ECEN Final Exam Fall Instructor: Srinivas Shakkottai

Size: px
Start display at page:

Download "ECEN Final Exam Fall Instructor: Srinivas Shakkottai"

Transcription

1 ECEN Final Exam Fall 2013 Instructor: Srinivas Shakkottai NAME: Problem maximum points your points Problem 1 10 Problem 2 10 Problem 3 20 Problem 4 20 Problem 5 20 Problem 6 20 total 100 1

2 2 Midterm #3 1. (10pt) Pick one and only one answer for each question (indicate by circling): (a) A router running distance-vector routing knows: i. Nothing ii. The entire network s topology iii. The distance to destinations through its immediate neighbors (b) A router running link-state routing knows: i. Nothing ii. The entire network s topology iii. Only the distance to destinations through its immediate neighbors (c) Which one of the following apply to MAC addresses? i. May be assigned dynamically ii. Used in the physical layer iii. Used in the data link layer iv. Used in the network layer v. Hierarchical (d) Which one of the following applies to IP addresses? i. May be assigned dynamically ii. Used in the physical layer iii. Used in the data link layer iv. Always globally unique (e) Once this test is over, you go to a take-out only McDonald s. While waiting you notice that, on average, a new customer goes in to the store every 5 minutes, and a customer receives their order and goes out on average 3 minutes after arriving. On average, how many customers are inside McDonald s: i. 2 customers ii. 5 customers iii. 0.6 customers iv. There is insufficient information provided December 6, 2013 Srinivas Shakkottai ECEN 424

3 Midterm # (10 pt) TCP. Complete the missing sequence numbers (Seq), acknowledgment numbers (ACK), and segment length (LEN) in the following TCP connection (Figure 1). We assume: No timeouts occur at the receiver. The connection is full duplex (bi-directional data flow in same connection). The sender and the receiver have always data to transmit. There are no delayed acknowledgements at the sender or the receiver (but packets can be lost as shown). See review 5 Figure 1: Sequence and ACK numbers for a TCP connection. ECEN 424 Srinivas Shakkottai December 6, 2013

4 4 Midterm #3 3. (20pt) TCP Congestion Control. Although slow start with congestion avoidance is an effective technique for coping with congestion, it can result in long recovery times in high-speed networks. (a) (10pt) Assume a roundtrip time delay of 100 ms (about what might occur across a continent) and a link with an available bandwidth of 600 Mbps and a segment size of 3000 bits. Determine the window size needed to keep the pipe full. Now, suppose that TCP has reached that window size and then a time out occurs. Compute the time that it will take to get back to that window size after the time out, assuming that there are no losses and that every packet is acked. (b) (10pt) As in part (a), assume that TCP has reached the maximum window size required to keep the pipe full, and then a time out occurs. Compute the minimum segment size required to guarantee that the time to reach the maximum window size after the time out is no more than 1.0 s. Again, assume that there are no losses after the time out and that every packet is acked. Hint: Remember to calculate the congestion threshold, and use it to divide the congestion window growth process into slow start and congestion avoidance phases. See review 5 December 6, 2013 Srinivas Shakkottai ECEN 424

5 Midterm # (20pt) Packet Timings. Consider a network with two links shown in Figure 2. Node X is trying to send data to node Z. The first link (X Y ) has capacity C and latency (i.e., propagation delay) L, and the second link (Y Z) has capacity 2C and latency L/2. Figure 2: Network with two links. (a) Suppose the network is circuit-switched. Assume that path setup has occurred and at time t =0 node X begins sending a 1MB file to Z. As soon as the last bit of the file has been put on the wire, X sends a 2MB file to Z. The last bit of the 1MB file arrives at Z at time t =0.8 sec, and the last bit of the 2MB file arrives at Z at time t =1.8 sec. What is L? What is C? (b) Suppose that it is packet-switched. Assume that at time t =0node X begins sending a 1KB packet to Z. As soon as this transmission is completely on the wire X sends a 2KB packet to Z. Assume there is no processing delay at any node. The first packet arrives at Z at time t =1.8 msec, and the second packet arrives at Z at time t =3.4 msec. What is L? What is C? Solution on next page ECEN 424 Srinivas Shakkottai December 6, 2013

6 Packet Timings I Consider a network with two links. Node X is trying to send data to node Z. X Y Z The first link (X-Y) has bandwidth B and latency (i.e., propagation delay) L, and the second link (Y-Z) has bandwidth 2B and latency L/2. Consider two cases: The network is circuit-switched: Assume that all path setup has already occurred and that at time t=0 node X begins sending a 1MB file to Z. As soon as the last bit of the file has been put on the wire, X sends a 2MB file to Z. The last bit of the 1MB file arrives at Z at time t=0.8sec, and the last bit of the 2MB file arrives at Z at time t=1.8sec. 1. What is L (in msec)? What is B (in Mbps)? 16 The circuit as a whole can offer service with end-to-end bandwidth B (we ll call this throughput T to avoid confusion with bytes), and latency of (L + L/2). 1MB / T + (L + L/2) =.8sec (1) (1MB + 2MB) / T + (L + L/2) = 1.8sec (2) 2MB / T = 1.8sec - 0.8sec = 1sec (3) from (1) + (2) T = 2MB/sec (4) from (3) 1MB / (2MB/sec) + (L + L/2) = 0.8sec (5) from (1) + (4) 0.5sec + (L + L/2) = 0.8sec (6) from (5) L + L/2 = 0.3sec (7) from (6) L = 0.2sec (8) from (7) File 1: Trans XZ 0.5s P XY 0.2 P YZ 0.1 P = propagation time File 2: Transmission XZ 1.0 P XY 0.2 P YZ 0.1 2

7 The network is packet-switched: Assume that at time t=0 node X begins sending a 1KB packet to Z. As soon as this transmission is completely on the wire X sends a 2KB packet to Z. Assume there is no processing delay at any node. The first packet arrives at Z at time t=1.8msec, and the second packet arrives at Z at time t=3.4msec. 3. What is L (in msec)? What is B (in Mbps)? 12.5 Note: since the second link is faster, there is no queueing delay. (1KB / T) + L + (1KB / 2T) + L/2 = 1.8ms (1) (1KB / T) + (2KB / T) + L + (2KB / 2T) + L/2 = 3.4ms (2) (5KB / 2T) = 3.4ms 1.8ms = 1.6ms (3) from (1) + (2) T = 5KB / 2 / 1.6ms = 12.5Mbps (4) from (3) 0.64ms + L ms + L/2 = 1.8ms (5) from (1) + (4) L + L/2 = 0.84ms (6) from (5) L = 0.56ms (7) from (6) File 1: Trans XY 0.64 P XY 0.56 Tr YZ 0.32 P YZ 0.28 File 2: Transmission XY 1.28 P XY 0.56 Tr YZ 0.64 P YZ

8 6 Midterm #3 5. (20pt) Statistical Multiplexing. Assume that we have a network technology that divides time into frames. Each frame contains two time slots, and the link capacity is such that a single packet can be served in each time slot. Assume there are two flows that generate packets at random, independent of each other. Thus, at the beginning of each frame, each flow generates packets with the following probabilities: 0 packets with probability packet with probability packets with probability 1 2 (a) (5pt) What is the average number of packets both flows generate in a frame? Remember, we are asking about the total generated by both flows, not the number generated by a single flow. (b) (5pt) Assume that each flow is assigned a single slot in each frame. That is, it can use one and only one slot to carry its packets in each frame; if it generates two packets in a frame, one of them must be dropped. For example, Flow 1 is always given slot 1 and Flow 2 is always given slot 2 in each frame. What is the average number of packets carried in each frame? Remember, we are asking about all the packets carried, not just about those for a particular flow, i.e, lots of cases need to be considered. (c) (10pt) Assume that the flows share the slots in a frame; if not all the packets fit, then the excess packets are dropped (ignore how we choose which packets to drop; it won t matter in the answer). That is, if two or fewer packets are generated by the flows (in aggregate), then all of them are carried in that frame, but if more than two are generated than only two are carried in a frame. How many packets are, on average, sent in each frame? Why is the throughput higher as compared to part (b)? (a) 2*(1* *0.5) = 2.5 (b) Cases: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2) Find the probability for each case, and the number of packets carried, assuming at most one packet for each flow. (c) Cases: (0,0), (0,1), (0,2), (1,0), (1,1), (1,2), (2,0), (2,1), (2,2) Find the probability for each case, and the number of packets carried, assuming at most two packets per frame. December 6, 2013 Srinivas Shakkottai ECEN 424

9 8 Midterm #3 6. (20pt) Token Bucket. Consider a traffic stream with rate indicated in Figure 3. Figure 3: Rate Diagram Suppose this stream is passed into a token bucket filter with token generation rate r (where one token is needed per bit) and the token buffer size is B. Assume that the token bucket is full at the beginning. Suppose r = 15 kbps (i.e., 15 kilo tokens per second). What is the minimum size of B required so that the filter lets the stream pass with no loss or delay? Hint: Divide your calculations into four parts corresponding to the four different arrival rates. In each part, the initial condition on the number of tokens in the token bucket is equal to the final condition of the previous part. Solution on next page December 6, 2013 Srinivas Shakkottai ECEN 424

10 9. Token Bucket (extra 10pt) Consider a traffic stream with rate indicated in the figure above. Suppose this stream is passed into a token bucket filter with token generation rate r (where one token is needed per bit) and the token buffer size is B. Assume that the token bucket is full at the beginning. Suppose r=15 kbps (i.e., 15 kilo tokens per second). What is the minimum size of B required so that the filter lets the stream pass with no loss or delay? Answer: Let R denote the bit rate of traffic stream. (1) In time interval (0, 5s), At t = 0, the filter starts with a full buffer; at t = 5 sec, the tokens left in the buffer are B + 15 kbps * 5s - 20 kbps * 5s = (B n 25) Kbits (2) In time interval (5s, 15s) At t = 5 sec, the tokens in the buffer are (B n 25) Kbits; at t = 15 sec, the tokens left in the buffer are (B n 25) Kbits + 15 kbps * (15 n 5)s - 10 kbps * (15 n 5)s = (B + 25) Kbits This means that the buffer is full, the tokens in the buffer are still B Kbits. (3) In time interval (15s, 25s) At t = 15 sec, the tokens in the buffer are B Kbits; at t = 25 sec, the tokens left in the buffer are B + 15 kbps * (25 n 15)s - 30 kbps * (25 n 15)s = (B n 150) Kbits (4) After t = 25 sec As r R, the number of tokens in the buffer will not decrease any more. Thus we do not need to worry about the rest time period. As the number of tokens in the buffer should 0 at any time, so both B n 25 0 and B n should be satisfied Thus the minimum requirement for B is 150 Kbits

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007

CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 CS 344/444 Computer Network Fundamentals Final Exam Solutions Spring 2007 Question 344 Points 444 Points Score 1 10 10 2 10 10 3 20 20 4 20 10 5 20 20 6 20 10 7-20 Total: 100 100 Instructions: 1. Question

More information

EE 122 Fall st Midterm. Professor: Lai Stoica

EE 122 Fall st Midterm. Professor: Lai Stoica EE 122 Fall 2001 1 st Midterm Professor: Lai Stoica Question 1 (15 pt) Layering is a key design principle in computer networks. Name two advantages, and one disadvantage to layering. Explain. Use no more

More information

Tutorial 8 : Congestion Control

Tutorial 8 : Congestion Control Lund University ETSN01 Advanced Telecommunication Tutorial 8 : Congestion Control Author: Antonio Franco Emma Fitzgerald Tutor: Farnaz Moradi December 18, 2015 Contents I Before you start 3 II Exercises

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 16, minutes CS 4: COMPUTER NETWORKS SPRING 03 FINAL May 6, 03 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable justification.

More information

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005

Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 Final: 5/20/2005 There are 10 questions in total. Please write your SID

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - B COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 20 MIDTERM EXAMINATION #1 - A COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2008-75 minutes This examination document

More information

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window.

c) With the selective repeat protocol, it is possible for the sender to receive an ACK for a packet that falls outside of its current window. Part 1 Question 1 [0.5 Marks] Suppose an application generates chunks of 40 bytes of data every 20 msec, and each chunk gets encapsulated by a TCP segment and then an IP datagram. What percentage of each

More information

FACULTY OF COMPUTING AND INFORMATICS

FACULTY OF COMPUTING AND INFORMATICS namibia UniVERSITY OF SCIEnCE AnD TECHnOLOGY FACULTY OF COMPUTING AND INFORMATICS DEPARTMENT OF COMPUTER SCIENCE QUALIFICATION: Bachelor of Computer Science {Honours) QUALIFICATION CODE: 08BCSH LEVEL:

More information

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks

School of Engineering Department of Computer and Communication Engineering Semester: Fall Course: CENG415 Communication Networks School of Engineering Department of Computer and Communication Engineering Semester: Fall 2012 2013 Course: CENG415 Communication Networks Instructors: Mr Houssam Ramlaoui, Dr Majd Ghareeb, Dr Michel Nahas,

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 12, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 12, minutes CS 421: COMPUTER NETWORKS FALL 2011 FINAL January 12, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Computer Communication Networks Midterm Review

Computer Communication Networks Midterm Review Computer Communication Networks Midterm Review ICEN/ICSI 416 Fall 2018 Prof. Aveek Dutta 1 Instructions The exam is closed book, notes, computers, phones. You can use calculator, but not one from your

More information

Congestion control in TCP

Congestion control in TCP Congestion control in TCP If the transport entities on many machines send too many packets into the network too quickly, the network will become congested, with performance degraded as packets are delayed

More information

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica

EE122 MIDTERM EXAM: Scott Shenker, Ion Stoica EE MITERM EXM: 00-0- Scott Shenker, Ion Stoica Last name Student I First name Login: ee- Please circle the last two letters of your login. a b c d e f g h i j k l m n o p q r s t u v w x y z a b c d e

More information

CS 557 Congestion and Complexity

CS 557 Congestion and Complexity CS 557 Congestion and Complexity Observations on the Dynamics of a Congestion Control Algorithm: The Effects of Two-Way Traffic Zhang, Shenker, and Clark, 1991 Spring 2013 The Story So Far. Transport layer:

More information

Duke University CompSci 356 Midterm Spring 2016

Duke University CompSci 356 Midterm Spring 2016 Duke University CompSci 356 Midterm Spring 2016 Name (Print):, (Family name) (Given name) Student ID Number: Date of Exam: Feb 25, 2016 Time Period: 11:45am-1pm Number of Exam Pages: 15 (including this

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 9: /10 10: /10 11: /20 12: /20 13: /20 14: /20 Total: Name: Student ID #: CS244a Winter 2003 Professor McKeown Campus/SITN-Local/SITN-Remote? CS244a: An Introduction to Computer

More information

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput

Topics. TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput Topics TCP sliding window protocol TCP PUSH flag TCP slow start Bulk data throughput 2 Introduction In this chapter we will discuss TCP s form of flow control called a sliding window protocol It allows

More information

A closer look at network structure:

A closer look at network structure: T1: Introduction 1.1 What is computer network? Examples of computer network The Internet Network structure: edge and core 1.2 Why computer networks 1.3 The way networks work 1.4 Performance metrics: Delay,

More information

CS244a: An Introduction to Computer Networks

CS244a: An Introduction to Computer Networks Do not write in this box MCQ 13: /10 14: /10 15: /0 16: /0 17: /10 18: /10 19: /0 0: /10 Total: Name: Student ID #: Campus/SITN-Local/SITN-Remote? CS44a Winter 004 Professor McKeown CS44a: An Introduction

More information

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100

Question Score 1 / 19 2 / 19 3 / 16 4 / 29 5 / 17 Total / 100 NAME: Login name: Computer Science 461 Midterm Exam March 10, 2010 3:00-4:20pm This test has five (5) questions. Put your name on every page, and write out and sign the Honor Code pledge before turning

More information

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012

CSE 473 Introduction to Computer Networks. Exam 2. Your name here: 11/7/2012 CSE 473 Introduction to Computer Networks Jon Turner Exam 2 Your name here: 11/7/2012 1. (10 points). The diagram at right shows a DHT with 16 nodes. Each node is labeled with the first value in its range

More information

Basic Reliable Transport Protocols

Basic Reliable Transport Protocols Basic Reliable Transport Protocols Do not be alarmed by the length of this guide. There are a lot of pictures. You ve seen in lecture that most of the networks we re dealing with are best-effort : they

More information

Question Points Score total 100

Question Points Score total 100 CS457: Computer Networking Date: 5/8/2007 Name: Instructions: 1. Be sure that you have 8 questions 2. Write your Student ID (email) at the top of every page 3. Be sure to complete the honor statement after

More information

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below:

Homework 1 50 points. Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: Homework 1 50 points Quantitative Comparison of Packet Switching and Circuit Switching 20 points Consider the two scenarios below: A circuit-switching scenario in which Ncs users, each requiring a bandwidth

More information

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012

CSE 473 Introduction to Computer Networks. Final Exam. Your name here: 12/17/2012 CSE 473 Introduction to Computer Networks Jon Turner Final Exam Your name here: 12/17/2012 1. (8 points). The figure below shows a network path connecting a server to a client. 200 km 2000 km 2 km X Y

More information

CS 421: Computer Networks SPRING MIDTERM I April 7, minutes

CS 421: Computer Networks SPRING MIDTERM I April 7, minutes CS 421: Computer Networks SPRING 24 MIDTERM I April 7, 24 12 minutes Name: Student No: 1) a) Consider a 1 Mbits/sec channel with a 1 msec one-way propagation delay. We want to transfer a file of size 8

More information

UNIT IV -- TRANSPORT LAYER

UNIT IV -- TRANSPORT LAYER UNIT IV -- TRANSPORT LAYER TABLE OF CONTENTS 4.1. Transport layer. 02 4.2. Reliable delivery service. 03 4.3. Congestion control. 05 4.4. Connection establishment.. 07 4.5. Flow control 09 4.6. Transmission

More information

FINAL May 21, minutes

FINAL May 21, minutes CS 421: COMPUTER NETWORKS SPRING 2004 FINAL May 21, 2004 160 minutes Name: Student No: 1) a) Consider a 1 Mbits/sec channel with a 20 msec one-way propagation delay, i.e., 40 msec roundtrip delay. We want

More information

end systems, access networks, links circuit switching, packet switching, network structure

end systems, access networks, links circuit switching, packet switching, network structure Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge end systems, access networks, links 1.3 Network core circuit switching, packet switching, network structure 1.4 Delay, loss and throughput

More information

Internet Architecture & Performance. What s the Internet: nuts and bolts view

Internet Architecture & Performance. What s the Internet: nuts and bolts view Internet Architecture & Performance Internet, Connection, Protocols, Performance measurements What s the Internet: nuts and bolts view millions of connected computing devices: hosts, end systems pc s workstations,

More information

CS 349/449 Internet Protocols Midterm Exam Winter /21/2003

CS 349/449 Internet Protocols Midterm Exam Winter /21/2003 CS 349/449 Internet Protocols Midterm Exam Winter 2003 10/21/2003 Question 349 Points 449 Points Score 1 10 10 2 20 10 3 20 20 4 20 20 5 30 20 6 (449 only) - 20 Total: 100 100 Name: Instructions: 1. You

More information

Student ID: CS457: Computer Networking Date: 3/20/2007 Name:

Student ID: CS457: Computer Networking Date: 3/20/2007 Name: CS457: Computer Networking Date: 3/20/2007 Name: Instructions: 1. Be sure that you have 9 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

Kent State University

Kent State University CS 4/54201 Computer Communication Network Kent State University Dept. of Computer Science www.mcs.kent.edu/~javed/class-net06f/ 1 A Course on Networking and Computer Communication LECT-11, S-2 Congestion

More information

Problem 7. Problem 8. Problem 9

Problem 7. Problem 8. Problem 9 Problem 7 To best answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate

More information

Problem Set Name the 7 OSI layers and give the corresponding functionalities for each layer.

Problem Set Name the 7 OSI layers and give the corresponding functionalities for each layer. Problem Set 1 1. Why do we use layering in computer networks? 2. Name the 7 OSI layers and give the corresponding functionalities for each layer. 3. Compare the network performance of the 3 Multiple Access

More information

MCS-377 Intra-term Exam 1 Serial #:

MCS-377 Intra-term Exam 1 Serial #: MCS-377 Intra-term Exam 1 Serial #: This exam is closed-book and mostly closed-notes. You may, however, use a single 8 1/2 by 11 sheet of paper with hand-written notes for reference. (Both sides of the

More information

EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28

EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28 EECS489 Computer Networks, Take-home Makeup Midterm (Winter 2007) due in class Wednesday 3/28 Note that this is entirely optional, taking this exam will only improve your grade, and not taking it will

More information

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste

Outline Computer Networking. TCP slow start. TCP modeling. TCP details AIMD. Congestion Avoidance. Lecture 18 TCP Performance Peter Steenkiste Outline 15-441 Computer Networking Lecture 18 TCP Performance Peter Steenkiste Fall 2010 www.cs.cmu.edu/~prs/15-441-f10 TCP congestion avoidance TCP slow start TCP modeling TCP details 2 AIMD Distributed,

More information

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course:

CS 349/449 Internet Protocols Final Exam Winter /15/2003. Name: Course: CS 349/449 Internet Protocols Final Exam Winter 2003 12/15/2003 Name: Course: Instructions: 1. You have 2 hours to finish 2. Question 9 is only for 449 students 3. Closed books, closed notes. Write all

More information

CS519: Computer Networks

CS519: Computer Networks Lets start at the beginning : Computer Networks Lecture 1: Jan 26, 2004 Intro to Computer Networking What is a for? To allow two or more endpoints to communicate What is a? Nodes connected by links Lets

More information

CSE 473 Introduction to Computer Networks. Midterm Exam Review

CSE 473 Introduction to Computer Networks. Midterm Exam Review CSE 473 Introduction to Computer Networks Midterm Exam Review John DeHart 10/12/2015 1. (10 points). A user in Chicago, connected to the internet via a 100 Mb/s (b=bits) connection retrieves a 250 KB (B=bytes)

More information

Chapter 24 Congestion Control and Quality of Service 24.1

Chapter 24 Congestion Control and Quality of Service 24.1 Chapter 24 Congestion Control and Quality of Service 24.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 24-1 DATA TRAFFIC The main focus of congestion control

More information

Question Points Score total 100

Question Points Score total 100 CS457: Computer Networking Date: 3/21/2008 Name: Instructions: 1. Be sure that you have 8 questions 2. Be sure your answers are legible. 3. Write your Student ID at the top of every page 4. This is a closed

More information

Computer Networks (Fall 2011) Homework 2

Computer Networks (Fall 2011) Homework 2 5-744 Computer Networks (Fall 20) Homework 2 Name: Due: Oct. 2th, 20, 3:00PM (in class) Andrew ID: October 2, 20 A Short Questions. Which of the following is true about modern high-speed routers? A. A

More information

cs/ee 143 Fall

cs/ee 143 Fall cs/ee 143 Fall 2018 5 2 Ethernet 2.1 W&P, P3.2 3 Points. Consider the Slotted ALOHA MAC protocol. There are N nodes sharing a medium, and time is divided into slots. Each packet takes up a single slot.

More information

ECE 461 Internetworking. Problem Sheet 6

ECE 461 Internetworking. Problem Sheet 6 ECE 461 Internetworking Problem Sheet 6 Problem 1. Consider the state of a sliding window at the sending side of a TCP connections as shown in Figure 1. (Each number corresponds to one byte).. (a) Explain

More information

There are 10 questions in total. Please write your SID on each page.

There are 10 questions in total. Please write your SID on each page. Name: SID: Department of EECS - University of California at Berkeley EECS122 - Introduction to Communication Networks - Spring 2005 to the Final: 5/20/2005 There are 10 questions in total. Please write

More information

c. If the sum contains a zero, the receiver knows there has been an error.

c. If the sum contains a zero, the receiver knows there has been an error. ENSC-37 Fall 27 Assignment#3 Due Date 6 Oct. 27 Problem-:[4] UDP and TCP use s complement for their checksums. Suppose you have the following three 8-bit bytes:,, and. a. [6] What is the s complement of

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT

CS 421: COMPUTER NETWORKS SPRING FINAL May 24, minutes. Name: Student No: TOT CS 421: COMPUTER NETWORKS SPRING 2012 FINAL May 24, 2012 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Transmission Control Protocol. ITS 413 Internet Technologies and Applications

Transmission Control Protocol. ITS 413 Internet Technologies and Applications Transmission Control Protocol ITS 413 Internet Technologies and Applications Contents Overview of TCP (Review) TCP and Congestion Control The Causes of Congestion Approaches to Congestion Control TCP Congestion

More information

TCP Congestion Control

TCP Congestion Control TCP Congestion Control What is Congestion The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

TCP Congestion Control

TCP Congestion Control What is Congestion TCP Congestion Control The number of packets transmitted on the network is greater than the capacity of the network Causes router buffers (finite size) to fill up packets start getting

More information

a. (4pts) What general information is contained in a LSR-PDU update that A might send?

a. (4pts) What general information is contained in a LSR-PDU update that A might send? B1: Networks (25 points) Link State Routing (LSR). (Hint: flooding and Dijkstra s Algorithm). Assume Router A has physical links to Routers W, X, Y, Z. a. (4pts) What general information is contained in

More information

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes

CS 421: COMPUTER NETWORKS SPRING FINAL May 21, minutes CS 421: COMPUTER NETWORKS SPRING 2015 FINAL May 21, 2015 150 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

CS321: Computer Networks Congestion Control in TCP

CS321: Computer Networks Congestion Control in TCP CS321: Computer Networks Congestion Control in TCP Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Causes and Cost of Congestion Scenario-1: Two Senders, a

More information

Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13. Course Instructors: Engr. Waleed Ejaz. Marks Obtained Marks

Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13. Course Instructors: Engr. Waleed Ejaz. Marks Obtained Marks Data Communication & Networks Final Exam (Fall 2008) Page 1 / 13 Data Communication & Networks Fall 2008 Semester FINAL Thursday, 4 th December 2008 Total Time: 180 Minutes Total Marks: 100 Roll Number

More information

Expected Time: 90 min PART-A Max Marks: 42

Expected Time: 90 min PART-A Max Marks: 42 Birla Institute of Technology & Science, Pilani First Semester 2010-2011 Computer Networks (BITS C481) Comprehensive Examination Thursday, December 02, 2010 (AN) Duration: 3 Hrs Weightage: 40% [80M] Instructions-:

More information

Network Management & Monitoring

Network Management & Monitoring Network Management & Monitoring Network Delay These materials are licensed under the Creative Commons Attribution-Noncommercial 3.0 Unported license (http://creativecommons.org/licenses/by-nc/3.0/) End-to-end

More information

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes

CS 421: COMPUTER NETWORKS FALL FINAL January 10, minutes CS 4: COMPUTER NETWORKS FALL 00 FINAL January 0, 0 50 minutes Name: Student No: Show all your work very clearly. Partial credits will only be given if you carefully state your answer with a reasonable

More information

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers

Overview. TCP & router queuing Computer Networking. TCP details. Workloads. TCP Performance. TCP Performance. Lecture 10 TCP & Routers Overview 15-441 Computer Networking TCP & router queuing Lecture 10 TCP & Routers TCP details Workloads Lecture 10: 09-30-2002 2 TCP Performance TCP Performance Can TCP saturate a link? Congestion control

More information

Outline EEC-682/782 Computer Networks I. Midterm 1 Statistics. Midterm 1 Statistics. High 99, Low 34, Average 66

Outline EEC-682/782 Computer Networks I. Midterm 1 Statistics. Midterm 1 Statistics. High 99, Low 34, Average 66 Outline EEC-682/782 Computer Networks I Lecture 12 Wenbing Zhao w.zhao1@csuohio.edu http://academic.csuohio.edu/zhao_w/teaching/eec682.htm (Lecture nodes are based on materials supplied by Dr. Louise Moser

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP

CS 5520/ECE 5590NA: Network Architecture I Spring Lecture 13: UDP and TCP CS 5520/ECE 5590NA: Network Architecture I Spring 2008 Lecture 13: UDP and TCP Most recent lectures discussed mechanisms to make better use of the IP address space, Internet control messages, and layering

More information

CSCD 330 Network Programming Winter 2015

CSCD 330 Network Programming Winter 2015 CSCD 330 Network Programming Winter 2015 Lecture 11a Transport Layer Reading: Chapter 3 Some Material in these slides from J.F Kurose and K.W. Ross All material copyright 1996-2007 1 Chapter 3 Sections

More information

Computer Networks - Midterm

Computer Networks - Midterm Computer Networks - Midterm October 30, 2015 Duration: 2h15m This is a closed-book exam Please write your answers on these sheets in a readable way, in English or in French You can use extra sheets if

More information

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours)

Documents. Configuration. Important Dependent Parameters (Approximate) Version 2.3 (Wed, Dec 1, 2010, 1225 hours) 1 of 7 12/2/2010 11:31 AM Version 2.3 (Wed, Dec 1, 2010, 1225 hours) Notation And Abbreviations preliminaries TCP Experiment 2 TCP Experiment 1 Remarks How To Design A TCP Experiment KB (KiloBytes = 1,000

More information

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP

Transport layer. UDP: User Datagram Protocol [RFC 768] Review principles: Instantiation in the Internet UDP TCP Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Transport Layer Protocols TCP

Transport Layer Protocols TCP Transport Layer Protocols TCP Gail Hopkins Introduction Features of TCP Packet loss and retransmission Adaptive retransmission Flow control Three way handshake Congestion control 1 Common Networking Issues

More information

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control

Transport layer. Review principles: Instantiation in the Internet UDP TCP. Reliable data transfer Flow control Congestion control Transport layer Review principles: Reliable data transfer Flow control Congestion control Instantiation in the Internet UDP TCP 1 UDP: User Datagram Protocol [RFC 768] No frills, bare bones Internet transport

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2014 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2014 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF

CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF CS244 Advanced Topics in Computer Networks Midterm Exam Monday, May 2, 2016 OPEN BOOK, OPEN NOTES, INTERNET OFF Your Name: Answers SUNet ID: root @stanford.edu In accordance with both the letter and the

More information

Computer Communication Networks

Computer Communication Networks Contents ELL 785 Computer Communication Networks Introduction Lecture 1 Taxonomy of communication works Computer Communication Networks Building a work ed work architecture 1-1 Introduction PC server wireless

More information

Lecture 15: TCP over wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday

Lecture 15: TCP over wireless networks. Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday Lecture 15: TCP over wireless networks Mythili Vutukuru CS 653 Spring 2014 March 13, Thursday TCP - recap Transport layer TCP is the dominant protocol TCP provides in-order reliable byte stream abstraction

More information

ECE 435 Network Engineering Lecture 10

ECE 435 Network Engineering Lecture 10 ECE 435 Network Engineering Lecture 10 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 28 September 2017 Announcements HW#4 was due HW#5 will be posted. midterm/fall break You

More information

cs144 Midterm Review Fall 2010

cs144 Midterm Review Fall 2010 cs144 Midterm Review Fall 2010 Administrivia Lab 3 in flight. Due: Thursday, Oct 28 Midterm is this Thursday, Oct 21 (during class) Remember Grading Policy: - Exam grade = max (final, (final + midterm)/2)

More information

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness

Recap. TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness Recap TCP connection setup/teardown Sliding window, flow control Retransmission timeouts Fairness, max-min fairness AIMD achieves max-min fairness 81 Feedback Signals Several possible signals, with different

More information

ECS 152A Computer Networks Instructor: Liu. Name: Student ID #: Final Exam: March 17, 2005

ECS 152A Computer Networks Instructor: Liu. Name: Student ID #: Final Exam: March 17, 2005 ECS 152A Computer Networks Instructor: Liu Name: Student ID #: Final Exam: March 17, 2005 Duration: 120 Minutes 1. The exam is closed book. However, you may refer to one sheet of A4 paper (double sided)

More information

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca

Homework 1. Question 1 - Layering. CSCI 1680 Computer Networks Fonseca CSCI 1680 Computer Networks Fonseca Homework 1 Due: 27 September 2012, 4pm Question 1 - Layering a. Why are networked systems layered? What are the advantages of layering? Are there any disadvantages?

More information

ECE 653: Computer Networks Mid Term Exam all

ECE 653: Computer Networks Mid Term Exam all ECE 6: Computer Networks Mid Term Exam 16 November 004. Answer all questions. Always be sure to answer each question concisely but precisely! All questions have points each. 1. What are the different layers

More information

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17

NET ID. CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 CS519, Prelim (March 17, 2004) NAME: You have 50 minutes to complete the test. 1/17 Q1. 2 points Write your NET ID at the top of every page of this test. Q2. X points Name 3 advantages of a circuit network

More information

Computer Networks. ENGG st Semester, 2010 Hayden Kwok-Hay So

Computer Networks. ENGG st Semester, 2010 Hayden Kwok-Hay So Computer Networks ENGG1015 1 st Semester, 2010 Hayden Kwok-Hay So Where are we in the semester? High Level Applications Systems Digital Logic Image & Video Processing Computer & Embedded Systems Computer

More information

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks

Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Toward a Reliable Data Transport Architecture for Optical Burst-Switched Networks Dr. Vinod Vokkarane Assistant Professor, Computer and Information Science Co-Director, Advanced Computer Networks Lab University

More information

70 CHAPTER 1 COMPUTER NETWORKS AND THE INTERNET

70 CHAPTER 1 COMPUTER NETWORKS AND THE INTERNET 70 CHAPTER 1 COMPUTER NETWORKS AND THE INTERNET one of these packets arrives to a packet switch, what information in the packet does the switch use to determine the link onto which the packet is forwarded?

More information

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS

ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS ECSE-6600: Internet Protocols Spring 2007, Exam 1 SOLUTIONS Time: 75 min (strictly enforced) Points: 50 YOUR NAME (1 pt): Be brief, but DO NOT omit necessary detail {Note: Simply copying text directly

More information

Test2: Solutions. Silvia Giordano ICA, EPFL. t2-1

Test2: Solutions. Silvia Giordano ICA, EPFL. t2-1 Test2: Solutions Silvia Giordano ICA, EPFL t2-1 EX1: GBN &Delay Consider the Go-Back-N protocol with a sender S, whose window size is 6. Assume that the medium does not reorder messages and that S has

More information

Homework 3 50 points. 1. Computing TCP's RTT and timeout values (10 points)

Homework 3 50 points. 1. Computing TCP's RTT and timeout values (10 points) Homework 3 50 points 1. Computing TCP's RTT and timeout values (10 points) Suppose that TCP's current estimated values for the round trip time (estimatedrtt) and deviation in the RTT (DevRTT) are 400 msec

More information

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam

Carnegie Mellon Computer Science Department Spring 2015 Midterm Exam Carnegie Mellon Computer Science Department. 15-744 Spring 2015 Midterm Exam Name: Andrew ID: INSTRUCTIONS: There are 7 pages (numbered at the bottom). Make sure you have all of them. Please write your

More information

Bandwidth Allocation & TCP

Bandwidth Allocation & TCP Bandwidth Allocation & TCP The Transport Layer Focus Application Presentation How do we share bandwidth? Session Topics Transport Network Congestion control & fairness Data Link TCP Additive Increase/Multiplicative

More information

TCP so far Computer Networking Outline. How Was TCP Able to Evolve

TCP so far Computer Networking Outline. How Was TCP Able to Evolve TCP so far 15-441 15-441 Computer Networking 15-641 Lecture 14: TCP Performance & Future Peter Steenkiste Fall 2016 www.cs.cmu.edu/~prs/15-441-f16 Reliable byte stream protocol Connection establishments

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Serial : BS_CS_A_Computer Network_040 Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: E-mail: info@madeeasy.in Ph: 0-45242 CLASS TEST 20-9 COMPUTER SCIENCE & IT Subject

More information

CS 3640: Introduction to Networks and Their Applications

CS 3640: Introduction to Networks and Their Applications CS 3640: Introduction to Networks and Their Applications Fall 2018, Lecture 5: The Link Layer I Errors and medium access Instructor: Rishab Nithyanand Teaching Assistant: Md. Kowsar Hossain 1 You should

More information

CSC 401 Data and Computer Communications Networks

CSC 401 Data and Computer Communications Networks CSC 401 Data and Computer Communications Networks Computer Networks and The Inter Sec 1.3 Prof. Lina Battestilli Fall 2017 Outline Computer Networks and the Inter (Ch 1) 1.1 What is the Inter? 1.2 work

More information

Transport Layer PREPARED BY AHMED ABDEL-RAOUF

Transport Layer PREPARED BY AHMED ABDEL-RAOUF Transport Layer PREPARED BY AHMED ABDEL-RAOUF TCP Flow Control TCP Flow Control 32 bits source port # dest port # head len sequence number acknowledgement number not used U A P R S F checksum Receive window

More information

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015

Congestion Control In The Internet Part 2: How it is implemented in TCP. JY Le Boudec 2015 1 Congestion Control In The Internet Part 2: How it is implemented in TCP JY Le Boudec 2015 Contents 1. Congestion control in TCP 2. The fairness of TCP 3. The loss throughput formula 4. Explicit Congestion

More information

TCP Congestion Control

TCP Congestion Control 6.033, Spring 2014 TCP Congestion Control Dina Katabi & Sam Madden nms.csail.mit.edu/~dina Sharing the Internet How do you manage resources in a huge system like the Internet, where users with different

More information

PLEASE READ CAREFULLY BEFORE YOU START

PLEASE READ CAREFULLY BEFORE YOU START Page 1 of 11 MIDTERM EXAMINATION #1 OCT. 13, 2011 COMPUTER NETWORKS : 03-60-367-01 U N I V E R S I T Y O F W I N D S O R S C H O O L O F C O M P U T E R S C I E N C E Fall 2011-75 minutes This examination

More information

Computer Networks - Midterm

Computer Networks - Midterm Computer Networks - Midterm October 28, 2016 Duration: 2h15m This is a closed-book exam Please write your answers on these sheets in a readable way, in English or in French You can use extra sheets if

More information

CPSC 441 Tutorial-1. Department of Computer Science University of Calgary

CPSC 441 Tutorial-1. Department of Computer Science University of Calgary CPSC 441 Tutorial-1 Department of Computer Science University of Calgary Question-1 A packet switch receives a packet and determines the outbound link to which the packet should be forwarded. When the

More information

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN)

Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) Supporting Service Differentiation for Real-Time and Best-Effort Traffic in Stateless Wireless Ad-Hoc Networks (SWAN) G. S. Ahn, A. T. Campbell, A. Veres, and L. H. Sun IEEE Trans. On Mobile Computing

More information