Modern Differential Geometry ofcurves and Surfaces

Size: px
Start display at page:

Download "Modern Differential Geometry ofcurves and Surfaces"

Transcription

1 K ALFRED GRAY University of Maryland Modern Differential Geometry ofcurves and Surfaces /, CRC PRESS Boca Raton Ann Arbor London Tokyo

2 CONTENTS 1. Curves in the Plane Euclidean Spaces Curves in R" The Length ofa Curve Vector Fields along Curves Curvature of Curves in the Plane The Turning Angle The Semicubical Parabola Exercises Studying Curves in the Plane with Mathematica Computing Curvature of Curves in the Plane Computing Lengths of Curves Filling Curves Examples of Curves in R Plotting Piecewise Defined Curves Exercises 33 ix

3 3. Famous Plane Curves Cycloids Lemniscates ofbernoulli Cardioids The Cissoid of Diocles The Tractrix Clothoids Exercises Alternate Methods for Plotting Plane Curves Implicitly Defined Curves in R Cassinian Ovals Plane Curves in Polar Coordinates Exercises New Curves from Old Evolutes Iterated Evolutes The Evolute ofa Tractrix is a Catenary Involutes Tangent and Normal Lines to Plane Curves Osculating Circles to Plane Curves Parallel Curves Pedal Curves Exercises 100

4 Determming a Plane Curve from its Curvature Euclidean Motions Curves and Euclidean Motions Intrinsic Equations for Plane Curves Drawing Plane Curves with Assigned Curvature Exercises 119 Curves In Space Preliminaries Curvature and Torsion of Unit-Speed Curves in R Curvature and Torsion of Arbitrary-Speed Curves in R Computing Curvature and Torsion with Mathematica The Helix and its Generalizations Viviani's Curve The Fundamental Theorem of Space Curves Drawing Space Curves with Assigned Curvature Exercises 148 Tubes and Knots Tubes about Curves Torus Knots Exercises 161

5 Calculus on Euclidean Space Tangent Vectors to R n Tangent Vectors as Directional Derivatives Tangent Maps Vector Fields on R n Derivatives of Vector Fields on R n Curves Revisited Exercises 181 Surfaces in Euclidean Space Patches in R n Patches in R The Local Gauss Map The Definition of a Regulär Surface in R n Tangent Vectors to Regulär Surfaces in R n Surface Mappings Level Surfaces in R Exercises 207 Examples of Surfaces The Graph ofa Function of Two Variables The Ellipsoid The Stereographic Ellipsoid Tori The Paraboloid Sea Shells 223

6 xiii 11.7 Patches with Singularities Implicit Plots of Surfaces Exercises Nononentable Surfaces Orientability of Surfaces Nonorientable Surfaces Described by Identifications The Möbius Strip The Klein Bottle Realizations of the Real Projective Plane Coloring Surfaces with Mathematica Exercises Metrics on Surfaces The Intuitive Idea of Distance on a Surface Isometries of Surfaces The Intuitive Idea of Area on a Surface Programs for Computing Metrics and Areas on a Surface Examples of Metrics Exercises Surfaces in 3-Dimensional Space The Shape Operator Normal Curvature Calculation ofthe Shape Operator The Eigenvalues of the Shape Operator

7 xiv 14.5 The Gaussian and Mean Curvatures The Three Fundamental Forms Examples of Curvature Calculations by Hand The Curvature of Nonparametrically Defined Surfaces Exercises Surfaces in 3-Dimensional Space via Mathematica Programs for Computing the Shape Operator and Curvature Examples of Curvature Calculations with Mathematica The Gauss Map via Mathematica Exercises Asymptotic Curves on Surfaces Asymptotic Curves Examples of Asymptotic Curves Using Mathematica to Find Asymptotic Curves Exercises Ruied Surfaces Examples of Ruied Surfaces Fiat Ruied Surfaces Noncylindrical Ruied Surfaces Examples of Striction Curves of Noncylindrical Ruied Surfaces A Program for Ruied Surfaces Developables Exercises 354

8 XV 18. Surfaces of Revolution Principal Curves The Curvature ofa Surface of Revolution Generating a Surface of Revolution with Mathematica The Catenoid The Hyperboloid of Revolution The Surfaces of Revolution of Curves with Specified Curvature Exercises Surfaces of Constant Gaussian Curvature The Elliptic Integral of the Second Kind Surfaces of Revolution of Constant Positive Curvature Surfaces of Revolution of Constant Negative Curvature Kuen's Surface Exercises Intrinsic Surface Geometry Intrinsic Formulas for the Gaussian Curvature Gauss's Theorema Egregium Christoffel Symbols The Mainardi-Codazzi Equations Geodesic Curvature Exercises 408

9 21. Principal Curves and Umbiiic Points The Differential Equation for the Principal Curves Umbiiic Points Triply Orthogonal Systems of Surfaces Elliptic Coordinates Parabolic Coordinates Exercises Minimal Surfaces I Normal Variation Examples of Minimal Surfaces The Gauss Map ofa Minimal Surface Exercises Minimal Surfaces II Isothermal Coordinates Minimal Surfaces and Complex Function Theory Finding Conjugate Minimal Surfaces Enneper's Surface of Degree n The Weierstrass Representation The Weierstrass Patches via Mathematica Examples of Weierstrass Patches Exercises Construction of Surfaces Parallel Surfaces 481

10 1. xvii 24.2 The Shape Operator of a Parallel Surface Pedal Surfaces Generalized Helicoids Twisted Surfaces Exercises Differentiable Manifolds The Definition of Differentiable Manifold Differentiable Functions on Differentiable Manifolds Tangent Vectors on Differentiable Manifolds Induced Maps Vector Fields on Differentiable Manifolds Tensor Fields on Differentiable Manifolds Exercises Riemannian Manifolds Covariant Derivatives Indefinite Riemannian Metrics The Classical Treatment of Metrics Abstract Surfaces Metrics on Abstract Surfaces Examples of Abstract Surfaces Computing Curvature of Metrics on Abstract Surfaces Orientability of an Abstract Surface Geodesic Curvature for Abstract Surfaces Exercises 559

11 xviii 28. Geodesics on Surfaces The Geodesic Equations Clairaut Patches Examples of Clairaut Patches Finding Geodesics Numerically with Mathematica Exercises 574 Appendix 575 A. 1 General Programs 575 A.2 Plane Curves 607 A.3 Space Curves 620 A.4 Surfaces 622 A.5 Metrics 636 A.6 Mathematica to Acrospin 636 Bibliography 645 Index 658

Curves and Surfaces for Computer-Aided Geometric Design

Curves and Surfaces for Computer-Aided Geometric Design Curves and Surfaces for Computer-Aided Geometric Design A Practical Guide Fourth Edition Gerald Farin Department of Computer Science Arizona State University Tempe, Arizona /ACADEMIC PRESS I San Diego

More information

WWW links for Mathematics 138A notes

WWW links for Mathematics 138A notes WWW links for Mathematics 138A notes General statements about the use of Internet resources appear in the document listed below. We shall give separate lists of links for each of the relevant files in

More information

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C.

GEOMETRY OF CURVES CHAPMAN & HALL/CRC. Boca Raton London New York Washington, D.C. GEOMETRY OF CURVES JOHN W. RUTTER CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. Contents Introduction 0.1 Cartesian coordinates 0.2 Polar coordinates 0.3 The Argand diagram 0.4 Polar equations

More information

Erik W. Grafarend Friedrich W. Krumm. Map Projections. Cartographic Information Systems. With 230 Figures. 4y Springer

Erik W. Grafarend Friedrich W. Krumm. Map Projections. Cartographic Information Systems. With 230 Figures. 4y Springer Erik W. Grafarend Friedrich W. Krumm Map Projections Cartographic Information Systems With 230 Figures 4y Springer Contents Preface ***************************************** V 1 F r o m R i e m a n n manifolds

More information

Shape Modeling and Geometry Processing

Shape Modeling and Geometry Processing 252-0538-00L, Spring 2018 Shape Modeling and Geometry Processing Discrete Differential Geometry Differential Geometry Motivation Formalize geometric properties of shapes Roi Poranne # 2 Differential Geometry

More information

Geometry and Gravitation

Geometry and Gravitation Chapter 15 Geometry and Gravitation 15.1 Introduction to Geometry Geometry is one of the oldest branches of mathematics, competing with number theory for historical primacy. Like all good science, its

More information

Measuring Lengths The First Fundamental Form

Measuring Lengths The First Fundamental Form Differential Geometry Lia Vas Measuring Lengths The First Fundamental Form Patching up the Coordinate Patches. Recall that a proper coordinate patch of a surface is given by parametric equations x = (x(u,

More information

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry

Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Introduction p. 1 What Is Geometric Modeling? p. 1 Computer-aided geometric design Solid modeling Algebraic geometry Computational geometry Representation Ab initio design Rendering Solid modelers Kinematic

More information

How to use Geometric Software in Courses of Differential Geometry

How to use Geometric Software in Courses of Differential Geometry How to use Geometric Software in Courses of Differential Geometry TOMICZKOVÁ Světlana, JEŽEK František KMA FAV ZČU Plzeň 2018 Coimbra 2018 How to use Geometric Software in Courses of Differential Geometry

More information

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable

Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable Rida T. Farouki Pythagorean - Hodograph Curves: Algebra and Geometry Inseparable With 204 Figures and 15 Tables 4y Springer Contents 1 Introduction 1 1.1 The Lure of Analytic Geometry 1 1.2 Symbiosis of

More information

EXPERIENCING GEOMETRY

EXPERIENCING GEOMETRY EXPERIENCING GEOMETRY EUCLIDEAN AND NON-EUCLIDEAN WITH HISTORY THIRD EDITION David W. Henderson Daina Taimina Cornell University, Ithaca, New York PEARSON Prentice Hall Upper Saddle River, New Jersey 07458

More information

GD - Differential Geometry

GD - Differential Geometry Coordinating unit: 200 - FME - School of Mathematics and Statistics Teaching unit: 749 - MAT - Department of Mathematics Academic year: Degree: 2017 BACHELOR'S DEGREE IN MATHEMATICS (Syllabus 2009). (Teaching

More information

Numerical Treatment of Geodesic Differential. Equations on a Surface in

Numerical Treatment of Geodesic Differential. Equations on a Surface in International Mathematical Forum, Vol. 8, 2013, no. 1, 15-29 Numerical Treatment of Geodesic Differential Equations on a Surface in Nassar H. Abdel-All Department of Mathematics, Faculty of Science Assiut

More information

(Discrete) Differential Geometry

(Discrete) Differential Geometry (Discrete) Differential Geometry Motivation Understand the structure of the surface Properties: smoothness, curviness, important directions How to modify the surface to change these properties What properties

More information

Review 1. Richard Koch. April 23, 2005

Review 1. Richard Koch. April 23, 2005 Review Richard Koch April 3, 5 Curves From the chapter on curves, you should know. the formula for arc length in section.;. the definition of T (s), κ(s), N(s), B(s) in section.4. 3. the fact that κ =

More information

Introduction to geometry

Introduction to geometry 1 2 Manifolds A topological space in which every point has a neighborhood homeomorphic to (topological disc) is called an n-dimensional (or n-) manifold Introduction to geometry The German way 2-manifold

More information

274 Curves on Surfaces, Lecture 5

274 Curves on Surfaces, Lecture 5 274 Curves on Surfaces, Lecture 5 Dylan Thurston Notes by Qiaochu Yuan Fall 2012 5 Ideal polygons Previously we discussed three models of the hyperbolic plane: the Poincaré disk, the upper half-plane,

More information

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010)

Motivation. Parametric Curves (later Surfaces) Outline. Tangents, Normals, Binormals. Arclength. Advanced Computer Graphics (Fall 2010) Advanced Computer Graphics (Fall 2010) CS 283, Lecture 19: Basic Geometric Concepts and Rotations Ravi Ramamoorthi http://inst.eecs.berkeley.edu/~cs283/fa10 Motivation Moving from rendering to simulation,

More information

Differential Geometry MAT WEEKLY PROGRAM 1-2

Differential Geometry MAT WEEKLY PROGRAM 1-2 15.09.014 WEEKLY PROGRAM 1- The first week, we will talk about the contents of this course and mentioned the theory of curves and surfaces by giving the relation and differences between them with aid of

More information

Calculus on the complex plane C

Calculus on the complex plane C Calculus on the complex plane C Let z = x + iy be the complex variable on the complex plane C == R ir where i = 1. Definition A function f : C C is holomorphic if it is complex differentiable, i.e., for

More information

VISUALIZING QUATERNIONS

VISUALIZING QUATERNIONS THE MORGAN KAUFMANN SERIES IN INTERACTIVE 3D TECHNOLOGY VISUALIZING QUATERNIONS ANDREW J. HANSON «WW m.-:ki -. " ;. *' AMSTERDAM BOSTON HEIDELBERG ^ M Ä V l LONDON NEW YORK OXFORD

More information

Preliminary Mathematics of Geometric Modeling (3)

Preliminary Mathematics of Geometric Modeling (3) Preliminary Mathematics of Geometric Modeling (3) Hongxin Zhang and Jieqing Feng 2006-11-27 State Key Lab of CAD&CG, Zhejiang University Differential Geometry of Surfaces Tangent plane and surface normal

More information

Iain Claridge. Surface Curvature

Iain Claridge. Surface Curvature Iain Claridge Surface Curvature Siddhartha Chaudhuri http://www.cse.iitb.ac.in/~cs749 Curves and surfaces in 3D For our purposes: A curve is a map α : ℝ ℝ3 a b I (or from some subset I of ℝ) α(a) α(b)

More information

Euclidean Geometry. by Rolf Sulanke. Sept 18, version 5, January 30, 2010

Euclidean Geometry. by Rolf Sulanke. Sept 18, version 5, January 30, 2010 Euclidean Geometry by Rolf Sulanke Sept 18, 2003 version 5, January 30, 2010 In this notebook we develop some linear algebraic tools which can be applied to calculations in any dimension, and to creating

More information

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC

MATLAB. Advanced Mathematics and Mechanics Applications Using. Third Edition. David Halpern University of Alabama CHAPMAN & HALL/CRC Advanced Mathematics and Mechanics Applications Using MATLAB Third Edition Howard B. Wilson University of Alabama Louis H. Turcotte Rose-Hulman Institute of Technology David Halpern University of Alabama

More information

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo

05 - Surfaces. Acknowledgements: Olga Sorkine-Hornung. CSCI-GA Geometric Modeling - Daniele Panozzo 05 - Surfaces Acknowledgements: Olga Sorkine-Hornung Reminder Curves Turning Number Theorem Continuous world Discrete world k: Curvature is scale dependent is scale-independent Discrete Curvature Integrated

More information

Space Curves of Constant Curvature *

Space Curves of Constant Curvature * Space Curves of Constant Curvature * 2-11 Torus Knot of constant curvature. See also: About Spherical Curves Definition via Differential Equations. Space Curves that 3DXM can exhibit are mostly given in

More information

PG TRB MATHS /POLYTECNIC TRB MATHS NATIONAL ACADEMY DHARMAPURI

PG TRB MATHS /POLYTECNIC TRB MATHS NATIONAL ACADEMY DHARMAPURI PG TRB MATHS /POLYTECNIC TRB MATHS CLASSES WILL BE STARTED ON JULY 7 th Unitwise study materials and question papers available contact: 8248617507, 7010865319 PG TRB MATHS DIFFERENTIAL GEOMETRY TOTAL MARKS:100

More information

Tutorial 4. Differential Geometry I - Curves

Tutorial 4. Differential Geometry I - Curves 23686 Numerical Geometry of Images Tutorial 4 Differential Geometry I - Curves Anastasia Dubrovina c 22 / 2 Anastasia Dubrovina CS 23686 - Tutorial 4 - Differential Geometry I - Curves Differential Geometry

More information

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND

Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 1 AND Chapter 9 Geometry Copyright 2009 Pearson Education, Inc. Chapter 9 Section 7 - Slide 2 WHAT YOU WILL LEARN Transformational geometry,

More information

Geodesic and curvature of piecewise flat Finsler surfaces

Geodesic and curvature of piecewise flat Finsler surfaces Geodesic and curvature of piecewise flat Finsler surfaces Ming Xu Capital Normal University (based on a joint work with S. Deng) in Southwest Jiaotong University, Emei, July 2018 Outline 1 Background Definition

More information

The World Is Not Flat: An Introduction to Modern Geometry

The World Is Not Flat: An Introduction to Modern Geometry The World Is Not Flat: An to The University of Iowa September 15, 2015 The story of a hunting party The story of a hunting party What color was the bear? The story of a hunting party Overview Gauss and

More information

William P. Thurston. The Geometry and Topology of Three-Manifolds

William P. Thurston. The Geometry and Topology of Three-Manifolds William P. Thurston The Geometry and Topology of Three-Manifolds Electronic version 1.0 - October 1997 http://www.msri.org/gt3m/ This is an electronic edition of the 1980 notes distributed by Princeton

More information

Properties of Bertrand curves in dual space

Properties of Bertrand curves in dual space Vol. 9(9), pp. 208-213, 16 May, 2014 DOI: 10.5897/IJPS2013.4067 Article Number: 638CA8144589 ISSN 1992-1950 Copyright 2014 Author(s) retain the copyright of this article http://www.academicjournals.org/ijps

More information

GAUSS-BONNET FOR DISCRETE SURFACES

GAUSS-BONNET FOR DISCRETE SURFACES GAUSS-BONNET FOR DISCRETE SURFACES SOHINI UPADHYAY Abstract. Gauss-Bonnet is a deep result in differential geometry that illustrates a fundamental relationship between the curvature of a surface and its

More information

A surface f : M R 3 is minimal if: M has MEAN CURVATURE = 0. Coordinate functions are Conformal Gauss map G: M S 2 = C { }. MEROMORPHIC GAUSS MAP

A surface f : M R 3 is minimal if: M has MEAN CURVATURE = 0. Coordinate functions are Conformal Gauss map G: M S 2 = C { }. MEROMORPHIC GAUSS MAP Definition of minimal surface A surface f : M R 3 is minimal if: M has MEAN CURVATURE = 0. Small pieces have Small pieces have Small pieces occur as Coordinate functions are LEAST AREA. LEAST ENERGY. SOAP

More information

Teaching diary. Francis Bonahon University of Southern California

Teaching diary. Francis Bonahon University of Southern California Teaching diary In the Fall 2010, I used the book Low-dimensional geometry: from euclidean surfaces to hyperbolic knots as the textbook in the class Math 434, Geometry and Transformations, at USC. Most

More information

Gaussian and Mean Curvature Planar points: Zero Gaussian curvature and zero mean curvature Tangent plane intersects surface at infinity points Gauss C

Gaussian and Mean Curvature Planar points: Zero Gaussian curvature and zero mean curvature Tangent plane intersects surface at infinity points Gauss C Outline Shape Analysis Basics COS 526, Fall 21 Curvature PCA Distance Features Some slides from Rusinkiewicz Curvature Curvature Curvature κof a curve is reciprocal of radius of circle that best approximates

More information

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition.

Chapter 3. Quadric hypersurfaces. 3.1 Quadric hypersurfaces Denition. Chapter 3 Quadric hypersurfaces 3.1 Quadric hypersurfaces. 3.1.1 Denition. Denition 1. In an n-dimensional ane space A; given an ane frame fo;! e i g: A quadric hypersurface in A is a set S consisting

More information

Brick patterns on shells using geodesic coordinates

Brick patterns on shells using geodesic coordinates 25-28th September 2017, Hamburg, Germany Annette Bögle, Manfred Grohmann (eds.) Brick patterns on shells using geodesic coordinates Emil ADIELS *, Mats ANDER a, Chris J K WILLIAMS b * Department of Architecture,

More information

BARBIER'S THEOREM IN THE LOBACHEVSKI PLANE

BARBIER'S THEOREM IN THE LOBACHEVSKI PLANE BARBIER'S THEOREM IN THE LOBACHEVSKI PLANE JAY P. FILLMORE1 Abstract. In the Lobachevski plane, horocycles with the same center are geodesic parallels and are natural replacements for the lines used in

More information

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Shape Modeling. Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2011 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2011 2/22/2011 Differential Geometry of Surfaces Continuous and Discrete Motivation Smoothness

More information

The topology of limits of embedded minimal disks. (joint work with Jacob Bernstein) Giuseppe Tinaglia King s College London

The topology of limits of embedded minimal disks. (joint work with Jacob Bernstein) Giuseppe Tinaglia King s College London The topology of limits of embedded minimal disks. (joint work with Jacob Bernstein) Giuseppe Tinaglia King s College London Notations; Background; Main result; Possible questions; Another proof. Let M

More information

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring

Outcomes List for Math Multivariable Calculus (9 th edition of text) Spring Outcomes List for Math 200-200935 Multivariable Calculus (9 th edition of text) Spring 2009-2010 The purpose of the Outcomes List is to give you a concrete summary of the material you should know, and

More information

Manifold Learning Theory and Applications

Manifold Learning Theory and Applications Manifold Learning Theory and Applications Yunqian Ma and Yun Fu CRC Press Taylor Si Francis Group Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group, an informa business Contents

More information

Introduction to Immersion, Embedding, and the Whitney Embedding Theorems

Introduction to Immersion, Embedding, and the Whitney Embedding Theorems Introduction to Immersion, Embedding, and the Whitney Embedding Theorems Paul Rapoport November 23, 2015 Abstract We give an overview of immersion in order to present the idea of embedding, then discuss

More information

Geometric Modeling Mortenson Chapter 11. Complex Model Construction

Geometric Modeling Mortenson Chapter 11. Complex Model Construction Geometric Modeling 91.580.201 Mortenson Chapter 11 Complex Model Construction Topics Topology of Models Connectivity and other intrinsic properties Graph-Based Models Emphasize topological structure Boolean

More information

Fathi El-Yafi Project and Software Development Manager Engineering Simulation

Fathi El-Yafi Project and Software Development Manager Engineering Simulation An Introduction to Geometry Design Algorithms Fathi El-Yafi Project and Software Development Manager Engineering Simulation 1 Geometry: Overview Geometry Basics Definitions Data Semantic Topology Mathematics

More information

Manifold Studies of Nonlinear Antenna Array Geometries

Manifold Studies of Nonlinear Antenna Array Geometries IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 49, NO. 3, MARCH 2001 497 Manifold Studies of Nonlinear Antenna Array Geometries Athanassios Manikas, Member, IEEE, Adham Sleiman, Student Member, IEEE, and

More information

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST

Freeform Architecture and Discrete Differential Geometry. Helmut Pottmann, KAUST Freeform Architecture and Discrete Differential Geometry Helmut Pottmann, KAUST Freeform Architecture Motivation: Large scale architectural projects, involving complex freeform geometry Realization challenging

More information

Two Connections between Combinatorial and Differential Geometry

Two Connections between Combinatorial and Differential Geometry Two Connections between Combinatorial and Differential Geometry John M. Sullivan Institut für Mathematik, Technische Universität Berlin Berlin Mathematical School DFG Research Group Polyhedral Surfaces

More information

Minimal Surfaces. (or at least a flavour thereof) Simon Cox University of Wales Aberystwyth Soap Films

Minimal Surfaces. (or at least a flavour thereof) Simon Cox University of Wales Aberystwyth Soap Films Minimal Surfaces (or at least a flavour thereof) Brakke Brakke Simon Cox University of Wales Aberystwyth foams@aber.ac.uk Soap Films The force of surface tension in a single soap film causes it to reduce

More information

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary?

Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Don t just read it; fight it! Ask your own questions, look for your own examples, discover your own proofs. Is the hypothesis necessary? Is the converse true? What happens in the classical special case?

More information

04 - Normal Estimation, Curves

04 - Normal Estimation, Curves 04 - Normal Estimation, Curves Acknowledgements: Olga Sorkine-Hornung Normal Estimation Implicit Surface Reconstruction Implicit function from point clouds Need consistently oriented normals < 0 0 > 0

More information

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS

GEOMETRIC TOOLS FOR COMPUTER GRAPHICS GEOMETRIC TOOLS FOR COMPUTER GRAPHICS PHILIP J. SCHNEIDER DAVID H. EBERLY MORGAN KAUFMANN PUBLISHERS A N I M P R I N T O F E L S E V I E R S C I E N C E A M S T E R D A M B O S T O N L O N D O N N E W

More information

Design, Computation and Computer Controlled Devices

Design, Computation and Computer Controlled Devices 4.212 Design Fabrication Design, Computation and Computer Controlled Devices Prof. Larry Sass Department of Architecture and Planning MIT LECTURE #4 [1] Designing with Paper [2] Surface Representation

More information

Cissoid. History. From Robert C. Yates Curves and their properties (1952):

Cissoid. History. From Robert C. Yates Curves and their properties (1952): History Cissoid Diocles ( 250 100 BC) invented this curve to solve the doubling of the cube problem (also know as the the Delian problem). The name cissoid (ivy-shaped) derives from the shape of the curve.

More information

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables.

Surfaces. U (x; y; z) = k. Indeed, many of the most familiar surfaces are level surfaces of functions of 3 variables. Surfaces Level Surfaces One of the goals of this chapter is to use di erential calculus to explore surfaces, in much the same way that we used di erential calculus to study curves in the rst chapter. In

More information

Exploring Analytic Geometry with Mathematica Donald L. Vossler

Exploring Analytic Geometry with Mathematica Donald L. Vossler Exploring Analytic Geometry with Mathematica Donald L. Vossler BME, Kettering University, 1978 MM, Aquinas College, 1981 Anaheim, California USA, 1999 Copyright 1999-2007 Donald L. Vossler Preface The

More information

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3

Section Polar Coordinates. or 4 π (restricting θ to the domain of the lemniscate). So, there are horizontal tangents at ( 4 3 Section 10.3 Polar Coordinates 66. r = e θ x = r cos θ = e θ cos θ, y = r sin θ = e θ sin θ. = eθ sin θ+e θ cos θ = e θ (sin θ+cos θ), dx = eθ cos θ e θ sin θ = e θ (cos θ sin θ). Let 1 = 0 sin θ = cos

More information

Cambridge University Press Hyperbolic Geometry from a Local Viewpoint Linda Keen and Nikola Lakic Excerpt More information

Cambridge University Press Hyperbolic Geometry from a Local Viewpoint Linda Keen and Nikola Lakic Excerpt More information Introduction Geometry is the study of spatial relationships, such as the familiar assertion from elementary plane Euclidean geometry that, if two triangles have sides of the same lengths, then they are

More information

Research in Computational Differential Geomet

Research in Computational Differential Geomet Research in Computational Differential Geometry November 5, 2014 Approximations Often we have a series of approximations which we think are getting close to looking like some shape. Approximations Often

More information

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT:

First of all, we need to know what it means for a parameterize curve to be differentiable. FACT: CALCULUS WITH PARAMETERIZED CURVES In calculus I we learned how to differentiate and integrate functions. In the chapter covering the applications of the integral, we learned how to find the length of

More information

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time.

Mathematically, the path or the trajectory of a particle moving in space in described by a function of time. Module 15 : Vector fields, Gradient, Divergence and Curl Lecture 45 : Curves in space [Section 45.1] Objectives In this section you will learn the following : Concept of curve in space. Parametrization

More information

GD - Geometry for Design

GD - Geometry for Design Coordinating unit: Teaching unit: Academic year: Degree: ECTS credits: 2018 295 - EEBE - Barcelona East School of Engineering 749 - MAT - Department of Mathematics BACHELOR'S DEGREE IN CHEMICAL ENGINEERING

More information

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces

CS 523: Computer Graphics, Spring Differential Geometry of Surfaces CS 523: Computer Graphics, Spring 2009 Shape Modeling Differential Geometry of Surfaces Andrew Nealen, Rutgers, 2009 3/4/2009 Recap Differential Geometry of Curves Andrew Nealen, Rutgers, 2009 3/4/2009

More information

Surfaces: notes on Geometry & Topology

Surfaces: notes on Geometry & Topology Surfaces: notes on Geometry & Topology 1 Surfaces A 2-dimensional region of 3D space A portion of space having length and breadth but no thickness 2 Defining Surfaces Analytically... Parametric surfaces

More information

DIFFERENTIAL geometry is a branch of mathematics

DIFFERENTIAL geometry is a branch of mathematics 3272 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 7, JULY 2011 Extended Array Manifolds: Functions of Array Manifolds Georgios Efstathopoulos, Member, IEEE, and Athanassios Manikas, Senior Member,

More information

Math 126C: Week 3 Review

Math 126C: Week 3 Review Math 126C: Week 3 Review Note: These are in no way meant to be comprehensive reviews; they re meant to highlight the main topics and formulas for the week. Doing homework and extra problems is always the

More information

Large PHiZZy Donuts & Cola Modelling Surfaces with Modular Origami

Large PHiZZy Donuts & Cola Modelling Surfaces with Modular Origami Large PHiZZy Donuts & Cola Modelling Surfaces with Modular Origami by Lee Jian Le, Lim Jia Wei, Lu Yongquan Mentor: Gwee Hwee Ngee Hwa Chong Institution (High School) 1 Introduction Modular origami is

More information

Nonorientable Surfaces

Nonorientable Surfaces Chapter 11 Nonorientable Surfaces An important discovery of the nineteenth century was that nonorientable surfaces exist. The goal of the present chapter is to gain an understanding of such surfaces. We

More information

Hyperbolic Structures from Ideal Triangulations

Hyperbolic Structures from Ideal Triangulations Hyperbolic Structures from Ideal Triangulations Craig Hodgson University of Melbourne Geometric structures on 3-manifolds Thurston s idea: We would like to find geometric structures (or metrics) on 3-manifolds

More information

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by.

Definition A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by. Chapter 1 Geometry: Nuts and Bolts 1.1 Metric Spaces Definition 1.1.1. A metric space is proper if all closed balls are compact. The length pseudo metric of a metric space X is given by (x, y) inf p. p:x

More information

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets

Quadric Surfaces. Six basic types of quadric surfaces: ellipsoid. cone. elliptic paraboloid. hyperboloid of one sheet. hyperboloid of two sheets Quadric Surfaces Six basic types of quadric surfaces: ellipsoid cone elliptic paraboloid hyperboloid of one sheet hyperboloid of two sheets hyperbolic paraboloid (A) (B) (C) (D) (E) (F) 1. For each surface,

More information

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2

1.6 Quadric Surfaces Brief review of Conic Sections 74 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE. Figure 1.18: Parabola y = 2x 2 7 CHAPTER 1. VECTORS AND THE GEOMETRY OF SPACE Figure 1.18: Parabola y = x 1.6 Quadric Surfaces Figure 1.19: Parabola x = y 1.6.1 Brief review of Conic Sections You may need to review conic sections for

More information

ME 115(b): Final Exam, Spring

ME 115(b): Final Exam, Spring ME 115(b): Final Exam, Spring 2011-12 Instructions 1. Limit your total time to 5 hours. That is, it is okay to take a break in the middle of the exam if you need to ask me a question, or go to dinner,

More information

Supplemental Lecture 4. Surfaces of Zero, Positive and Negative Gaussian Curvature. Euclidean, Spherical and Hyperbolic Geometry.

Supplemental Lecture 4. Surfaces of Zero, Positive and Negative Gaussian Curvature. Euclidean, Spherical and Hyperbolic Geometry. Supplemental Lecture 4 Surfaces of Zero, Positive and Negative Gaussian Curvature. Euclidean, Spherical and Hyperbolic Geometry. Abstract This lecture considers two dimensional surfaces embedded in three

More information

Curvilinear Coordinates

Curvilinear Coordinates Curvilinear Coordinates Cylindrical Coordinates A 3-dimensional coordinate transformation is a mapping of the form T (u; v; w) = hx (u; v; w) ; y (u; v; w) ; z (u; v; w)i Correspondingly, a 3-dimensional

More information

Advances in Metric-neutral Visualization

Advances in Metric-neutral Visualization Advances in Metric-neutral Visualization Charles Gunn Institut für Mathematik Geometry and Visualization Group Technisches Universität Berlin GraVisMa 2010, Brno, October 7, 2010 Overview The talk will

More information

Background for Surface Integration

Background for Surface Integration Background for urface Integration 1 urface Integrals We have seen in previous work how to define and compute line integrals in R 2. You should remember the basic surface integrals that we will need to

More information

STATISTICS AND ANALYSIS OF SHAPE

STATISTICS AND ANALYSIS OF SHAPE Control and Cybernetics vol. 36 (2007) No. 2 Book review: STATISTICS AND ANALYSIS OF SHAPE by H. Krim, A. Yezzi, Jr., eds. There are numerous definitions of a notion of shape of an object. These definitions

More information

Demo of some simple cylinders and quadratic surfaces

Demo of some simple cylinders and quadratic surfaces Demo of some simple cylinders and quadratic surfaces Yunkai Zhou Department of Mathematics Southern Methodist University (Prepared for Calculus-III, Math 2339) Acknowledgement: The very nice free software

More information

On Geodesics of 3D Surfaces of Rotations in Euclidean and Minkowskian Spaces

On Geodesics of 3D Surfaces of Rotations in Euclidean and Minkowskian Spaces International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-3, Issue-1, January 2016 On Geodesics of 3D Surfaces of Rotations in Euclidean and Minkowskian Spaces Anis I Saad,

More information

Curriculum Vitae of the Authors

Curriculum Vitae of the Authors Curriculum Vitae of the Authors Mario Hirz has been awarded an M.S. degree in mechanical engineering and economics, a Ph.D. in mechanical engineering, and a venia docendi in the area of virtual product

More information

16.6 Parametric Surfaces and Their Areas

16.6 Parametric Surfaces and Their Areas SECTION 6.6 PARAMETRIC SURFACES AND THEIR AREAS i j k (b) From (a), v = w r = =( ) i +( ) j +( ) k = i + j i j k (c) curl v = v = = () () i + ( ) () j + () ( ) k =[ ( )] k = k =w 9. For any continuous

More information

MAT175 Overview and Sample Problems

MAT175 Overview and Sample Problems MAT175 Overview and Sample Problems The course begins with a quick review/overview of one-variable integration including the Fundamental Theorem of Calculus, u-substitutions, integration by parts, and

More information

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas

16.6. Parametric Surfaces. Parametric Surfaces. Parametric Surfaces. Vector Calculus. Parametric Surfaces and Their Areas 16 Vector Calculus 16.6 and Their Areas Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and Their Areas Here we use vector functions to describe more general

More information

Estimating affine-invariant structures on triangle meshes

Estimating affine-invariant structures on triangle meshes Estimating affine-invariant structures on triangle meshes Thales Vieira Mathematics, UFAL Dimas Martinez Mathematics, UFAM Maria Andrade Mathematics, UFS Thomas Lewiner École Polytechnique Invariant descriptors

More information

12.6 Cylinders and Quadric Surfaces

12.6 Cylinders and Quadric Surfaces 12 Vectors and the Geometry of Space 12.6 and Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. and We have already looked at two special types of surfaces:

More information

MODERN FACTOR ANALYSIS

MODERN FACTOR ANALYSIS MODERN FACTOR ANALYSIS Harry H. Harman «ö THE pigj UNIVERSITY OF CHICAGO PRESS Contents LIST OF ILLUSTRATIONS GUIDE TO NOTATION xv xvi Parti Foundations of Factor Analysis 1. INTRODUCTION 3 1.1. Brief

More information

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous.

Let be a function. We say, is a plane curve given by the. Let a curve be given by function where is differentiable with continuous. Module 8 : Applications of Integration - II Lecture 22 : Arc Length of a Plane Curve [Section 221] Objectives In this section you will learn the following : How to find the length of a plane curve 221

More information

Discrete Differential Geometry. Differential Geometry

Discrete Differential Geometry. Differential Geometry Discrete Differential Geometry Yiying Tong CSE 891 Sect 004 Differential Geometry Why do we care? theory: special surfaces minimal, CMC, integrable, etc. computation: simulation/processing Grape (u. of

More information

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module:

MAC Learning Objectives. Module 12 Polar and Parametric Equations. Polar and Parametric Equations. There are two major topics in this module: MAC 4 Module 2 Polar and Parametric Equations Learning Objectives Upon completing this module, you should be able to:. Use the polar coordinate system. 2. Graph polar equations. 3. Solve polar equations.

More information

Geometry and Topology of Submanifolds, VIII

Geometry and Topology of Submanifolds, VIII Geometry and Topology of Submanifolds, VIII Belgium 13-14 July 1995 Norway 18 July - 7 August 1995 Editors if Dillon (Katholieke Universiteit Leuven, Belgium) B. KoHirakOV (International Sophus Lie Centre,

More information

Emil Saucan EE Department, Technion

Emil Saucan EE Department, Technion Curvature Estimation over Smooth Polygonal Meshes Using The Half Tube Formula Emil Saucan EE Department, Technion Joint work with Gershon Elber and Ronen Lev. Mathematics of Surfaces XII Sheffield September

More information

GEOMETRY OF SURFACES. b3 course Nigel Hitchin

GEOMETRY OF SURFACES. b3 course Nigel Hitchin GEOMETRY OF SURFACES b3 course 2004 Nigel Hitchin hitchin@maths.ox.ac.uk 1 1 Introduction This is a course on surfaces. Your mental image of a surface should be something like this: or this However we

More information

Surfaces. Ron Goldman Department of Computer Science Rice University

Surfaces. Ron Goldman Department of Computer Science Rice University Surfaces Ron Goldman Department of Computer Science Rice University Representations 1. Parametric Plane, Sphere, Tensor Product x = f (s,t) y = g(s,t) z = h(s,t) 2. Algebraic Plane, Sphere, Torus F(x,

More information

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols

Lecture 23. Surface integrals, Stokes theorem, and the divergence theorem. Dan Nichols Lecture 23 urface integrals, tokes theorem, and the divergence theorem an Nichols nichols@math.umass.edu MATH 233, pring 218 University of Massachusetts April 26, 218 (2) Last time: Green s theorem Theorem

More information

Unit 3 Functions of Several Variables

Unit 3 Functions of Several Variables Unit 3 Functions of Several Variables In this unit, we consider several simple examples of multi-variable functions, quadratic surfaces and projections, level curves and surfaces, partial derivatives of

More information

Can Maps Make the World Go Round?

Can Maps Make the World Go Round? Can Maps Make the World Go Round? Vijay Ravikumar CMI July 3, 2017 Vijay Ravikuar (CMI) Can Maps Make the World Go Round? July 3, 2017 1 / 48 A common map of the Earth. Maybe you ve seen this map before.

More information