Rasterization. MIT EECS Frédo Durand and Barb Cutler. MIT EECS 6.837, Cutler and Durand 1

Size: px
Start display at page:

Download "Rasterization. MIT EECS Frédo Durand and Barb Cutler. MIT EECS 6.837, Cutler and Durand 1"

Transcription

1 Rasterization MIT EECS Frédo Durand and Barb Cutler MIT EECS 6.837, Cutler and Durand 1

2 Final projects Rest of semester Weekly meetings with TAs Office hours on appointment This week, with TAs Refine timeline Define high-level architecture Project should be a whole, but subparts should be identified with regular merging of code MIT EECS 6.837, Cutler and Durand 2

3 The Graphics Pipeline Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 3

4 Modeling Transformations Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping 3D models defined in their own coordinate system (object space) Modeling transforms orient the models within a common coordinate frame (world space) Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Object space World space MIT EECS 6.837, Cutler and Durand 4

5 Illumination (Shading) (Lighting) Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Vertices lit (shaded) according to material properties, surface properties (normal) and light sources Local lighting model (Diffuse, Ambient, Phong, etc.) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 5

6 Viewing Transformation Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Maps world space to eye space Viewing position is transformed to origin & direction is oriented along some axis (usually z) z o y x WORLD SPACE FAR -n NEAR o P Image adapted from: Seth Teller u v EYE EYE SPACE Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 6

7 Clipping Modeling Transformations Illumination (Shading) Transform to Normalized Device Coordinates (NDC) Portions of the object outside the view volume (view frustum) are removed Viewing Transformation (Perspective / Orthographic) Clipping z FAR o NEAR x y EYE z x y Projection (to Screen Space) EYE SPACE Image adapted from: Seth Teller NDC Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 7

8 Projection Modeling Transformations The objects are projected to the 2D image place (screen space) Illumination (Shading) x y x y Viewing Transformation (Perspective / Orthographic) z z o Clipping Projection (to Screen Space) Scan Conversion (Rasterization) NDC Image adapted from: Seth Teller SCREEN SPACE Visibility / Display MIT EECS 6.837, Cutler and Durand 8

9 Scan Conversion (Rasterization) Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Rasterizes objects into pixels Interpolate values as we go (color, depth, etc.) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 9

10 Visibility / Display Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display Each pixel remembers the closest object (depth buffer) Almost every step in the graphics pipeline involves a change of coordinate system. Transformations are central to understanding 3D computer graphics. MIT EECS 6.837, Cutler and Durand 10

11 Today Polygon scan conversion smart back to brute force Visibility MIT EECS 6.837, Cutler and Durand 11

12 2D Scan Conversion Geometric primitive 2D: point, line, polygon, circle... 3D: point, line, polyhedron, sphere... Primitives are continuous; screen is discrete MIT EECS 6.837, Cutler and Durand 12

13 2D Scan Conversion Solution: compute discrete approximation Scan Conversion: algorithms for efficient generation of the samples comprising this approximation MIT EECS 6.837, Cutler and Durand 13

14 Brute force solution for triangles? MIT EECS 6.837, Cutler and Durand 14

15 Brute force solution for triangles For each pixel Compute line equations at pixel center clip against the triangle Problem? MIT EECS 6.837, Cutler and Durand 15

16 Brute force solution for triangles For each pixel Compute line equations at pixel center clip against the triangle Problem? If the triangle is small, a lot of useless computation MIT EECS 6.837, Cutler and Durand 16

17 Brute force solution for triangles Improvement: Compute only for the screen bounding box of the triangle How do we get such a bounding box? MIT EECS 6.837, Cutler and Durand 17

18 Brute force solution for triangles Improvement: Compute only for the screen bounding box of the triangle Xmin, Xmax, Ymin, Ymax of the triangle vertices MIT EECS 6.837, Cutler and Durand 18

19 Can we do better? Kind of! We compute the line equation for many useless pixels What could we do? MIT EECS 6.837, Cutler and Durand 19

20 Use line rasterization Compute the boundary pixels Shirley page 55 MIT EECS 6.837, Cutler and Durand 20

21 Scan-line Rasterization Compute the boundary pixels Fill the spans Shirley page 55 MIT EECS 6.837, Cutler and Durand 21

22 Scan-line Rasterization Requires some initial setup to prepare Shirley page 55 MIT EECS 6.837, Cutler and Durand 22

23 Clipping problem How do we clip parts outside window? MIT EECS 6.837, Cutler and Durand 23

24 Clipping problem How do we clip parts outside window? Create two triangles or more. Quite annoying. MIT EECS 6.837, Cutler and Durand 24

25 Old style graphics hardware Triangles were big Bresenham+interpolation is worth it Annoying clipping step + a couple of other things have changed Not that good to parallelize beyond triangle granularity MIT EECS 6.837, Cutler and Durand 25

26 Questions? MIT EECS 6.837, Cutler and Durand 26

27 Today Polygon scan conversion smart back to brute force Visibility MIT EECS 6.837, Cutler and Durand 27

28 For modern graphics cards Triangles are usually very small Setup cost are becoming more troublesome Clipping is annoying Brute force is tractable MIT EECS 6.837, Cutler and Durand 28

29 Modern rasterization For every triangle ComputeProjection Compute bbox, clip bbox to screen limits For all pixels in bbox Compute line equations If all line equations>0 //pixel [x,y] in triangle Framebuffer[x,y]=triangleColor MIT EECS 6.837, Cutler and Durand 29

30 Modern rasterization For every triangle ComputeProjection Compute bbox, clip bbox to screen limits For all pixels in bbox Compute line equations If all line equations>0 //pixel [x,y] in triangle Framebuffer[x,y]=triangleColor Note that Bbox clipping is trivial MIT EECS 6.837, Cutler and Durand 30

31 Can we do better? For every triangle ComputeProjection Compute bbox, clip bbox to screen limits For all pixels in bbox Compute line equations If all line equations>0 //pixel [x,y] in triangle Framebuffer[x,y]=triangleColor MIT EECS 6.837, Cutler and Durand 31

32 Can we do better? For every triangle ComputeProjection Compute bbox, clip bbox to screen limits For all pixels in bbox Compute line equations ax+by+c If all line equations>0 //pixel [x,y] in triangle Framebuffer[x,y]=triangleColor We don t need to recompute line equation from scratch MIT EECS 6.837, Cutler and Durand 32

33 Can we do better? For every triangle ComputeProjection Compute bbox, clip bbox to screen limits Setup line eq compute a i dx, b i dy for the 3 lines Initialize line eq, values for bbox corner L i =a i x0+b i y+c i For all scanline y in bbox For 3 lines, update Li For all x in bbox Increment line equations: Li+=adx If all Li>0 //pixel [x,y] in triangle Framebuffer[x,y]=triangleColor We save one multiplication per pixel MIT EECS 6.837, Cutler and Durand 33

34 The Graphics Pipeline Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Modern hardware mostly avoids clipping Only with respect to plane z=0 Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility / Display MIT EECS 6.837, Cutler and Durand 34

35 Full Clipping "clip" geometry to view frustum (eye x, eye y, eye z ) z axis image plane MIT EECS 6.837, Cutler and Durand 35

36 One-plane clipping "clip" geometry to near plane (eye x, eye y, eye z ) z axis image plane MIT EECS 6.837, Cutler and Durand 36

37 Adding Gouraud shading Interpolate colors of the 3 vertices Linear interpolation MIT EECS 6.837, Cutler and Durand 37

38 Adding Gouraud shading Interpolate colors of the 3 vertices Linear interpolation, e.g. for R channel: R=a R x+b R y+c R Such that R[x0,y0]=R0; R[x1, y1]=r1; R[x2,y2]=R2 Same as a plane equation in (x,y,r) MIT EECS 6.837, Cutler and Durand 38

39 Adding Gouraud shading Interpolate colors For every triangle ComputeProjection Compute bbox, clip bbox to screen limits Setup line eq Setup color equation For all pixels in bbox Increment line equations Increment color equation If all Li>0 //pixel [x,y] in triangle Framebuffer[x,y]=interpolatedColor MIT EECS 6.837, Cutler and Durand 39

40 In the modern hardware Edge eq. in homogeneous coordinates [x, y, w] Tiles to add a mid-level granularity early rejection of tiles Memory access coherence MIT EECS 6.837, Cutler and Durand 40

41 Ref Henry Fuchs, Jack Goldfeather, Jeff Hultquist, Susan Spach, John Austin, Frederick Brooks, Jr., John Eyles and John Poulton, Fast Spheres, Shadows, Textures, Transparencies, and Image Enhancements in Pixel-Planes, Proceedings of SIGGRAPH 85 (San Francisco, CA, July 22 26, 1985). In Computer Graphics, v19n3 (July 1985), ACM SIGGRAPH, New York, NY, Juan Pineda, A Parallel Algorithm for Polygon Rasterization, Proceedings of SIGGRAPH 88 (Atlanta, GA, August 1 5, 1988). In Computer Graphics, v22n4 (August 1988), ACM SIGGRAPH, New York, NY, Figure 7: Image from the spinning teapot performance test. Triangle Scan Conversion using 2D Homogeneous Coordinates, Marc Olano Trey Greer MIT EECS 6.837, Cutler and Durand 41

42 Take-home message The appropriate algorithm depends on Balance between various resources (CPU, memory, bandwidth) The input (size of triangles, etc.) Smart algorithms often have initial preprocess Assess whether it is worth it To save time, identify redundant computation Put outside the loop and interpolate if needed MIT EECS 6.837, Cutler and Durand 42

43 Today Polygon scan conversion smart back to brute force Visibility MIT EECS 6.837, Cutler and Durand 43

44 Visibility How do we know which parts are visible/in front? MIT EECS 6.837, Cutler and Durand 44

45 Ray Casting Maintain intersection with closest object MIT EECS 6.837, Cutler and Durand 45

46 Painter s algorithm Draw back-to-front How do we sort objects? Can we always sort objects? MIT EECS 6.837, Cutler and Durand 46

47 Painter s algorithm Draw back-to-front How do we sort objects? Can we always sort objects? No, there can be cycles Requires to split polygons A B A C B MIT EECS 6.837, Cutler and Durand 47

48 Painter s algorithm Old solution for hidden-surface removal But Good because ordering is useful for other operations (transparency, antialiasing) Ordering is tough Cycles Must be done by CPU Hardly used now But some sort of partial ordering is sometimes useful Usuall front-to-back To make sure foreground is rendered first MIT EECS 6.837, Cutler and Durand 48

49 visibility In ray casting, use intersection with closest t Now we have swapped the loops (pixel, object) How do we do? MIT EECS 6.837, Cutler and Durand 49

50 Z buffer In addition to frame buffer (R, G, B) Store distance to camera (z-buffer) Pixel is updated only if new z is closer than z-buffer value MIT EECS 6.837, Cutler and Durand 50

51 Z-buffer pseudo code For every triangle Compute Projection, color at vertices Setup line equations Compute bbox, clip bbox to screen limits For all pixels in bbox Increment line equations Compute curentz Increment currentcolor If all line equations>0 //pixel [x,y] in triangle If currentz<zbuffer[x,y] //pixel is visible Framebuffer[x,y]=currentColor zbuffer[x,y]=currentz MIT EECS 6.837, Cutler and Durand 51

52 Works for hard cases! A C B MIT EECS 6.837, Cutler and Durand 52

53 What exactly do we store Floating point distance Can we interpolate z in screen space? i.e. does z vary linearly in screen space? z0 image x x z1 MIT EECS 6.837, Cutler and Durand 53

54 Z interpolation X =x/z Hyperbolic variation Z cannot be linearly interpolated z0 image x x z1 MIT EECS 6.837, Cutler and Durand 54

55 Simple Perspective Projection Project all points along the z axis to the z = d plane, eyepoint at the origin homogenize x * d / z y * d / z d 1 = x x y y = z z z / d 0 0 1/d MIT EECS 6.837, Cutler and Durand

56 Yet another Perspective Projection Change the z component Compute d/z Can be linearly interpolated homogenize x * d / z y * d / z d/z 1 = x x y y = z z / d 0 0 1/d MIT EECS 6.837, Cutler and Durand

57 Advantages of 1/z Can be interpolated linearly in screen space Puts more precision for close objects Useful when using integers more precision where perceptible MIT EECS 6.837, Cutler and Durand 57

58 Integer z-buffer Use 1/z to have more precision in the foreground Set a near and far plane 1/z values linearly encoded between 1/near and 1/far Careful, test direction is reversed far near x MIT EECS 6.837, Cutler and Durand 58

59 Integer Z-buffer pseudo code For every triangle Compute Projection, color at vertices Setup line equations, depth equation Compute bbox, clip bbox to screen limits For all pixels in bbox Increment line equations Increment curent_1ovz Increment currentcolor If all line equations>0 //pixel [x,y] in triangle If current_1ovz>1ovzbuffer[x,y]//pixel is visible Framebuffer[x,y]=currentColor 1ovzBuffer[x,y]=current1ovZ MIT EECS 6.837, Cutler and Durand 59

60 Gouraud interpolation Gouraud: interpolate color linearly in screen space Is it correct? [R0, z0 G0, B0] image x x [R1, z1 G1, B1] MIT EECS 6.837, Cutler and Durand 60

61 Gouraud interpolation Gouraud: interpolate color linearly in screen space Not correct. We should use hyperbolic interpolation But quite costly (division) [R0, z0 G0, B0] image x x [R1, z1 G1, B1] MIT EECS 6.837, Cutler and Durand 61

62 Next time Clipping Segment intersection & scanline algorithms MIT EECS 6.837, Cutler and Durand 62

Final projects. Rasterization. The Graphics Pipeline. Illumination (Shading) (Lighting) Viewing Transformation. Rest of semester. This week, with TAs

Final projects. Rasterization. The Graphics Pipeline. Illumination (Shading) (Lighting) Viewing Transformation. Rest of semester. This week, with TAs Rasterization MIT EECS 6.837 Frédo Durand and Barb Cutler MIT EECS 6.837, Cutler and Durand Final projects Rest of semester Weekly meetings with TAs Office hours on appointment This week, with TAs Refine

More information

Last time? Rasterization. Scan Conversion (Rasterization) High-level concepts for Visibility / Display. Today

Last time? Rasterization. Scan Conversion (Rasterization) High-level concepts for Visibility / Display. Today Last time? Rasterization MIT EECS 6.837 Frédo Durand and Barb Cutler MIT EECS 6.837, Cutler and Durand Point and segment Clipping Planes as homogenous vectors (duality) In homogeneous coordinates before

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Final Projects Proposals due Thursday 4/8 Proposed project summary At least 3 related papers (read & summarized) Description of series of test cases Timeline & initial task assignment The Traditional Graphics

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Participating Media Measuring BRDFs 3D Digitizing & Scattering BSSRDFs Monte Carlo Simulation Dipole Approximation Today Ray Casting / Tracing Advantages? Ray

More information

The Traditional Graphics Pipeline

The Traditional Graphics Pipeline Last Time? The Traditional Graphics Pipeline Reading for Today A Practical Model for Subsurface Light Transport, Jensen, Marschner, Levoy, & Hanrahan, SIGGRAPH 2001 Participating Media Measuring BRDFs

More information

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored.

From Vertices to Fragments: Rasterization. Reading Assignment: Chapter 7. Special memory where pixel colors are stored. From Vertices to Fragments: Rasterization Reading Assignment: Chapter 7 Frame Buffer Special memory where pixel colors are stored. System Bus CPU Main Memory Graphics Card -- Graphics Processing Unit (GPU)

More information

Graphics Pipeline & Rasterization. CS-C3100 Fall 2017 Lehtinen

Graphics Pipeline & Rasterization. CS-C3100 Fall 2017 Lehtinen Graphics Pipeline & Rasterization 1 How Do We Render Interactively? Use graphics hardware, via OpenGL or DirectX OpenGL is multi-platform, DirectX is MS only OpenGL rendering Very basic! Our ray tracer

More information

Fondamenti di Grafica 3D The Rasterization Pipeline.

Fondamenti di Grafica 3D The Rasterization Pipeline. Fondamenti di Grafica 3D The Rasterization Pipeline paolo.cignoni@isti.cnr.it http://vcg.isti.cnr.it/~cignoni Ray Casting vs. GPUs for Triangles Ray Casting For each pixel (ray) For each triangle Does

More information

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012

CSE 167: Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2012 Announcements Homework project #2 due this Friday, October

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1

graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline computer graphics graphics pipeline 2009 fabio pellacini 1 graphics pipeline sequence of operations to generate an image using object-order processing primitives processed one-at-a-time

More information

Pipeline Operations. CS 4620 Lecture 10

Pipeline Operations. CS 4620 Lecture 10 Pipeline Operations CS 4620 Lecture 10 2008 Steve Marschner 1 Hidden surface elimination Goal is to figure out which color to make the pixels based on what s in front of what. Hidden surface elimination

More information

Triangle Rasterization

Triangle Rasterization Triangle Rasterization Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 2/07/07 1 From last time Lines and planes Culling View frustum culling Back-face culling Occlusion culling

More information

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane

Rendering. Converting a 3D scene to a 2D image. Camera. Light. Rendering. View Plane Rendering Pipeline Rendering Converting a 3D scene to a 2D image Rendering Light Camera 3D Model View Plane Rendering Converting a 3D scene to a 2D image Basic rendering tasks: Modeling: creating the world

More information

CS4620/5620: Lecture 14 Pipeline

CS4620/5620: Lecture 14 Pipeline CS4620/5620: Lecture 14 Pipeline 1 Rasterizing triangles Summary 1! evaluation of linear functions on pixel grid 2! functions defined by parameter values at vertices 3! using extra parameters to determine

More information

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11

Pipeline Operations. CS 4620 Lecture Steve Marschner. Cornell CS4620 Spring 2018 Lecture 11 Pipeline Operations CS 4620 Lecture 11 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives to pixels RASTERIZATION

More information

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping

The Graphics Pipeline. Interactive Computer Graphics. The Graphics Pipeline. The Graphics Pipeline. The Graphics Pipeline: Clipping Interactive Computer Graphics The Graphics Pipeline: The Graphics Pipeline Input: - geometric model - illumination model - camera model - viewport Some slides adopted from F. Durand and B. Cutler, MIT

More information

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015

CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization. Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 CSE 167: Introduction to Computer Graphics Lecture #5: Rasterization Jürgen P. Schulze, Ph.D. University of California, San Diego Fall Quarter 2015 Announcements Project 2 due tomorrow at 2pm Grading window

More information

Pipeline Operations. CS 4620 Lecture 14

Pipeline Operations. CS 4620 Lecture 14 Pipeline Operations CS 4620 Lecture 14 2014 Steve Marschner 1 Pipeline you are here APPLICATION COMMAND STREAM 3D transformations; shading VERTEX PROCESSING TRANSFORMED GEOMETRY conversion of primitives

More information

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin

Visible-Surface Detection Methods. Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin Visible-Surface Detection Methods Chapter? Intro. to Computer Graphics Spring 2008, Y. G. Shin The Visibility Problem [Problem Statement] GIVEN: a set of 3-D surfaces, a projection from 3-D to 2-D screen,

More information

Visibility: Z Buffering

Visibility: Z Buffering University of British Columbia CPSC 414 Computer Graphics Visibility: Z Buffering Week 1, Mon 3 Nov 23 Tamara Munzner 1 Poll how far are people on project 2? preferences for Plan A: status quo P2 stays

More information

Graphics and Interaction Rendering pipeline & object modelling

Graphics and Interaction Rendering pipeline & object modelling 433-324 Graphics and Interaction Rendering pipeline & object modelling Department of Computer Science and Software Engineering The Lecture outline Introduction to Modelling Polygonal geometry The rendering

More information

CS 488. More Shading and Illumination. Luc RENAMBOT

CS 488. More Shading and Illumination. Luc RENAMBOT CS 488 More Shading and Illumination Luc RENAMBOT 1 Illumination No Lighting Ambient model Light sources Diffuse reflection Specular reflection Model: ambient + specular + diffuse Shading: flat, gouraud,

More information

Rasterization Overview

Rasterization Overview Rendering Overview The process of generating an image given a virtual camera objects light sources Various techniques rasterization (topic of this course) raytracing (topic of the course Advanced Computer

More information

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM

Computer Science 426 Midterm 3/11/04, 1:30PM-2:50PM NAME: Login name: Computer Science 46 Midterm 3//4, :3PM-:5PM This test is 5 questions, of equal weight. Do all of your work on these pages (use the back for scratch space), giving the answer in the space

More information

Chapter 8: Implementation- Clipping and Rasterization

Chapter 8: Implementation- Clipping and Rasterization Chapter 8: Implementation- Clipping and Rasterization Clipping Fundamentals Cohen-Sutherland Parametric Polygons Circles and Curves Text Basic Concepts: The purpose of clipping is to remove objects or

More information

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1

Ray tracing. Computer Graphics COMP 770 (236) Spring Instructor: Brandon Lloyd 3/19/07 1 Ray tracing Computer Graphics COMP 770 (236) Spring 2007 Instructor: Brandon Lloyd 3/19/07 1 From last time Hidden surface removal Painter s algorithm Clipping algorithms Area subdivision BSP trees Z-Buffer

More information

Topic #1: Rasterization (Scan Conversion)

Topic #1: Rasterization (Scan Conversion) Topic #1: Rasterization (Scan Conversion) We will generally model objects with geometric primitives points, lines, and polygons For display, we need to convert them to pixels for points it s obvious but

More information

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem

Last Time. Correct Transparent Shadow. Does Ray Tracing Simulate Physics? Does Ray Tracing Simulate Physics? Refraction and the Lifeguard Problem Graphics Pipeline: Projective Last Time Shadows cast ra to light stop after first intersection Reflection & Refraction compute direction of recursive ra Recursive Ra Tracing maimum number of bounces OR

More information

Game Architecture. 2/19/16: Rasterization

Game Architecture. 2/19/16: Rasterization Game Architecture 2/19/16: Rasterization Viewing To render a scene, need to know Where am I and What am I looking at The view transform is the matrix that does this Maps a standard view space into world

More information

CS 130 Exam I. Fall 2015

CS 130 Exam I. Fall 2015 S 3 Exam I Fall 25 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

CHAPTER 1 Graphics Systems and Models 3

CHAPTER 1 Graphics Systems and Models 3 ?????? 1 CHAPTER 1 Graphics Systems and Models 3 1.1 Applications of Computer Graphics 4 1.1.1 Display of Information............. 4 1.1.2 Design.................... 5 1.1.3 Simulation and Animation...........

More information

MIT EECS 6.837, Teller and Durand 1

MIT EECS 6.837, Teller and Durand 1 MIT EECS 6.837, Teller and Durand 1 Clipping MIT EECS 6.837 Frédo Durand and Seth Teller Some slides and images courtesy of Leonard McMillan MIT EECS 6.837, Teller and Durand 2 Administrative Assignment

More information

Last Time. Why are Shadows Important? Today. Graphics Pipeline. Clipping. Rasterization. Why are Shadows Important?

Last Time. Why are Shadows Important? Today. Graphics Pipeline. Clipping. Rasterization. Why are Shadows Important? Last Time Modeling Transformations Illumination (Shading) Real-Time Shadows Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Graphics Pipeline Clipping Rasterization

More information

Rasterizing triangles

Rasterizing triangles Rasterizing triangles We know how to project the vertices of a triangle in our model onto pixel centers. To draw the complete triangle, we have to decide which pixels to turn on. For now, let s assume

More information

CS 130 Final. Fall 2015

CS 130 Final. Fall 2015 CS 130 Final Fall 2015 Name Student ID Signature You may not ask any questions during the test. If you believe that there is something wrong with a question, write down what you think the question is trying

More information

- Rasterization. Geometry. Scan Conversion. Rasterization

- Rasterization. Geometry. Scan Conversion. Rasterization Computer Graphics - The graphics pipeline - Geometry Modelview Geometry Processing Lighting Perspective Clipping Scan Conversion Texturing Fragment Tests Blending Framebuffer Fragment Processing - So far,

More information

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines

COMP30019 Graphics and Interaction Scan Converting Polygons and Lines COMP30019 Graphics and Interaction Scan Converting Polygons and Lines Department of Computer Science and Software Engineering The Lecture outline Introduction Scan conversion Scan-line algorithm Edge coherence

More information

Clipping and Scan Conversion

Clipping and Scan Conversion 15-462 Computer Graphics I Lecture 14 Clipping and Scan Conversion Line Clipping Polygon Clipping Clipping in Three Dimensions Scan Conversion (Rasterization) [Angel 7.3-7.6, 7.8-7.9] March 19, 2002 Frank

More information

Last Time. Reading for Today: Graphics Pipeline. Clipping. Rasterization

Last Time. Reading for Today: Graphics Pipeline. Clipping. Rasterization Last Time Modeling Transformations Illumination (Shading) Real-Time Shadows Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion (Rasterization) Visibility

More information

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz

Computing Visibility. Backface Culling for General Visibility. One More Trick with Planes. BSP Trees Ray Casting Depth Buffering Quiz Computing Visibility BSP Trees Ray Casting Depth Buffering Quiz Power of Plane Equations We ve gotten a lot of mileage out of one simple equation. Basis for D outcode-clipping Basis for plane-at-a-time

More information

3D Rasterization II COS 426

3D Rasterization II COS 426 3D Rasterization II COS 426 3D Rendering Pipeline (for direct illumination) 3D Primitives Modeling Transformation Lighting Viewing Transformation Projection Transformation Clipping Viewport Transformation

More information

CS452/552; EE465/505. Clipping & Scan Conversion

CS452/552; EE465/505. Clipping & Scan Conversion CS452/552; EE465/505 Clipping & Scan Conversion 3-31 15 Outline! From Geometry to Pixels: Overview Clipping (continued) Scan conversion Read: Angel, Chapter 8, 8.1-8.9 Project#1 due: this week Lab4 due:

More information

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading)

Introduction Rasterization Z-buffering Shading. Graphics 2012/2013, 4th quarter. Lecture 09: graphics pipeline (rasterization and shading) Lecture 9 Graphics pipeline (rasterization and shading) Graphics pipeline - part 1 (recap) Perspective projection by matrix multiplication: x pixel y pixel z canonical 1 x = M vpm per M cam y z 1 This

More information

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU

FROM VERTICES TO FRAGMENTS. Lecture 5 Comp3080 Computer Graphics HKBU FROM VERTICES TO FRAGMENTS Lecture 5 Comp3080 Computer Graphics HKBU OBJECTIVES Introduce basic implementation strategies Clipping Scan conversion OCTOBER 9, 2011 2 OVERVIEW At end of the geometric pipeline,

More information

Einführung in Visual Computing

Einführung in Visual Computing Einführung in Visual Computing 186.822 Rasterization Werner Purgathofer Rasterization in the Rendering Pipeline scene objects in object space transformed vertices in clip space scene in normalized device

More information

For Intuition about Scene Lighting. Today. Limitations of Planar Shadows. Cast Shadows on Planar Surfaces. Shadow/View Duality.

For Intuition about Scene Lighting. Today. Limitations of Planar Shadows. Cast Shadows on Planar Surfaces. Shadow/View Duality. Last Time Modeling Transformations Illumination (Shading) Real-Time Shadows Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Graphics Pipeline Clipping Rasterization

More information

Graphics Hardware and Display Devices

Graphics Hardware and Display Devices Graphics Hardware and Display Devices CSE328 Lectures Graphics/Visualization Hardware Many graphics/visualization algorithms can be implemented efficiently and inexpensively in hardware Facilitates interactive

More information

Hidden Surfaces II. Week 9, Mon Mar 15

Hidden Surfaces II. Week 9, Mon Mar 15 University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2010 Tamara Munzner Hidden Surfaces II Week 9, Mon Mar 15 http://www.ugrad.cs.ubc.ca/~cs314/vjan2010 ews yes, I'm granting the request

More information

Computer Graphics 7 - Rasterisation

Computer Graphics 7 - Rasterisation Computer Graphics 7 - Rasterisation Tom Thorne Slides courtesy of Taku Komura www.inf.ed.ac.uk/teaching/courses/cg Overview Line rasterisation Polygon rasterisation Mean value coordinates Decomposing polygons

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

Real-Time Shadows. Computer Graphics. MIT EECS Durand 1

Real-Time Shadows. Computer Graphics. MIT EECS Durand 1 Real-Time Shadows Computer Graphics MIT EECS 6.837 Durand 1 Why are Shadows Important? Depth cue Scene Lighting Realism Contact points 2 Shadows as a Depth Cue source unknown. All rights reserved. This

More information

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading:

Reading. 18. Projections and Z-buffers. Required: Watt, Section , 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: Reading Required: Watt, Section 5.2.2 5.2.4, 6.3, 6.6 (esp. intro and subsections 1, 4, and 8 10), Further reading: 18. Projections and Z-buffers Foley, et al, Chapter 5.6 and Chapter 6 David F. Rogers

More information

Introduction to Visualization and Computer Graphics

Introduction to Visualization and Computer Graphics Introduction to Visualization and Computer Graphics DH2320, Fall 2015 Prof. Dr. Tino Weinkauf Introduction to Visualization and Computer Graphics Visibility Shading 3D Rendering Geometric Model Color Perspective

More information

Institutionen för systemteknik

Institutionen för systemteknik Code: Day: Lokal: M7002E 19 March E1026 Institutionen för systemteknik Examination in: M7002E, Computer Graphics and Virtual Environments Number of sections: 7 Max. score: 100 (normally 60 is required

More information

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal

Overview. Pipeline implementation I. Overview. Required Tasks. Preliminaries Clipping. Hidden Surface removal Overview Pipeline implementation I Preliminaries Clipping Line clipping Hidden Surface removal Overview At end of the geometric pipeline, vertices have been assembled into primitives Must clip out primitives

More information

CEng 477 Introduction to Computer Graphics Fall 2007

CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection CEng 477 Introduction to Computer Graphics Fall 2007 Visible Surface Detection Visible surface detection or hidden surface removal. Realistic scenes: closer objects occludes the

More information

Hidden surface removal. Computer Graphics

Hidden surface removal. Computer Graphics Lecture Hidden Surface Removal and Rasterization Taku Komura Hidden surface removal Drawing polygonal faces on screen consumes CPU cycles Illumination We cannot see every surface in scene We don t want

More information

Real-Time Shadows. MIT EECS 6.837, Durand and Cutler

Real-Time Shadows. MIT EECS 6.837, Durand and Cutler Real-Time Shadows Last Time? The graphics pipeline Clipping & rasterization of polygons Visibility the depth buffer (z-buffer) Schedule Quiz 2: Thursday November 20 th, in class (two weeks from Thursday)

More information

Shadows in the graphics pipeline

Shadows in the graphics pipeline Shadows in the graphics pipeline Steve Marschner Cornell University CS 569 Spring 2008, 19 February There are a number of visual cues that help let the viewer know about the 3D relationships between objects

More information

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms

Page 1. Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Visible Surface Determination Visibility Culling Area-Subdivision Algorithms z-buffer Algorithm List Priority Algorithms BSP (Binary Space Partitioning Tree) Scan-line Algorithms Divide-and-conquer strategy:

More information

Graphics Pipeline. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Graphics Pipeline. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Graphics Pipeline CS535 Fall 2016 Daniel G. Aliaga Department of Computer Science Purdue University Ray-tracing Inverse mapping for every pixel construct a ray from the eye for every object in the scene

More information

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts

Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Visible Surface Detection Identifying those parts of a scene that are visible from a chosen viewing position, and only process (scan convert) those parts Two approaches: 1. Object space methods 2. Image

More information

Computer Graphics 7: Viewing in 3-D

Computer Graphics 7: Viewing in 3-D Computer Graphics 7: Viewing in 3-D In today s lecture we are going to have a look at: Transformations in 3-D How do transformations in 3-D work? Contents 3-D homogeneous coordinates and matrix based transformations

More information

CS Rasterization. Junqiao Zhao 赵君峤

CS Rasterization. Junqiao Zhao 赵君峤 CS10101001 Rasterization Junqiao Zhao 赵君峤 Department of Computer Science and Technology College of Electronics and Information Engineering Tongji University Vector Graphics Algebraic equations describe

More information

Last Time: Acceleration Data Structures for Ray Tracing. Schedule. Today. Shadows & Light Sources. Shadows

Last Time: Acceleration Data Structures for Ray Tracing. Schedule. Today. Shadows & Light Sources. Shadows Last Time: Acceleration Data Structures for Ray Tracing Modeling Transformations Illumination (Shading) Viewing Transformation (Perspective / Orthographic) Clipping Projection (to Screen Space) Scan Conversion

More information

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today!

Real-Time Shadows. Last Time? Textures can Alias. Schedule. Questions? Quiz 1: Tuesday October 26 th, in class (1 week from today! Last Time? Real-Time Shadows Perspective-Correct Interpolation Texture Coordinates Procedural Solid Textures Other Mapping Bump Displacement Environment Lighting Textures can Alias Aliasing is the under-sampling

More information

Real-Time Shadows. Last Time? Schedule. Questions? Today. Why are Shadows Important?

Real-Time Shadows. Last Time? Schedule. Questions? Today. Why are Shadows Important? Last Time? Real-Time Shadows The graphics pipeline Clipping & rasterization of polygons Visibility the depth buffer (z-buffer) Schedule Questions? Quiz 2: Thursday November 2 th, in class (two weeks from

More information

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo

Computer Graphics. Bing-Yu Chen National Taiwan University The University of Tokyo Computer Graphics Bing-Yu Chen National Taiwan University The University of Tokyo Hidden-Surface Removal Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm

More information

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION

QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION QUESTION BANK 10CS65 : COMPUTER GRAPHICS AND VISUALIZATION INTRODUCTION OBJECTIVE: This chapter deals the applications of computer graphics and overview of graphics systems and imaging. UNIT I 1 With clear

More information

Computer Graphics and GPGPU Programming

Computer Graphics and GPGPU Programming Computer Graphics and GPGPU Programming Donato D Ambrosio Department of Mathematics and Computer Science and Center of Excellence for High Performace Computing Cubo 22B, University of Calabria, Rende 87036,

More information

The Viewing Pipeline Coordinate Systems

The Viewing Pipeline Coordinate Systems Overview Interactive Graphics System Model Graphics Pipeline Coordinate Systems Modeling Transforms Cameras and Viewing Transform Lighting and Shading Color Rendering Visible Surface Algorithms Rasterization

More information

General Hidden Surface Removal Algorithms. Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science CS 460/560

General Hidden Surface Removal Algorithms. Binghamton University. EngiNet. Thomas J. Watson. School of Engineering and Applied Science CS 460/560 Binghamton University EngiNet State University of New York EngiNet Thomas J. Watson School of Engineering and Applied Science WARNING All rights reserved. No Part of this video lecture series may be reproduced

More information

Computer Graphics. - Rasterization - Philipp Slusallek

Computer Graphics. - Rasterization - Philipp Slusallek Computer Graphics - Rasterization - Philipp Slusallek Rasterization Definition Given some geometry (point, 2D line, circle, triangle, polygon, ), specify which pixels of a raster display each primitive

More information

Homework #2. Shading, Ray Tracing, and Texture Mapping

Homework #2. Shading, Ray Tracing, and Texture Mapping Computer Graphics Prof. Brian Curless CSE 457 Spring 2000 Homework #2 Shading, Ray Tracing, and Texture Mapping Prepared by: Doug Johnson, Maya Widyasari, and Brian Curless Assigned: Monday, May 8, 2000

More information

COMPUTER GRAPHICS COURSE. Rendering Pipelines

COMPUTER GRAPHICS COURSE. Rendering Pipelines COMPUTER GRAPHICS COURSE Rendering Pipelines Georgios Papaioannou - 2014 A Rendering Pipeline Rendering or Graphics Pipeline is the sequence of steps that we use to create the final image Many graphics/rendering

More information

Real-Time Shadows. Last Time? Today. Why are Shadows Important? Shadows as a Depth Cue. For Intuition about Scene Lighting

Real-Time Shadows. Last Time? Today. Why are Shadows Important? Shadows as a Depth Cue. For Intuition about Scene Lighting Last Time? Real-Time Shadows Today Why are Shadows Important? Shadows & Soft Shadows in Ray Tracing Planar Shadows Projective Texture Shadows Shadow Maps Shadow Volumes Why are Shadows Important? Depth

More information

Deferred Rendering Due: Wednesday November 15 at 10pm

Deferred Rendering Due: Wednesday November 15 at 10pm CMSC 23700 Autumn 2017 Introduction to Computer Graphics Project 4 November 2, 2017 Deferred Rendering Due: Wednesday November 15 at 10pm 1 Summary This assignment uses the same application architecture

More information

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about

Image-Based Modeling and Rendering. Image-Based Modeling and Rendering. Final projects IBMR. What we have learnt so far. What IBMR is about Image-Based Modeling and Rendering Image-Based Modeling and Rendering MIT EECS 6.837 Frédo Durand and Seth Teller 1 Some slides courtesy of Leonard McMillan, Wojciech Matusik, Byong Mok Oh, Max Chen 2

More information

CS451Real-time Rendering Pipeline

CS451Real-time Rendering Pipeline 1 CS451Real-time Rendering Pipeline JYH-MING LIEN DEPARTMENT OF COMPUTER SCIENCE GEORGE MASON UNIVERSITY Based on Tomas Akenine-Möller s lecture note You say that you render a 3D 2 scene, but what does

More information

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18

CS 498 VR. Lecture 18-4/4/18. go.illinois.edu/vrlect18 CS 498 VR Lecture 18-4/4/18 go.illinois.edu/vrlect18 Review and Supplement for last lecture 1. What is aliasing? What is Screen Door Effect? 2. How image-order rendering works? 3. If there are several

More information

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI)

Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping. Prof Emmanuel Agu. Computer Science Dept. Worcester Polytechnic Institute (WPI) Computer Graphics (CS 543) Lecture 9 (Part 2): Clipping Prof Emmanuel Agu Computer Science Dept. Worcester Polytechnic Institute (WPI) OpenGL Stages After projection, several stages before objects drawn

More information

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li.

Fall CSCI 420: Computer Graphics. 7.1 Rasterization. Hao Li. Fall 2015 CSCI 420: Computer Graphics 7.1 Rasterization Hao Li http://cs420.hao-li.com 1 Rendering Pipeline 2 Outline Scan Conversion for Lines Scan Conversion for Polygons Antialiasing 3 Rasterization

More information

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics

Announcements. Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class. Computer Graphics Announcements Midterms graded back at the end of class Help session on Assignment 3 for last ~20 minutes of class 1 Scan Conversion Overview of Rendering Scan Conversion Drawing Lines Drawing Polygons

More information

Realtime 3D Computer Graphics Virtual Reality

Realtime 3D Computer Graphics Virtual Reality Realtime 3D Computer Graphics Virtual Reality From Vertices to Fragments Overview Overall goal recapitulation: Input: World description, e.g., set of vertices and states for objects, attributes, camera,

More information

Computer Graphics Geometry and Transform

Computer Graphics Geometry and Transform ! Computer Graphics 2014! 5. Geometry and Transform Hongxin Zhang State Key Lab of CAD&CG, Zhejiang University 2014-10-11! Today outline Triangle rasterization Basic vector algebra ~ geometry! Antialiasing

More information

Topics. From vertices to fragments

Topics. From vertices to fragments Topics From vertices to fragments From Vertices to Fragments Assign a color to every pixel Pass every object through the system Required tasks: Modeling Geometric processing Rasterization Fragment processing

More information

Advanced Ray Tracing

Advanced Ray Tracing Advanced Ray Tracing Thanks to Fredo Durand and Barb Cutler The Ray Tree Ni surface normal Ri reflected ray Li shadow ray Ti transmitted (refracted) ray 51 MIT EECS 6.837, Cutler and Durand 1 Ray Tree

More information

Computer Graphics. Bing-Yu Chen National Taiwan University

Computer Graphics. Bing-Yu Chen National Taiwan University Computer Graphics Bing-Yu Chen National Taiwan University Visible-Surface Determination Back-Face Culling The Depth-Sort Algorithm Binary Space-Partitioning Trees The z-buffer Algorithm Scan-Line Algorithm

More information

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into

2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into 2D rendering takes a photo of the 2D scene with a virtual camera that selects an axis aligned rectangle from the scene. The photograph is placed into the viewport of the current application window. A pixel

More information

Two basic types: image-precision and object-precision. Image-precision For each pixel, determine which object is visable Requires np operations

Two basic types: image-precision and object-precision. Image-precision For each pixel, determine which object is visable Requires np operations walters@buffalo.edu CSE 480/580 Lecture 21 Slide 1 Visible-Surface Determination (Hidden Surface Removal) Computationaly expensive Two basic types: image-precision and object-precision For n objects and

More information

Computer Graphics Shadow Algorithms

Computer Graphics Shadow Algorithms Computer Graphics Shadow Algorithms Computer Graphics Computer Science Department University of Freiburg WS 11 Outline introduction projection shadows shadow maps shadow volumes conclusion Motivation shadows

More information

CS 112 The Rendering Pipeline. Slide 1

CS 112 The Rendering Pipeline. Slide 1 CS 112 The Rendering Pipeline Slide 1 Rendering Pipeline n Input 3D Object/Scene Representation n Output An image of the input object/scene n Stages (for POLYGON pipeline) n Model view Transformation n

More information

Intro to Ray-Tracing & Ray-Surface Acceleration

Intro to Ray-Tracing & Ray-Surface Acceleration Lecture 12 & 13: Intro to Ray-Tracing & Ray-Surface Acceleration Computer Graphics and Imaging UC Berkeley Course Roadmap Rasterization Pipeline Core Concepts Sampling Antialiasing Transforms Geometric

More information

CSE528 Computer Graphics: Theory, Algorithms, and Applications

CSE528 Computer Graphics: Theory, Algorithms, and Applications CSE528 Computer Graphics: Theory, Algorithms, and Applications Hong Qin State University of New York at Stony Brook (Stony Brook University) Stony Brook, New York 11794--4400 Tel: (631)632-8450; Fax: (631)632-8334

More information

For each question, indicate whether the statement is true or false by circling T or F, respectively.

For each question, indicate whether the statement is true or false by circling T or F, respectively. True/False For each question, indicate whether the statement is true or false by circling T or F, respectively. 1. (T/F) Rasterization occurs before vertex transformation in the graphics pipeline. 2. (T/F)

More information

COMP371 COMPUTER GRAPHICS

COMP371 COMPUTER GRAPHICS COMP371 COMPUTER GRAPHICS LECTURE 14 RASTERIZATION 1 Lecture Overview Review of last class Line Scan conversion Polygon Scan conversion Antialiasing 2 Rasterization The raster display is a matrix of picture

More information

Course Title: Computer Graphics Course no: CSC209

Course Title: Computer Graphics Course no: CSC209 Course Title: Computer Graphics Course no: CSC209 Nature of the Course: Theory + Lab Semester: III Full Marks: 60+20+20 Pass Marks: 24 +8+8 Credit Hrs: 3 Course Description: The course coversconcepts of

More information

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department

CSE 690: GPGPU. Lecture 2: Understanding the Fabric - Intro to Graphics. Klaus Mueller Stony Brook University Computer Science Department CSE 690: GPGPU Lecture 2: Understanding the Fabric - Intro to Graphics Klaus Mueller Stony Brook University Computer Science Department Klaus Mueller, Stony Brook 2005 1 Surface Graphics Objects are explicitely

More information

8. Hidden Surface Elimination

8. Hidden Surface Elimination 8. Hidden Surface Elimination Identification and Removal of parts of picture that are not visible from a chosen viewing position. 1 8. Hidden Surface Elimination Basic idea: Overwriting Paint things in

More information