean-François Bonnefon A Experimental Interface

More information

Solving problems on graph algorithms

Solving problems on graph algorithms Solving problems on graph algorithms Workshop Organized by: ACM Unit, Indian Statistical Institute, Kolkata. Tutorial-3 Date: 06.07.2017 Let G = (V, E) be an undirected graph. For a vertex v V, G {v} is

More information

1 Random Graph Models for Networks

1 Random Graph Models for Networks Lecture Notes: Social Networks: Models, Algorithms, and Applications Lecture : Jan 6, 0 Scribes: Geoffrey Fairchild and Jason Fries Random Graph Models for Networks. Graph Modeling A random graph is a

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

HomeWork 4 Hints {Your Name} deadline

HomeWork 4 Hints {Your Name} deadline HomeWork 4 Hints {Your Name} deadline - 01.06.2015 Contents Power law. Descriptive network analysis 1 Problem 1.................................................. 1 Problem 2..................................................

More information

Parallel development II 11/5/18

Parallel development II 11/5/18 Parallel development II 11/5/18 Administrivia HW 6 due tonight (heat diffusion in MPI) Final project Worth ~2 homeworks (35 points) and should have this scope Work individually or in teams of two (team

More information

arxiv: v3 [cs.ni] 3 May 2017

arxiv: v3 [cs.ni] 3 May 2017 Modeling Request Patterns in VoD Services with Recommendation Systems Samarth Gupta and Sharayu Moharir arxiv:1609.02391v3 [cs.ni] 3 May 2017 Department of Electrical Engineering, Indian Institute of Technology

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

UNC Charlotte 2010 Comprehensive

UNC Charlotte 2010 Comprehensive 00 Comprehensive March 8, 00. A cubic equation x 4x x + a = 0 has three roots, x, x, x. If x = x + x, what is a? (A) 4 (B) 8 (C) 0 (D) (E) 6. For which value of a is the polynomial P (x) = x 000 +ax+9

More information

UNC Charlotte 2004 Comprehensive

UNC Charlotte 2004 Comprehensive March 8, 2004 1 Which of the following lines has a slope that is less than the sum of its x- and y- intercepts? (A) y = 2x + 1 (B) y = 3x/2 1 (C) y = 4x 1 (D) y = 4x + 16/3 (E) y = 3x 2 Suppose a and b

More information

Algorithmic and Economic Aspects of Networks. Nicole Immorlica

Algorithmic and Economic Aspects of Networks. Nicole Immorlica Algorithmic and Economic Aspects of Networks Nicole Immorlica Syllabus 1. Jan. 8 th (today): Graph theory, network structure 2. Jan. 15 th : Random graphs, probabilistic network formation 3. Jan. 20 th

More information

A More Realistic Energy Dissipation Model for Sensor Nodes

A More Realistic Energy Dissipation Model for Sensor Nodes A More Realistic Energy Dissipation Model for Sensor Nodes Raquel A.F. Mini 2, Antonio A.F. Loureiro, Badri Nath 3 Department of Computer Science Federal University of Minas Gerais Belo Horizonte, MG,

More information

Bipartite graphs unique perfect matching.

Bipartite graphs unique perfect matching. Generation of graphs Bipartite graphs unique perfect matching. In this section, we assume G = (V, E) bipartite connected graph. The following theorem states that if G has unique perfect matching, then

More information

UCSD CSE 101 MIDTERM 1, Winter 2008

UCSD CSE 101 MIDTERM 1, Winter 2008 UCSD CSE 101 MIDTERM 1, Winter 2008 Andrew B. Kahng / Evan Ettinger Feb 1, 2008 Name: }{{} Student ID: }{{} Read all of the following information before starting the exam. This test has 3 problems totaling

More information

Graph Algorithms (part 3 of CSC 282),

Graph Algorithms (part 3 of CSC 282), Graph Algorithms (part of CSC 8), http://www.cs.rochester.edu/~stefanko/teaching/10cs8 1 Schedule Homework is due Thursday, Oct 1. The QUIZ will be on Tuesday, Oct. 6. List of algorithms covered in the

More information

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling

PBW 654 Applied Statistics - I Urban Operations Research. Unit 3. Network Modelling PBW 54 Applied Statistics - I Urban Operations Research Unit 3 Network Modelling Background So far, we treated urban space as a continuum, where an entity could travel from any point to any other point

More information

COMPRESSED DETECTION VIA MANIFOLD LEARNING. Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park. { zzon, khliu, jaeypark

COMPRESSED DETECTION VIA MANIFOLD LEARNING. Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park.   { zzon, khliu, jaeypark COMPRESSED DETECTION VIA MANIFOLD LEARNING Hyun Jeong Cho, Kuang-Hung Liu, Jae Young Park Email : { zzon, khliu, jaeypark } @umich.edu 1. INTRODUCTION In many imaging applications such as Computed Tomography

More information

Workload Characterization Techniques

Workload Characterization Techniques Workload Characterization Techniques Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse567-08/

More information

Ma/CS 6a Class 27: Shortest Paths

Ma/CS 6a Class 27: Shortest Paths // Ma/CS a Class 7: Shortest Paths By Adam Sheffer Naïve Path Planning Problem. We are given a map with cities and noncrossing roads between pairs of cities. Describe an algorithm for finding a path between

More information

Final. Name: TA: Section Time: Course Login: Person on Left: Person on Right: U.C. Berkeley CS170 : Algorithms, Fall 2013

Final. Name: TA: Section Time: Course Login: Person on Left: Person on Right: U.C. Berkeley CS170 : Algorithms, Fall 2013 U.C. Berkeley CS170 : Algorithms, Fall 2013 Final Professor: Satish Rao December 16, 2013 Name: Final TA: Section Time: Course Login: Person on Left: Person on Right: Answer all questions. Read them carefully

More information

EN1610 Image Understanding Lab # 3: Edges

EN1610 Image Understanding Lab # 3: Edges EN1610 Image Understanding Lab # 3: Edges The goal of this fourth lab is to ˆ Understanding what are edges, and different ways to detect them ˆ Understand different types of edge detectors - intensity,

More information

Modularity CMSC 858L

Modularity CMSC 858L Modularity CMSC 858L Module-detection for Function Prediction Biological networks generally modular (Hartwell+, 1999) We can try to find the modules within a network. Once we find modules, we can look

More information

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks

Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks Distributed Detection in Sensor Networks: Connectivity Graph and Small World Networks SaeedA.AldosariandJoséM.F.Moura Electrical and Computer Engineering Department Carnegie Mellon University 5000 Forbes

More information