Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test

Size: px
Start display at page:

Download "Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test"

Transcription

1 Boise State Math 275 (Ultman) Worksheet 2.7: Critical Points, Local Extrema, and the Second Derivative Test From the Toolbox (what you need from previous classes) Algebra: Solving systems of two equations in two variables. Calc I: Critical points, local extrema (maxima and minima) and the second derivative test for functions of a single variable (from Calc I). Calc III: Computing and evaluating first and second partial derivatives and gradients of functions of two variables. Familiarity with level curves and contour maps. Goals In this worksheet, you will: Find critical points of functions of two variables. Use contour maps to determine whether a point is a local maximum, local minimum, or saddle point. Use the second derivative test to determine whether critical points are local minima, local maxima, or saddle points.

2 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test1 Definitions Suppose f (x, y) is a function of two variables, and (a, b) is a point in the domain of f. Local Maximum, Local Minimum (Local Extrema): f (a, b) is a local maximum if: f (a, b) f (x, y) for all points (x, y) near the point (a, b). f (a, b) is a local minimum if: f (a, b) f (x, y) for all points (x, y) near the point (a, b). Saddle Point: (a, b) is a saddle point if: f (a, b) = 0 f (a, b) is neither a local maximum nor a local minimum. (No matter how close you get to (a, b), there are some points (x, y) such that f (a, b) > f (x, y), and others such that f (a, b) < f (x, y).) A saddle point is a two-dimensional version of an inflection point. Some additional terminology: Maxima is the plural form of maximum. Minima is the plural form of minimum. Extremum means extreme value that is, either a maximum or a minimum. The plural form is extrema.

3 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2nd Derivative Test2 Model 1: Using Graphs and Contour Maps to Find Local Maxima, Local Minima, and Saddle Points Example 1A: f (x, y ) = (x 2 + y 2 ) Example 1B: g(x, y ) = x 2 + y 2 Example 1C: h(x, y ) = x 2 y 2 Critical Thinking Questions In this section, you will examine the behavior of contour lines near points on which a function takes on local maximum and minimum values, and saddle points. (Q1) Look at the graph of f (x, y ) in Example 1A. At the origin, this function has a (circle one): local minimum local maximum saddle point (Q2) Look at the graph of g(x, y ) in Example 1B. At the origin, this function has a (circle one): local minimum local maximum saddle point (Q3) Look at the graph of h(x, y ) in Example 1C. At the origin, this function has a (circle one): local minimum local maximum saddle point (Q4) Describe the contour lines in Examples 1A and 1B, where there are local extrema (maximum and minimum values). How is the behavior of these contour lines near the origin different from the contour lines in Example 1C, where there is a saddle point?

4 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test3 (Q5) On the contour map to the right, identify and label potential saddle points, and any points at which local extrema (maxima or minima) occur. Estimate the coordinates of these points. (You will find the exact points later in (Q14).) (Q6) On the contour map above, you should have identified one saddle point and one point at which an extremum occurs. Can you tell whether this extremum is a local maximum or a local minimum? If not, what additional information would you need in order to make this determination? ( Q7) The contour map used in questions (Q5,6) is generated by the function T (x, y) = x 3 +y 3 4xy. Given this additional information: (a) List at least three ways you can use this additional information to determine whether the extremum from (Q5) is a local maximum or local minimum. (b) Use one of the methods above to classify the extremum as a local minimum or local maximum. Which is it? ( Q8) Use a graphing app to graph the function T (x, y) = x 3 + y 3 4xy, and compare this graph to the contour map in (Q5). Suppose this function represents the temperature at each point (x, y) in the plane. Describe how the temperature changes for an ant as it moves away from the local minimum in different directions, and away from the saddle point in different directions.

5 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test4 Model 2: Critical Points and Local Extrema & Saddle Points Example 2A: f (x, y) = 3 x 2 4 y 2 f (x, y) = x/2, 2y This function has a tangent plane when (x, y) = (0, 0). Example 2B: g(x, y) = x 2 + y 2 g(x, y) = x x 2 + y 2, y x 2 + y 2 This function does not have a tangent plane when (x, y) = (0, 0). Example 2C: h(x, y) = y 2 x 2 h(x, y) = 2x, 2y This function has a tangent plane when (x, y) = (0, 0). Critical Thinking Questions In this section, you will examine the connections between critical points, tangent planes, and local maxima, local minima, and saddle points. Definition: A function f (x, y) has a critical point at (a, b) if either: f (a, b) = 0 or f (a, b) does not exist f (a, b) = 0 when both partial derivatives are equal to zero: f x (a, b) = 0 and f y (a, b) = 0 f (a, b) does not exist when one (or both) partial derivatives do not exist: f x (a, b) does not exist and/or f y (a, b) does not exist

6 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test5 (Q9) All three of the functions in Model 2 have a critical point at the same location. (a) What is the critical point for all three functions? (a, b) = (b) Circle the type of critical point each function has, and indicate the behavior of the tangent plane at the critical point. f (x, y ) (Example 2A) type of critical point: f (0, 0) = 0 / f (0, 0) d.n.e. tangent plane at critical point: is parallel to the xy-plane / does not exist g(x, y ) (Example 2B) type of critical point: g(0, 0) = 0 / g(0, 0) d.n.e. tangent plane at critical point: is parallel to the xy-plane / does not exist h(x, y ) (Example 2C) type of critical point: h(0, 0) = 0 / h(0, 0) d.n.e. tangent plane at critical point: is parallel to the xy-plane / does not exist (Q10) Each of the functions in Model 2 has either a local maximum, a local minimum, or a saddle point when (x, y) = (0, 0): f (x, y ) (Example 2A) has a (circle one): local minimum local maximum saddle point g(x, y ) (Example 2B) has a (circle one): local minimum local maximum saddle point h(x, y ) (Example 2C) has a (circle one): local minimum local maximum saddle point (Q11) Based on Model 2 and questions (Q9) and (Q10), indicate whether you agree or disagree with the following statement: Local maxima and local minima occur at critical points. If you disagree, modify the statement to make it true. (Q12) Based on Model 2 and questions (Q9) and (Q10), indicate whether you agree or disagree with the following statement: If (a, b) is a critical point of a function F (x, y), then F (a, b) will always be either a local maximum or a local minimum. If you disagree, modify the statement to make it true.

7 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test6 (Q13) In Model 2, the functions in Examples A and C both have critical points that occur when f = 0. At these critical points, one has an extreme value (in this case, a local maximum), and the other has a saddle point. In these two examples, you can see that close to a local maximum (or minimum), the graph of the function is on one side of / passes through the tangent plane. On the other hand, close to a saddle point the graph of the function is on one side of / passes through the tangent plane. (This idea of comparing the behavior of the graph of a function near its tangent plane is used to define the curvature of a surface.) ( Q14) Go back to the function T (x, y) = x 3 + y 3 4xy from (Q5-8). Compute its gradient, and find the coordinates of the saddle point and the local minimum by solving the equation T (x, y) = 0.. ( Q15) Construct a function f (x, y) that has a critical point at the point (1, 2).

8 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test7 Model 3: The Second Derivative Test The second derivative test is a tool for determining whether a critical point (a, b) of a function f (x, y) corresponds to a local maximum or a local minimum, or whether it is a saddle point. Conditions: To use the second derivative test, both of the following need to be true: i. f (a, b) = 0 ii. The first and second partial derivatives of f (x, y) must exist and be continuous near (a, b). The Test Function : The function used to test critical points is: D(x, y) = f xx (x, y)f yy (x, y) [ ] 2 f xy (x, y) or, in Leibniz notation: [ ] D(x, y) = 2 f 2 f 2 2 x 2 y f 2 y x How the Test Works: Step 1: Find all critical points (a, b) where f (a, b) = 0. Step 2: Compute the second partial derivatives of f, and set up the test function D(x, y). Step 3: Evaluate the test function D(x, y) at the critical points you found in Step 1. If D(a, b) > 0 and f xx (a, b) < 0, then f (a, b) is a local maximum. If D(a, b) > 0 and f xx (a, b) > 0, then f (a, b) is a local minimum. If D(a, b) < 0, then f has a saddle point at (a, b). Note: If D(a, b) = 0, the test is inconclusive. You need to find another way to determine whether f (a, b) is a local maximum, minimum, or saddle point.

9 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test8 Critical Thinking Questions In this section, you will use the second derivative test to determine whether critical points correspond to local maxima or local minima, or whether they are saddle points. (Q16) If you completed (Q14), you should have found that the critical points of the temperature function T (x, y) = x 3 + y 3 4xy from (Q5-8) were (0, 0) and (4/3, 4/3). Use the second derivative test from Model 3 to show that (0, 0) is a saddle point, and (4/3, 4/3) is a local minimum of T. (Q17) For the function f (x, y) = x 2 + 2xy + y 3 : (a) Find the two critical points of f by solving the equation f (x, y) = 0. (b) Run the second derivative test on the points you found in part (a). Which point(s) (if any) correspond to local maxima, which (if any) correspond to local minima, and which (if any) are saddle points? Find the values for any local maxima or minima.

10 Boise State Math 275 (Ultman) Worksheet 2.7: Local Extrema, Critical Points, 2 nd Derivative Test9 ( Q18) In (Q9) and (Q10), you saw that the function g(x, y) = x 2 + y 2 has a critical point at (0, 0), corresponding to a local minimum (determined by looking at the graph of the function in Model 2, Example 2B). Using the second partial derivatives g xx, g yy, and g xy, eplain why you cannot use the second derivative test to show that this function has a local minimum at the origin. Summary For a function of two variables, f (x, y): Critical points occur when f = 0 (horizontal tangent plane), or when one or both of the partial derivatives does not exist (no tangent plane). Local maxima and minima occur only at critical points. Not every critical point corresponds to a local maximum or minimum. Saddle points can also occur at critical points. (Saddle points are two-dimensional versions of inflection points.) For a critical point (a, b) where f (a, b) = 0 and D(a, b) 0, the second derivative test will determine whether there is a local maximum, local minimum, or saddle point at P.

Worksheet 2.2: Partial Derivatives

Worksheet 2.2: Partial Derivatives Boise State Math 275 (Ultman) Worksheet 2.2: Partial Derivatives From the Toolbox (what you need from previous classes) Be familiar with the definition of a derivative as the slope of a tangent line (the

More information

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other.

Daily WeBWorK, #1. This means the two planes normal vectors must be multiples of each other. Daily WeBWorK, #1 Consider the ellipsoid x 2 + 3y 2 + z 2 = 11. Find all the points where the tangent plane to this ellipsoid is parallel to the plane 2x + 3y + 2z = 0. In order for the plane tangent to

More information

Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables)

Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables) Boise State Math 275 (Ultman) Worksheet 2.1: Introduction to Multivariate Functions (Functions of Two or More Independent Variables) From the Toolbox (what you need from previous classes) Know the meaning

More information

Section 4: Extreme Values & Lagrange Multipliers.

Section 4: Extreme Values & Lagrange Multipliers. Section 4: Extreme Values & Lagrange Multipliers. Compiled by Chris Tisdell S1: Motivation S2: What are local maxima & minima? S3: What is a critical point? S4: Second derivative test S5: Maxima and Minima

More information

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers

3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers 3.3 Optimizing Functions of Several Variables 3.4 Lagrange Multipliers Prof. Tesler Math 20C Fall 2018 Prof. Tesler 3.3 3.4 Optimization Math 20C / Fall 2018 1 / 56 Optimizing y = f (x) In Math 20A, we

More information

LECTURE 18 - OPTIMIZATION

LECTURE 18 - OPTIMIZATION LECTURE 18 - OPTIMIZATION CHRIS JOHNSON Abstract. In this lecture we ll describe extend the optimization techniques you learned in your first semester calculus class to optimize functions of multiple variables.

More information

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002

Math 213 Calculus III Practice Exam 2 Solutions Fall 2002 Math 13 Calculus III Practice Exam Solutions Fall 00 1. Let g(x, y, z) = e (x+y) + z (x + y). (a) What is the instantaneous rate of change of g at the point (,, 1) in the direction of the origin? We want

More information

Section 4.3: How Derivatives Affect the Shape of the Graph

Section 4.3: How Derivatives Affect the Shape of the Graph Section 4.3: How Derivatives Affect the Shape of the Graph What does the first derivative of a function tell you about the function? Where on the graph below is f x > 0? Where on the graph below is f x

More information

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is

f xx (x, y) = 6 + 6x f xy (x, y) = 0 f yy (x, y) = y In general, the quantity that we re interested in is 1. Let f(x, y) = 5 + 3x 2 + 3y 2 + 2y 3 + x 3. (a) Final all critical points of f. (b) Use the second derivatives test to classify the critical points you found in (a) as a local maximum, local minimum,

More information

Worksheet 3.1: Introduction to Double Integrals

Worksheet 3.1: Introduction to Double Integrals Boise State Math 75 (Ultman) Worksheet.: Introduction to ouble Integrals Prerequisites In order to learn the new skills and ideas presented in this worksheet, you must: Be able to integrate functions of

More information

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ

x 6 + λ 2 x 6 = for the curve y = 1 2 x3 gives f(1, 1 2 ) = λ actually has another solution besides λ = 1 2 = However, the equation λ Math 0 Prelim I Solutions Spring 010 1. Let f(x, y) = x3 y for (x, y) (0, 0). x 6 + y (4 pts) (a) Show that the cubic curves y = x 3 are level curves of the function f. Solution. Substituting y = x 3 in

More information

Tangent Planes/Critical Points

Tangent Planes/Critical Points Tangent Planes/Critical Points Christopher Croke University of Pennsylvania Math 115 UPenn, Fall 2011 Problem: Find the tangent line to the curve of intersection of the surfaces xyz = 1 and x 2 + 2y 2

More information

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions

Increasing and Decreasing Functions. MATH 1003 Calculus and Linear Algebra (Lecture 20) Increasing and Decreasing Functions Increasing and Decreasing Functions MATH 1003 Calculus and Linear Algebra (Lecture 20) Maosheng Xiong Department of Mathematics, HKUST Suppose y = f (x). 1. f (x) is increasing on an interval a < x < b,

More information

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V

Worksheet 3.4: Triple Integrals in Cylindrical Coordinates. Warm-Up: Cylindrical Volume Element d V Boise State Math 275 (Ultman) Worksheet 3.4: Triple Integrals in Cylindrical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Chapter 4.1 & 4.2 (Part 1) Practice Problems

Chapter 4.1 & 4.2 (Part 1) Practice Problems Chapter 4. & 4. Part Practice Problems EXPECTED SKILLS: Understand how the signs of the first and second derivatives of a function are related to the behavior of the function. Know how to use the first

More information

Constrained Optimization and Lagrange Multipliers

Constrained Optimization and Lagrange Multipliers Constrained Optimization and Lagrange Multipliers MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Constrained Optimization In the previous section we found the local or absolute

More information

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z.

6. Find the equation of the plane that passes through the point (-1,2,1) and contains the line x = y = z. Week 1 Worksheet Sections from Thomas 13 th edition: 12.4, 12.5, 12.6, 13.1 1. A plane is a set of points that satisfies an equation of the form c 1 x + c 2 y + c 3 z = c 4. (a) Find any three distinct

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 Completed 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) x 3 5x 2 4x + 20.

More information

Worksheet 3.2: Double Integrals in Polar Coordinates

Worksheet 3.2: Double Integrals in Polar Coordinates Boise State Math 75 (Ultman) Worksheet 3.: ouble Integrals in Polar Coordinates From the Toolbox (what you need from previous classes): Trig/Calc II: Convert equations in x and y into r and θ, using the

More information

Use Derivatives to Sketch the Graph of a Polynomial Function.

Use Derivatives to Sketch the Graph of a Polynomial Function. Applications of Derivatives Curve Sketching (using derivatives): A) Polynomial Functions B) Rational Functions Lesson 5.2 Use Derivatives to Sketch the Graph of a Polynomial Function. Idea: 1) Identify

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra.

Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

Chapter 5 Partial Differentiation

Chapter 5 Partial Differentiation Chapter 5 Partial Differentiation For functions of one variable, y = f (x), the rate of change of the dependent variable can dy be found unambiguously by differentiation: f x. In this chapter we explore

More information

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution

13.1. Functions of Several Variables. Introduction to Functions of Several Variables. Functions of Several Variables. Objectives. Example 1 Solution 13 Functions of Several Variables 13.1 Introduction to Functions of Several Variables Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Objectives Understand

More information

MATH2111 Higher Several Variable Calculus Lagrange Multipliers

MATH2111 Higher Several Variable Calculus Lagrange Multipliers MATH2111 Higher Several Variable Calculus Lagrange Multipliers Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester 1, 2016 [updated: February 29, 2016] JM Kress

More information

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided.

Math 213 Exam 2. Each question is followed by a space to write your answer. Please write your answer neatly in the space provided. Math 213 Exam 2 Name: Section: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may be used other than a onepage cheat

More information

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections

REVIEW I MATH 254 Calculus IV. Exam I (Friday, April 29) will cover sections REVIEW I MATH 254 Calculus IV Exam I (Friday, April 29 will cover sections 14.1-8. 1. Functions of multivariables The definition of multivariable functions is similar to that of functions of one variable.

More information

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2.

Math Exam 2a. 1) Take the derivatives of the following. DO NOT SIMPLIFY! 2 c) y = tan(sec2 x) ) b) y= , for x 2. Math 111 - Exam 2a 1) Take the derivatives of the following. DO NOT SIMPLIFY! a) y = ( + 1 2 x ) (sin(2x) - x- x 1 ) b) y= 2 x + 1 c) y = tan(sec2 x) 2) Find the following derivatives a) Find dy given

More information

MEI Desmos Tasks for AS Pure

MEI Desmos Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x² 4x + 1 2. Add a line, e.g. y = x 3 3. Select the points of intersection of the line and the curve. What

More information

Pre-Calculus Notes: Chapter 3 The Nature of Graphs

Pre-Calculus Notes: Chapter 3 The Nature of Graphs Section Families of Graphs Name: Pre-Calculus Notes: Chapter 3 The Nature of Graphs Family of graphs Parent graph A group of graphs that share similar properties The most basic graph that s transformed

More information

4.3 Finding Local Extreme Values: First and Second Derivatives

4.3 Finding Local Extreme Values: First and Second Derivatives Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 4.3 Finding Local Extreme Values: First and Second Derivatives Recall that a function f(x) is said to be increasing (respectively decreasing)

More information

we wish to minimize this function; to make life easier, we may minimize

we wish to minimize this function; to make life easier, we may minimize Optimization and Lagrange Multipliers We studied single variable optimization problems in Calculus 1; given a function f(x), we found the extremes of f relative to some constraint. Our ability to find

More information

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name:

11/1/2017 Second Hourly Practice 11 Math 21a, Fall Name: 11/1/217 Second Hourly Practice 11 Math 21a, Fall 217 Name: MWF 9 Jameel Al-Aidroos MWF 9 Dennis Tseng MWF 1 Yu-Wei Fan MWF 1 Koji Shimizu MWF 11 Oliver Knill MWF 11 Chenglong Yu MWF 12 Stepan Paul TTH

More information

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables)

Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) BSU Math 275 Notes Topic 3.1: Introduction to Multivariate Functions (Functions of Two or More Variables) Textbook Section: 14.1 From the Toolbox (what you need from previous classes): Know the meaning

More information

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points.

MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. MATH. 2153, Spring 16, MWF 12:40 p.m. QUIZ 1 January 25, 2016 PRINT NAME A. Derdzinski Show all work. No calculators. The problem is worth 10 points. 1. Evaluate the area A of the triangle with the vertices

More information

Multivariate Calculus Review Problems for Examination Two

Multivariate Calculus Review Problems for Examination Two Multivariate Calculus Review Problems for Examination Two Note: Exam Two is on Thursday, February 28, class time. The coverage is multivariate differential calculus and double integration: sections 13.3,

More information

NAME: Section # SSN: X X X X

NAME: Section # SSN: X X X X Math 155 FINAL EXAM A May 5, 2003 NAME: Section # SSN: X X X X Question Grade 1 5 (out of 25) 6 10 (out of 25) 11 (out of 20) 12 (out of 20) 13 (out of 10) 14 (out of 10) 15 (out of 16) 16 (out of 24)

More information

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points

Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Lesson 4: Gradient Vectors, Level Curves, Maximums/Minimums/Saddle Points Example 1: The Gradient Vector 2 df Let f(x) x. Then 2x. This can be thought of as a vector that dx tells you the direction of

More information

MEI GeoGebra Tasks for AS Pure

MEI GeoGebra Tasks for AS Pure Task 1: Coordinate Geometry Intersection of a line and a curve 1. Add a quadratic curve, e.g. y = x 2 4x + 1 2. Add a line, e.g. y = x 3 3. Use the Intersect tool to find the points of intersection of

More information

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties

SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties SECTION 1.2 (e-book 2.3) Functions: Graphs & Properties Definition (Graph Form): A function f can be defined by a graph in the xy-plane. In this case the output can be obtained by drawing vertical line

More information

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;...

. Tutorial Class V 3-10/10/2012 First Order Partial Derivatives;... Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; Tutorial Class V 3-10/10/2012 1 First Order Partial Derivatives; 2 Application of Gradient; Tutorial Class V 3-10/10/2012 1 First Order

More information

14.5 Directional Derivatives and the Gradient Vector

14.5 Directional Derivatives and the Gradient Vector 14.5 Directional Derivatives and the Gradient Vector 1. Directional Derivatives. Recall z = f (x, y) and the partial derivatives f x and f y are defined as f (x 0 + h, y 0 ) f (x 0, y 0 ) f x (x 0, y 0

More information

Math 113 Calculus III Final Exam Practice Problems Spring 2003

Math 113 Calculus III Final Exam Practice Problems Spring 2003 Math 113 Calculus III Final Exam Practice Problems Spring 23 1. Let g(x, y, z) = 2x 2 + y 2 + 4z 2. (a) Describe the shapes of the level surfaces of g. (b) In three different graphs, sketch the three cross

More information

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent

Curves, Tangent Planes, and Differentials ( ) Feb. 26, 2012 (Sun) Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Lecture 9. Partial Derivatives: Signs on Level Curves, Tangent Planes, and Differentials ( 11.3-11.4) Feb. 26, 2012 (Sun) Signs of Partial Derivatives on Level Curves Level curves are shown for a function

More information

AB Calculus: Extreme Values of a Function

AB Calculus: Extreme Values of a Function AB Calculus: Extreme Values of a Function Name: Extrema (plural for extremum) are the maximum and minimum values of a function. In the past, you have used your calculator to calculate the maximum and minimum

More information

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009

Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Practice problems from old exams for math 233 William H. Meeks III December 21, 2009 Disclaimer: Your instructor covers far more materials that we can possibly fit into a four/five questions exams. These

More information

4.3, Math 1410 Name: And now for something completely different... Well, not really.

4.3, Math 1410 Name: And now for something completely different... Well, not really. 4.3, Math 1410 Name: And now for something completely different... Well, not really. How derivatives affect the shape of a graph. Please allow me to offer some explanation as to why the first couple parts

More information

(c) 0 (d) (a) 27 (b) (e) x 2 3x2

(c) 0 (d) (a) 27 (b) (e) x 2 3x2 1. Sarah the architect is designing a modern building. The base of the building is the region in the xy-plane bounded by x =, y =, and y = 3 x. The building itself has a height bounded between z = and

More information

Critical and Inflection Points

Critical and Inflection Points Critical and Inflection Points 1 Finding and Classifying Critical Points A critical point is a point on the graph where the tangent slope is horizontal, (0) or vertical, ( ). or not defined like the minimum

More information

Optimizations and Lagrange Multiplier Method

Optimizations and Lagrange Multiplier Method Introduction Applications Goal and Objectives Reflection Questions Once an objective of any real world application is well specified as a function of its control variables, which may subject to a certain

More information

Mat 241 Homework Set 7 Due Professor David Schultz

Mat 241 Homework Set 7 Due Professor David Schultz Mat 41 Homework Set 7 Due Professor David Schultz Directions: Show all algebraic steps neatly and concisely using proper mathematical symbolism When graphs and technology are to be implemented, do so appropriately

More information

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011

7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 7/28/2011 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2011 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed,

More information

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives

Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives. Partial Derivatives In general, if f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say y = b, where b is a constant. By the definition of a derivative, we have Then we are really

More information

Math 241, Final Exam. 12/11/12.

Math 241, Final Exam. 12/11/12. Math, Final Exam. //. No notes, calculator, or text. There are points total. Partial credit may be given. ircle or otherwise clearly identify your final answer. Name:. (5 points): Equation of a line. Find

More information

To find the intervals on which a given polynomial function is increasing/decreasing using GGB:

To find the intervals on which a given polynomial function is increasing/decreasing using GGB: To find the intervals on which a given polynomial function is increasing/decreasing using GGB: 1. Use GGB to graph the derivative of the function. = ; 2. Find any critical numbers. (Recall that the critical

More information

Direction Fields; Euler s Method

Direction Fields; Euler s Method Direction Fields; Euler s Method It frequently happens that we cannot solve first order systems dy (, ) dx = f xy or corresponding initial value problems in terms of formulas. Remarkably, however, this

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 4 Maxima and Minima o Functions o Several Variables We learned to ind the maxima and minima o a unction o a single variable earlier in the course. We had a second derivative test to determine

More information

Gradient and Directional Derivatives

Gradient and Directional Derivatives Gradient and Directional Derivatives MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Background Given z = f (x, y) we understand that f : gives the rate of change of z in

More information

Math 1314 Lesson 2. Continuing with the introduction to GGB

Math 1314 Lesson 2. Continuing with the introduction to GGB Math 1314 Lesson 2 Continuing with the introduction to GGB 2 Example 10: The path of a small rocket is modeled by the function ht ( ) = 16t + 128t+ 12 where initial velocity is 128 feet per section and

More information

Tangent Planes and Linear Approximations

Tangent Planes and Linear Approximations February 21, 2007 Tangent Planes Tangent Planes Let S be a surface with equation z = f (x, y). Tangent Planes Let S be a surface with equation z = f (x, y). Let P(x 0, y 0, z 0 ) be a point on S. Tangent

More information

ID: Find all the local maxima, local minima, and saddle points of the function.

ID: Find all the local maxima, local minima, and saddle points of the function. 1. Find all the local maxima, local minima, and saddle points of the function. f(x,y) = x + xy + y + 5x 5y + 4 A. A local maximum occurs at. The local maximum value(s) is/are. B. There are no local maxima.

More information

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS

a) y = x 3 + 3x 2 2 b) = UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS UNIT 4 CURVE SKETCHING 4.1 INCREASING AND DECREASING FUNCTIONS We read graphs as we read sentences: left to right. Plainly speaking, as we scan the function from left to right, the function is said to

More information

Week 5: Geometry and Applications

Week 5: Geometry and Applications Week 5: Geometry and Applications Introduction Now that we have some tools from differentiation, we can study geometry, motion, and few other issues associated with functions of several variables. Much

More information

Math 1314 Lesson 12 Curve Analysis (Polynomials)

Math 1314 Lesson 12 Curve Analysis (Polynomials) Math 1314 Lesson 12 Curve Analysis (Polynomials) This lesson will cover analyzing polynomial functions using GeoGebra. Suppose your company embarked on a new marketing campaign and was able to track sales

More information

Section MWF 12 1pm SR 117

Section MWF 12 1pm SR 117 Math 1431 Section 1485 MWF 1 1pm SR 117 Dr. Melahat Almus almus@math.uh.edu http://www.math.uh.edu/~almus COURSE WEBSITE: http://www.math.uh.edu/~almus/1431_sp16.html Visit my website regularly for announcements

More information

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ)

Worksheet 3.5: Triple Integrals in Spherical Coordinates. Warm-Up: Spherical Coordinates (ρ, φ, θ) Boise State Math 275 (Ultman) Worksheet 3.5: Triple Integrals in Spherical Coordinates From the Toolbox (what you need from previous classes) Know what the volume element dv represents. Be able to find

More information

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages.

Math 126 Final Examination SPR CHECK that your exam contains 8 problems on 8 pages. Math 126 Final Examination SPR 2018 Your Name Your Signature Student ID # Quiz Section Professor s Name TA s Name CHECK that your exam contains 8 problems on 8 pages. This exam is closed book. You may

More information

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4

Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations. Textbook: Section 14.4 Topic 2.3: Tangent Planes, Differentiability, and Linear Approximations Textbook: Section 14.4 Warm-Up: Graph the Cone & the Paraboloid paraboloid f (x, y) = x 2 + y 2 cone g(x, y) = x 2 + y 2 Do you notice

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables

302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES. 4. Function of several variables, their domain. 6. Limit of a function of several variables 302 CHAPTER 3. FUNCTIONS OF SEVERAL VARIABLES 3.8 Chapter Review 3.8.1 Concepts to Know You should have an understanding of, and be able to explain the concepts listed below. 1. Boundary and interior points

More information

Math Lesson 13 Analyzing Other Types of Functions 1

Math Lesson 13 Analyzing Other Types of Functions 1 Math 1314 Lesson 13 Analyzing Other Types of Functions Asymptotes We will need to identify any vertical or horizontal asymptotes of the graph of a function. A vertical asymptote is a vertical line x= a

More information

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following:

ReviewUsingDerivatives.nb 1. As we have seen, the connection between derivatives of a function and the function itself is given by the following: ReviewUsingDerivatives.nb Calculus Review: Using First and Second Derivatives As we have seen, the connection between derivatives of a function and the function itself is given by the following: à If f

More information

MATH 142 Business Mathematics II

MATH 142 Business Mathematics II MATH 142 Business Mathematics II Summer, 2016, WEEK 5 JoungDong Kim Week 5: 8.1, 8.2, 8.3 Chapter 8 Functions of Several Variables Section 8.1 Functions of several Variables Definition. An equation of

More information

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3)

Polynomial Functions Graphing Investigation Unit 3 Part B Day 1. Graph 1: y = (x 1) Graph 2: y = (x 1)(x + 2) Graph 3: y =(x 1)(x + 2)(x 3) Part I: Polynomial Functions when a = 1 Directions: Polynomial Functions Graphing Investigation Unit 3 Part B Day 1 1. For each set of factors, graph the zeros first, then use your calculator to determine

More information

The following information is for reviewing the material since Exam 3:

The following information is for reviewing the material since Exam 3: Outcomes List for Math 121 Calculus I Fall 2010-2011 General Information: The purpose of this Outcomes List is to give you a concrete summary of the material you should know, and the skills you should

More information

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums.

22. LECTURE 22. I can define critical points. I know the difference between local and absolute minimums/maximums. . LECTURE Objectives I can define critical points. I know the difference between local and absolute minimums/maximums. In many physical problems, we re interested in finding the values (x, y) that maximize

More information

Mid Term Pre Calc Review

Mid Term Pre Calc Review Mid Term 2015-13 Pre Calc Review I. Quadratic Functions a. Solve by quadratic formula, completing the square, or factoring b. Find the vertex c. Find the axis of symmetry d. Graph the quadratic function

More information

Sec.4.1 Increasing and Decreasing Functions

Sec.4.1 Increasing and Decreasing Functions U4L1: Sec.4.1 Increasing and Decreasing Functions A function is increasing on a particular interval if for any, then. Ie: As x increases,. A function is decreasing on a particular interval if for any,

More information

Proceedings of the Third International DERIVE/TI-92 Conference

Proceedings of the Third International DERIVE/TI-92 Conference Using the TI-92 and TI-92 Plus to Explore Derivatives, Riemann Sums, and Differential Equations with Symbolic Manipulation, Interactive Geometry, Scripts, Regression, and Slope Fields Sally Thomas, Orange

More information

14.4: Tangent Planes and Linear Approximations

14.4: Tangent Planes and Linear Approximations 14.4: Tangent Planes and Linear Approximations Marius Ionescu October 15, 2012 Marius Ionescu () 14.4: Tangent Planes and Linear Approximations October 15, 2012 1 / 13 Tangent Planes Marius Ionescu ()

More information

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully:

Date: 16 July 2016, Saturday Time: 14:00-16:00 STUDENT NO:... Math 102 Calculus II Midterm Exam II Solutions TOTAL. Please Read Carefully: Date: 16 July 2016, Saturday Time: 14:00-16:00 NAME:... STUDENT NO:... YOUR DEPARTMENT:... Math 102 Calculus II Midterm Exam II Solutions 1 2 3 4 TOTAL 25 25 25 25 100 Please do not write anything inside

More information

5 Day 5: Maxima and minima for n variables.

5 Day 5: Maxima and minima for n variables. UNIVERSITAT POMPEU FABRA INTERNATIONAL BUSINESS ECONOMICS MATHEMATICS III. Pelegrí Viader. 2012-201 Updated May 14, 201 5 Day 5: Maxima and minima for n variables. The same kind of first-order and second-order

More information

Multivariate Calculus: Review Problems for Examination Two

Multivariate Calculus: Review Problems for Examination Two Multivariate Calculus: Review Problems for Examination Two Note: Exam Two is on Tuesday, August 16. The coverage is multivariate differential calculus and double integration. You should review the double

More information

Bounded, Closed, and Compact Sets

Bounded, Closed, and Compact Sets Bounded, Closed, and Compact Sets Definition Let D be a subset of R n. Then D is said to be bounded if there is a number M > 0 such that x < M for all x D. D is closed if it contains all the boundary points.

More information

Functions of Two variables.

Functions of Two variables. Functions of Two variables. Ferdinánd Filip filip.ferdinand@bgk.uni-obuda.hu siva.banki.hu/jegyzetek 27 February 217 Ferdinánd Filip 27 February 217 Functions of Two variables. 1 / 36 Table of contents

More information

7/26/2018 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2018

7/26/2018 SECOND HOURLY PRACTICE V Maths 21a, O.Knill, Summer 2018 7/26/28 SECOND HOURLY PRACTICE V Maths 2a, O.Knill, Summer 28 Name: Start by printing your name in the above box. Try to answer each question on the same page as the question is asked. If needed, use the

More information

Chapter 15: Functions of Several Variables

Chapter 15: Functions of Several Variables Chapter 15: Functions of Several Variables Section 15.1 Elementary Examples a. Notation: Two Variables b. Example c. Notation: Three Variables d. Functions of Several Variables e. Examples from the Sciences

More information

Section 4.3: Derivatives and the Shapes of Curves

Section 4.3: Derivatives and the Shapes of Curves 1 Section 4.: Derivatives and the Shapes of Curves Practice HW from Stewart Textbook (not to hand in) p. 86 # 1,, 7, 9, 11, 19, 1,, 5 odd The Mean Value Theorem If f is a continuous function on the closed

More information

Increasing/Decreasing Behavior

Increasing/Decreasing Behavior Derivatives and the Shapes of Graphs In this section, we will specifically discuss the information that f (x) and f (x) give us about the graph of f(x); it turns out understanding the first and second

More information

12.8 Maximum/Minimum Problems

12.8 Maximum/Minimum Problems Section 12.8 Maximum/Minimum Problems Page 1 12.8 Maximum/Minimum Problems In Chapter 4 we showed how to use derivatives to find maximum and minimum values of functions of a single variable. When those

More information

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function.

In other words, we want to find the domain points that yield the maximum or minimum values (extrema) of the function. 1 The Lagrange multipliers is a mathematical method for performing constrained optimization of differentiable functions. Recall unconstrained optimization of differentiable functions, in which we want

More information

Linear and quadratic Taylor polynomials for functions of several variables.

Linear and quadratic Taylor polynomials for functions of several variables. ams/econ 11b supplementary notes ucsc Linear quadratic Taylor polynomials for functions of several variables. c 016, Yonatan Katznelson Finding the extreme (minimum or maximum) values of a function, is

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems. Note that the

More information

THS Step By Step Calculus Chapter 3

THS Step By Step Calculus Chapter 3 Name: Class Period: Throughout this packet there will be blanks you are expected to fill in prior to coming to class. This packet follows your Larson Textbook. Do NOT throw away! Keep in 3 ring-binder

More information

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2.

Math 1120, Section 4 Calculus Test 2. November 5, 2008 Name. work. 1. (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2. November 5, 2008 Name The total number of points available is 139 work Throughout this test, show your 1 (15 points) Consider the function f(x) = (2x + 3) 2 (x 1) 2 (a) Use the product rule to find f (x)

More information

Math 21a Homework 22 Solutions Spring, 2014

Math 21a Homework 22 Solutions Spring, 2014 Math 1a Homework Solutions Spring, 014 1. Based on Stewart 11.8 #6 ) Consider the function fx, y) = e xy, and the constraint x 3 + y 3 = 16. a) Use Lagrange multipliers to find the coordinates x, y) of

More information

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each.

Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. Math 106/108 Final Exam Page 1 Part I. Problems in this section are mostly short answer and multiple choice. Little partial credit will be given. 5 points each. 1. Factor completely. Do not solve. a) 2x

More information

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190

Section 3.1(part), Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 1190 Section 3.(part), 3.3-3.4 Critical Numbers, Extreme Values, Increasing/Decreasing, Concave Up/Down MATH 9 9 rel max f (a) = ; slope tangent line = 8 7. slope of tangent line: neg f (a)

More information

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS

MATH SPRING 2000 (Test 01) FINAL EXAM INSTRUCTIONS MATH 61 - SPRING 000 (Test 01) Name Signature Instructor Recitation Instructor Div. Sect. No. FINAL EXAM INSTRUCTIONS 1. You must use a # pencil on the mark-sense sheet (answer sheet).. If you have test

More information

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e

1-1. What you'll Learn About Critical Points/Extreme Values. 1 P a g e CALCULUS: by Rogawski 8) 1 y x 1-1 x Chapter 4.2: Extreme Values What you'll Learn About Critical Points/Extreme Values 12) f(x) 4x - x 1 1 P a g e Determine the extreme values of each function 2 21) f(x)

More information

Math Analysis Chapter 1 Notes: Functions and Graphs

Math Analysis Chapter 1 Notes: Functions and Graphs Math Analysis Chapter 1 Notes: Functions and Graphs Day 6: Section 1-1 Graphs Points and Ordered Pairs The Rectangular Coordinate System (aka: The Cartesian coordinate system) Practice: Label each on the

More information