Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science

Size: px
Start display at page:

Download "Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science"

Transcription

1 Volume 118 No , ISSN: (on-line version) url: ijpam.eu Travelling salesman problem using reduced algorithmic Branch and bound approach P. Ranjana Hindustan Institute of Technology and Science Abstract-Travelling salesman problem (TSP) is a classic algorithmic problem that focuses on optimization. TSP is an important problem because its solution can be used in other graph and network problems. The exact solutions to these problems cannot be obtained in polynomial time, so we need to go for the approximation algorithms which could give the solution in polynomial time. The aim of this paper is to find the shortest route using the branch and bound technique. There were several algorithms existing to solve the travelling salesman problem using branch and bound technique. Here a reduced branch and bound (RBB) algorithm is proposed which uses the graph to model the travelling salesman problem and reduced the branching and reduces the tour length. The proposed algorithm is proved to be efficient than the other branch and bound algorithms for even for lesser number of cities by giving the mere optimal solution and it gives the optimal solution for larger number of cities which could be applied for larger scale problems be defined as returning to the starting point after visiting all the point with the lease cost..the real world problem that is most widely used nowadays is to calculate the routes in google maps. Keyword: Algorithm, Branch and Bound, Optimization, Problem, Travelling Salesman. 1. INTRODUCTION Most of the optimisation problems are solved using computers, there were several algorithmic problem solving techniques applied to solve those problems. The most common technique applied to solve those problems are brute force technique, where it calculates every possible solution to the problem and tries to find the solution by selecting the best solution. But this will not be suitable for all types of problems, sometimes the problem will be of larger size and it is not possible to find the solution to these problems in a reasonable time. Problems of these types are known as NP hard problems. The travelling salesman problem is NP hard problem. The travelling salesman problem is a problem to find the shortest route travelled by the salesman. The salesman has to visit all the cities and end up in the starting city by minimising the distance travelled. If this problem is used for large number of cities it is difficult to get the optimal solution in a fairly reasonable time. II. TRAVELLING SALESMAN PROBLEM Travelling salesman problem in real world problem could Figure 1: TSP as Graph The travelling salesman problem could be solved mathematically, for this the problem is to be converted to graph theory, figure 1. represents the travelling salesman problem as a graph where the vertices v1,v2,v3,v4 are considered as cities and the edges connecting the cities e1,e2,e3,e4,e5,e6 were considered as the road connecting the cities. In order to use mathematical methods in solving the Travelling Salesman Problem one needs to translate it to the language of a graph theory. Travelling salesman problem referees to the salesman who travels all the cities and wants to find the shortest possible tour by visiting each city exactly once and returns back to the starting city. This problem can be represented as a graph with n nodes representing the cities and e edges representing the distance between the cities. The goal is to find the minimum Hamiltonian cycle. The Hamiltonian cycle is the shortest tour that visits each node exactly once and 419

2 return to the starting node. The Hamiltonian cycle is defined as a path in the graph that contains all the vertices of the graph. The objective function of TSP is to minimize the total distance travelled This is represented mathematically as in equation(1). ΣΣcijxij (1) Where cij is given by the cost taken by the distance travelled. For the symmetric travelling salesman problem the distance travelled can be given by for j=1 to n Σxij=1 for i =1 to n Σxji=1 xij= 0 or 1 for all i for all j In TSP problem with n nodes there are (n-1)! feasible solution, the problem is to find the optimal solution. There are many variants in TSP with vast applications, some of the main category are Symmetric travelling salesman, Asymmetric travelling salesman and Multiple Travelling sales man under these type the classification are dong based on single depot or multiple depot, number of salesman, number a cities the sales man has to visit and son on. Each variants of TSP many applications one such application is the global navigation system. The other applications and various of TSP can been seen in[6]. III.APPROACHES USED IN SOLVING TSP A. Brute force Approach Many problem solving approaches were used in solving TSP problems. One of the well-known and straight forward approach is the brute force approach. This approach gives the estimated time for solving tsp fir 16 nodes in more than 2 years. [1]. The time taken for solving the cities with more number of times is unpredictable, To find the exact solution for a problem of size n There are 2 n.n sub problems to solve in linear time so it take O(2 n n 2 ).so this cannot be applied for the Travelling salesman problem. Dynamic programming complexity is O(n22n-1), it but still better than exhaustive search B. Nearest Neighbourhood The Nearest neighbourhood approach looks at the distance of the nearest cities that have not been visited and returns to the starting city when all other cities are visited, the time taken to find the solution using this method is less than the brute force method, but this approach does not guarantee best solution as brute force approach. [7]. In this approach the salesman can start at any city. This algorithm is very easy to execute, but in worst case it produces the solution that is much longer than the optimal solution C. Greedy approach This is the first approach to solve TSP. This approach uses edges coming out of the node and chooses the edge with minimum cost. If these n cheap edges form a Hamiltonian cycle then we get an optimal solution. Greedy algorithm provides the upper bound the lower bound is not easy to complete.it will produce local optimal solution, but does not guarantee for global optimal solution. D. Branch and bound techniques Branch and bound technique is most widely used in travelling salesman problem by constructing a state space tree to find the optimal solution among all feasible solutions by takin the value of the objective function. Branch and bound was initially studies by [2] and a more description was provided by [3] in the applications of TSP. The branch and bound techniques gives all feasible solutions by solving the problem, by trying the practical solution ad starting the value in the upper bound for finding the optimal solutions [5]. The various approaches discussed above gives the exact solution, so these methods are exact methods. E..Research Gap Travelling salesman problem is considered as NP hard problem so it is so it is very difficult to get the solution in polynomial time. There were many heuristic and genetic algorithms to get the optimal solution, but they were not able to get the mere optimal solution for larger data [10].The approaches used to solve TSP are using exact and approximation methods. The branch and bound methods has the advantage of avoiding calculation of all partial 2trees by finding a practical solution a noting down its value as an upper bound for the optimum. During parallelisation the load balancing becomes difficult for the branch and bound. Also the branch and bound is limited to a small size network of cities. It will become prohibitive if the solution of the state space grows exponentially for larger size network. If the cities are connected by the edges with specified constraints in each node. Edges connect the two cities based on the constraints. A subtree of nodes generates a legal tour counting the leaf node. Many branch and bound techniques algorithms were used in solving the travelling salesman problem R [4] load balancing in branch and bound techniques is to be addressed. Since branching referees to the state space tree can be generated using BFS or DFS, here the algorithms developers the state space tree with DFS. IV. PROBLEM FORMULATION As the basic definitions of TS P is discussed. The problem is formulated using graph theory. If the problem is represented as graphs since it is easily understood and easily solved. So the problem is solved using the graph representation with the basic definition of the Travelling salesman problem. The second part gives the graph theories provided. In the third part algorithmic display of the proposed method is presented. Load balancing is also achieved by parallelization using highly efficient first branch and bound algorithm to solve the travelling salesman problem with 1024 processer is based on 1 tree relaxation problems.[8].the TSP problem is loved using the branch and bound techniques by improving the load balancing even when a new node is added dynamically. When jobs are assigned dynamically load balancing is done by massive parallel processing system but in real world this need a high performance energy efficient computing system[9].for problem construction we have an undirected graph G=(V,E), where V=(1,2,3,4) representing the set of node as shown in Figure 2. The depot node is node 1 and E represents the set of 420

3 edges (1,2,3,4,5,6) and each edge has the edge cost.the Figure 3.represents the graph with 8 nodes or 8 cities and figure 4 represents the graph with 16 cities. V. ALGORITHMIC IMPLEMENTATION To implement the problem the algorithms display of methods are used. The dataset is take from TSPLIB. It is a library for same instances for the TSP and related problems from various sources and various types. The TSP LIB, GR17 data set is used which has 12 nodes as cities and ATT 48 data set is used for 48 nodes and PR 226 for 226 nodes. It is applied on a symmetric travelling salesman (TSP) problem where the given set of node the cost of travelling from node i to node j is same as the cost to travel from node j to node. This is usually represented as undirected graph as given in the figure.1.the Asymmetric travelling salesman problem is the total cost of travelling from node i to node j is different from the total cost of travelling from node j to node i. This is usually represented as an undirected graph as given in the figure.1 A. TSP Solver Figure 2. With 4 cities Figure 3. With 8 cities TSP solver is implemented with JAVA code. The input to this is the data from the TSP Lib Library. The software parses and extracts the information like Weighted array- The graph is converted into an array Cities-The number of nodes and the name of the nodes in the graph Names: data file type TSP of ATSP Dimensions which denotes the number of cities Weight type- The type of weight between the nodes Distance type- The type of distance between the nodes. The reduced branch and bound algorithm is implemented in the TSP solver and compared with the other existing algorithms using branch and bound techniques for which the optimal solution is obtained. The problems are studies with problem of size4, 8 and 16 cities for the data for the above graph. The distance covered is calculated for thesis technique. The branch and bound algorithm is implemented by improvising it by reducing the edges when it is found that the feasible solutions could not be obtained. The reducing branch and bound algorithm works well even for less number of nodes. When the number of nodes was added then there will be a considerable increase. Here the Travelling salesman problem using the data table and reduced branch and bound method given the correct solution to the problem and this have be proved up to 50 cities. This method is used to solve the delivery of packets to certain address for which we know the exact distance between these addresses. This method deliverers the packet through the optimal route and calculates the time in units. B. Reduced Branch and Bound Algorithm The Reducing Branch and Bound algorithm works by selecting the smallest lower bound value using the DFS. The input to implement RBB algorithm is represented in figure 5 and also the output obtained from that is also represented below the figure. Figure 4. With 16 cities 421

4 Reduced Branch and Bound Algorithm (RBB) Solution tree is constructed by adding the edges in lexicographic order When a new node is added the decision tree will decide whether to include or exclude the tour If is represented as 0 or 1 If an edge is excluded then it is not possible to have adjacent edges The branch corresponding to those edges are reduced If an edge is includes there is a possibility of having adjacent edges Now the value is one so the algorithms branches and repeats the same stop. Figure 6a.With 4 cities Figure 6b.With 8 cities Figure 5. Input and output in TSP solver VI...RESULTS AND DISCUSSIONS From the above table it is found that for smaller solutions the time taken by the dataset is taken and we observe that for small data set the algorithms find the solution in less than one minute, for other larger steps reasonably good solutions are obtained. The Figure 6 shows the implementation travelling salesman for 4 cities, figure 6b, and shows the travelling salesman problem implementation for 8 cities and figure 6c shows the travelling salesman problem implementation using the proposed algorithm for 16 cities. Like this the TSP problem up to 50 cities is solved using the RBB algorithm and it is found that it performs better than the other BB approached and the performance increases if the number of cities are increased, thus if the number of cities are increased the proposed approach is able to produce the near optimal solution. Figure 6c. With 16 cities 422

5 VII. CONCLUSION Though many algorithmic problem solving techniques are available for solving the travelling salesman problem the branch and bound technique gives the optimal solution than the other approaches. The proposed method uses the branch and bound technique by reducing the branches and prepares the cost matrix at each step. We observe that it is able to obtain the minimum cost for the tour. It also gives the fact for expanding the node. The ides at initial stages with minimum number of nodes does not give s mere optimal solution for lesser number of nodes, but when the number of nodes are increased it will gives the optimal solution. REFERENCES [1] Calgor, H. (12 January 2017). The Brute force algorithms. [2] George B. Dantzig, D. R. (1954). Solution of a Large-Scale Traveling-Salesman. The road corporation. santa monica, california, [3] George B. Dantzig, D. R. (2010). Solution of a Large-Scale Traveling-Salesman. Springer-Verlag Berlin Heidelberg, [4] Mirta Mataija, M. R. ( Vol. 4 (2016.), No. 1, ). Solving the travelling salesman problem. Zbornik Veleučilišta u Rijeci,, pp [5] Pathak, h. C. (2012). Survey of Methods of Solving TSP along with its Implementation using Dynamic Programming Approach. International Journal of Computer Applications, Volume 52 - Number 4. [6] Rajesh Matai, S. P. (2101). Traveling Salesman Problem:An Overview of Applications, Formulations,. [7] StefanHougardy, M. (November 2015). On the nearest neighbor rule for the metric traveling salesman problem. Discrete Applied Mathematics, Pages [8] Tschoke, S., Lubling, R., & Monien, B. (n.d.). Solving the traveling salesman problem with a distributed branch-and-bound algorithm on a 1024 processor network. Parallel Processing Symposium, Proceedings., 9th International. [9] Ujaldón, A. L. (March 2016, Volume 19,). Dynamic load balancing on heterogeneous clusters for parallel ant colony optimization. Cluster Computing, Springer link, [10] Vikas Raman, N. S. ( 2017). Review of different heuristic algorithms for solving Travelling Salesman Problem. International Journal of Advanced Research in Computer Science, p

6 424

Dynamic Capacity Routing in Networks with MTSP

Dynamic Capacity Routing in Networks with MTSP Dynamic Capacity Routing in Networks with MTSP Ranjana Ponraj1*, George Amalanathan2 1 Hindustan 2 University, Chennai, Tamil Nadu, India. Periyar Maniammai University, Thanjavur, Tamil Nadu, India. *

More information

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem

Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Fuzzy Inspired Hybrid Genetic Approach to Optimize Travelling Salesman Problem Bindu Student, JMIT Radaur binduaahuja@gmail.com Mrs. Pinki Tanwar Asstt. Prof, CSE, JMIT Radaur pinki.tanwar@gmail.com Abstract

More information

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21

Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, / 21 . Amanur Rahman Saiyed (Indiana State University) THE TRAVELING SALESMAN PROBLEM November 22, 2011 1 / 21 THE TRAVELING SALESMAN PROBLEM Amanur Rahman Saiyed Indiana State University November 22, 2011

More information

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario

Coping with the Limitations of Algorithm Power Exact Solution Strategies Backtracking Backtracking : A Scenario Coping with the Limitations of Algorithm Power Tackling Difficult Combinatorial Problems There are two principal approaches to tackling difficult combinatorial problems (NP-hard problems): Use a strategy

More information

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem

Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Massively Parallel Approximation Algorithms for the Traveling Salesman Problem Vaibhav Gandhi May 14, 2015 Abstract This paper introduces the reader to massively parallel approximation algorithms which

More information

A HIGH PERFORMANCE ALGORITHM FOR SOLVING LARGE SCALE TRAVELLING SALESMAN PROBLEM USING DISTRIBUTED MEMORY ARCHITECTURES

A HIGH PERFORMANCE ALGORITHM FOR SOLVING LARGE SCALE TRAVELLING SALESMAN PROBLEM USING DISTRIBUTED MEMORY ARCHITECTURES A HIGH PERFORMANCE ALGORITHM FOR SOLVING LARGE SCALE TRAVELLING SALESMAN PROBLEM USING DISTRIBUTED MEMORY ARCHITECTURES Khushboo Aggarwal1,Sunil Kumar Singh2, Sakar Khattar3 1,3 UG Research Scholar, Bharati

More information

Optimal tour along pubs in the UK

Optimal tour along pubs in the UK 1 From Facebook Optimal tour along 24727 pubs in the UK Road distance (by google maps) see also http://www.math.uwaterloo.ca/tsp/pubs/index.html (part of TSP homepage http://www.math.uwaterloo.ca/tsp/

More information

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK

LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK VOL., NO., JUNE 08 ISSN 896608 00608 Asian Research Publishing Network (ARPN). All rights reserved. LEAST COST ROUTING ALGORITHM WITH THE STATE SPACE RELAXATION IN A CENTRALIZED NETWORK Y. J. Lee Department

More information

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics

to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics An Application of Lagrangian Relaxation to the Traveling Salesman Problem 1 Susanne Timsj Applied Optimization and Modeling Group (TOM) Department of Mathematics and Physics M lardalen University SE-721

More information

Lecture 3. Brute Force

Lecture 3. Brute Force Lecture 3 Brute Force 1 Lecture Contents 1. Selection Sort and Bubble Sort 2. Sequential Search and Brute-Force String Matching 3. Closest-Pair and Convex-Hull Problems by Brute Force 4. Exhaustive Search

More information

Modified Order Crossover (OX) Operator

Modified Order Crossover (OX) Operator Modified Order Crossover (OX) Operator Ms. Monica Sehrawat 1 N.C. College of Engineering, Israna Panipat, Haryana, INDIA. Mr. Sukhvir Singh 2 N.C. College of Engineering, Israna Panipat, Haryana, INDIA.

More information

Assignment No 2 (Group B)

Assignment No 2 (Group B) Assignment No 2 (Group B) 1 Problem Statement : Concurrent Implementation of Travelling Salesman Problem. 2 Objective : To develop problem solving abilities using Mathematical Modeling. To apply algorithmic

More information

State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour Complement

State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour Complement State Space Reduction for the Symmetric Traveling Salesman Problem through Halves Tour omplement Kamal R l-rawi ept of omputer Science, Faculty of Information Technology, Petra University, JORN E-mail:kamalr@uopedujo

More information

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem

A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling Repairman Problem Proceedings of the 2012 International Conference on Industrial Engineering and Operations Management Istanbul, Turkey, July 3 6, 2012 A Development of Hybrid Cross Entropy-Tabu Search Algorithm for Travelling

More information

Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm

Comparison Study of Multiple Traveling Salesmen Problem using Genetic Algorithm IOSR Journal of Computer Engineering (IOSR-JCE) e-issn: 2278-661, p- ISSN: 2278-8727Volume 13, Issue 3 (Jul. - Aug. 213), PP 17-22 Comparison Study of Multiple Traveling Salesmen Problem using Genetic

More information

Complementary Graph Coloring

Complementary Graph Coloring International Journal of Computer (IJC) ISSN 2307-4523 (Print & Online) Global Society of Scientific Research and Researchers http://ijcjournal.org/ Complementary Graph Coloring Mohamed Al-Ibrahim a*,

More information

CSCE 350: Chin-Tser Huang. University of South Carolina

CSCE 350: Chin-Tser Huang. University of South Carolina CSCE 350: Data Structures and Algorithms Chin-Tser Huang huangct@cse.sc.edu University of South Carolina Announcement Homework 2 will be returned on Thursday; solution will be available on class website

More information

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM

A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM TWMS J. App. Eng. Math. V.7, N.1, 2017, pp. 101-109 A NEW HEURISTIC ALGORITHM FOR MULTIPLE TRAVELING SALESMAN PROBLEM F. NURIYEVA 1, G. KIZILATES 2, Abstract. The Multiple Traveling Salesman Problem (mtsp)

More information

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP

Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Two new variants of Christofides heuristic for the Static TSP and a computational study of a nearest neighbor approach for the Dynamic TSP Orlis Christos Kartsiotis George Samaras Nikolaos Margaritis Konstantinos

More information

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger

Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order. Gerold Jäger Algorithms and Experimental Study for the Traveling Salesman Problem of Second Order Gerold Jäger joint work with Paul Molitor University Halle-Wittenberg, Germany August 22, 2008 Overview 1 Introduction

More information

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem

A Firework Algorithm for Solving Capacitated Vehicle Routing Problem A Firework Algorithm for Solving Capacitated Vehicle Routing Problem 1 Noora Hani Abdulmajeed and 2* Masri Ayob 1,2 Data Mining and Optimization Research Group, Center for Artificial Intelligence, Faculty

More information

Solving the Traveling Salesman Problem using Reinforced Ant Colony Optimization techniques

Solving the Traveling Salesman Problem using Reinforced Ant Colony Optimization techniques Solving the Traveling Salesman Problem using Reinforced Ant Colony Optimization techniques N.N.Poddar 1, D. Kaur 2 1 Electrical Engineering and Computer Science, University of Toledo, Toledo, OH, USA 2

More information

of optimization problems. In this chapter, it is explained that what network design

of optimization problems. In this chapter, it is explained that what network design CHAPTER 2 Network Design Network design is one of the most important and most frequently encountered classes of optimization problems. In this chapter, it is explained that what network design is? The

More information

Chapter 14 Section 3 - Slide 1

Chapter 14 Section 3 - Slide 1 AND Chapter 14 Section 3 - Slide 1 Chapter 14 Graph Theory Chapter 14 Section 3 - Slide WHAT YOU WILL LEARN Graphs, paths and circuits The Königsberg bridge problem Euler paths and Euler circuits Hamilton

More information

Assignment 3b: The traveling salesman problem

Assignment 3b: The traveling salesman problem Chalmers University of Technology MVE165 University of Gothenburg MMG631 Mathematical Sciences Linear and integer optimization Optimization with applications Emil Gustavsson Assignment information Ann-Brith

More information

Combinatorial Optimization - Lecture 14 - TSP EPFL

Combinatorial Optimization - Lecture 14 - TSP EPFL Combinatorial Optimization - Lecture 14 - TSP EPFL 2012 Plan Simple heuristics Alternative approaches Best heuristics: local search Lower bounds from LP Moats Simple Heuristics Nearest Neighbor (NN) Greedy

More information

Pre-requisite Material for Course Heuristics and Approximation Algorithms

Pre-requisite Material for Course Heuristics and Approximation Algorithms Pre-requisite Material for Course Heuristics and Approximation Algorithms This document contains an overview of the basic concepts that are needed in preparation to participate in the course. In addition,

More information

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery

A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery A Steady-State Genetic Algorithm for Traveling Salesman Problem with Pickup and Delivery Monika Sharma 1, Deepak Sharma 2 1 Research Scholar Department of Computer Science and Engineering, NNSS SGI Samalkha,

More information

(Refer Slide Time: 01:00)

(Refer Slide Time: 01:00) Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture minus 26 Heuristics for TSP In this lecture, we continue our discussion

More information

The Heuristic Strategy Implementation to the Hopfield -Tank TSP Neural Algorithm

The Heuristic Strategy Implementation to the Hopfield -Tank TSP Neural Algorithm The Heuristic Strategy Implementation to the Hopfield -Tank TSP Neural Algorithm N. Kovač, S. Bauk Faculty of Maritime Studies, University of Montenegro Dobrota 36, 85 330 Kotor, Serbia and Montenegro

More information

1 The Traveling Salesperson Problem (TSP)

1 The Traveling Salesperson Problem (TSP) CS 598CSC: Approximation Algorithms Lecture date: January 23, 2009 Instructor: Chandra Chekuri Scribe: Sungjin Im In the previous lecture, we had a quick overview of several basic aspects of approximation

More information

IE 102 Spring Routing Through Networks - 1

IE 102 Spring Routing Through Networks - 1 IE 102 Spring 2017 Routing Through Networks - 1 The Bridges of Koenigsberg: Euler 1735 Graph Theory began in 1735 Leonard Eüler Visited Koenigsberg People wondered whether it is possible to take a walk,

More information

Machine Learning for Software Engineering

Machine Learning for Software Engineering Machine Learning for Software Engineering Introduction and Motivation Prof. Dr.-Ing. Norbert Siegmund Intelligent Software Systems 1 2 Organizational Stuff Lectures: Tuesday 11:00 12:30 in room SR015 Cover

More information

Algorithms for the travelling salesman problem

Algorithms for the travelling salesman problem Faculteit Be tawetenschappen Algorithms for the travelling salesman problem Autor: Bachelor Thesis Mathematics June 2017 Isabel Droste 5492335 Supervisor: Prof. Dr. R.H. Bisseling Contents 1 Introduction

More information

JOURNAL OF OBJECT TECHNOLOGY

JOURNAL OF OBJECT TECHNOLOGY JOURNAL OF OBJECT TECHNOLOGY Online at http://www.jot.fm. Published by ETH Zurich, Chair of Software Engineering JOT, 2005 Vol. 4, No. 1, January-February 2005 A Java Implementation of the Branch and Bound

More information

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W.

Unit 8: Coping with NP-Completeness. Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems. Y.-W. : Coping with NP-Completeness Course contents: Complexity classes Reducibility and NP-completeness proofs Coping with NP-complete problems Reading: Chapter 34 Chapter 35.1, 35.2 Y.-W. Chang 1 Complexity

More information

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search

Job Shop Scheduling Problem (JSSP) Genetic Algorithms Critical Block and DG distance Neighbourhood Search A JOB-SHOP SCHEDULING PROBLEM (JSSP) USING GENETIC ALGORITHM (GA) Mahanim Omar, Adam Baharum, Yahya Abu Hasan School of Mathematical Sciences, Universiti Sains Malaysia 11800 Penang, Malaysia Tel: (+)

More information

Introduction to Approximation Algorithms

Introduction to Approximation Algorithms Introduction to Approximation Algorithms Dr. Gautam K. Das Departmet of Mathematics Indian Institute of Technology Guwahati, India gkd@iitg.ernet.in February 19, 2016 Outline of the lecture Background

More information

Notes for Lecture 24

Notes for Lecture 24 U.C. Berkeley CS170: Intro to CS Theory Handout N24 Professor Luca Trevisan December 4, 2001 Notes for Lecture 24 1 Some NP-complete Numerical Problems 1.1 Subset Sum The Subset Sum problem is defined

More information

Theorem 2.9: nearest addition algorithm

Theorem 2.9: nearest addition algorithm There are severe limits on our ability to compute near-optimal tours It is NP-complete to decide whether a given undirected =(,)has a Hamiltonian cycle An approximation algorithm for the TSP can be used

More information

Module 6 NP-Complete Problems and Heuristics

Module 6 NP-Complete Problems and Heuristics Module 6 NP-Complete Problems and Heuristics Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu P, NP-Problems Class

More information

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg

Tolerance based Greedy Heuristics for the Asymmetric TSP. Gerold Jäger Martin Luther University Halle-Wittenberg Tolerance based Greedy Heuristics for the Asymmetric TSP Gerold Jäger Martin Luther University Halle-Wittenberg Cooperation with Boris Goldengorin DFG Project: Paul Molitor December 21, 200 Overview 1

More information

Math 3012 Combinatorial Optimization Worksheet

Math 3012 Combinatorial Optimization Worksheet Math 3012 Combinatorial Optimization Worksheet Combinatorial Optimization is the way in which combinatorial thought is applied to real world optimization problems. Optimization entails achieving the sufficient

More information

Khushboo Arora, Samiksha Agarwal, Rohit Tanwar

Khushboo Arora, Samiksha Agarwal, Rohit Tanwar International Journal of Scientific & Engineering Research, Volume 7, Issue 1, January-2016 1014 Solving TSP using Genetic Algorithm and Nearest Neighbour Algorithm and their Comparison Khushboo Arora,

More information

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM

A COMPARATIVE STUDY OF BRUTE FORCE METHOD, NEAREST NEIGHBOUR AND GREEDY ALGORITHMS TO SOLVE THE TRAVELLING SALESMAN PROBLEM IMPACT: International Journal of Research in Engineering & Technology (IMPACT: IJRET) ISSN(E): 2321-8843; ISSN(P): 2347-4599 Vol. 2, Issue 6, Jun 2014, 59-72 Impact Journals A COMPARATIVE STUDY OF BRUTE

More information

Algorithms for Euclidean TSP

Algorithms for Euclidean TSP This week, paper [2] by Arora. See the slides for figures. See also http://www.cs.princeton.edu/~arora/pubs/arorageo.ps Algorithms for Introduction This lecture is about the polynomial time approximation

More information

Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface

Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface Solving Traveling Salesman Problem on High Performance Computing using Message Passing Interface IZZATDIN A. AZIZ, NAZLEENI HARON, MAZLINA MEHAT, LOW TAN JUNG, AISYAH NABILAH Computer and Information Sciences

More information

Hybrid approach for solving TSP by using DPX Cross-over operator

Hybrid approach for solving TSP by using DPX Cross-over operator Available online at www.pelagiaresearchlibrary.com Advances in Applied Science Research, 2011, 2 (1): 28-32 ISSN: 0976-8610 CODEN (USA): AASRFC Hybrid approach for solving TSP by using DPX Cross-over operator

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed

Dynamic programming. Trivial problems are solved first More complex solutions are composed from the simpler solutions already computed Dynamic programming Solves a complex problem by breaking it down into subproblems Each subproblem is broken down recursively until a trivial problem is reached Computation itself is not recursive: problems

More information

HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics - ICTAMI 24, Thessaloniki, Greece HEURISTIC ALGORITHMS FOR THE GENERALIZED MINIMUM SPANNING TREE PROBLEM

More information

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost

Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R + Goal: find a tour (Hamiltonian cycle) of minimum cost Traveling Salesman Problem (TSP) Input: undirected graph G=(V,E), c: E R

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg (Germany) joint work with Changxing Dong, Paul Molitor, Dirk Richter German Research Foundation Grant

More information

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS

ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS ARTIFICIAL INTELLIGENCE (CSCU9YE ) LECTURE 5: EVOLUTIONARY ALGORITHMS Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ OUTLINE Optimisation problems Optimisation & search Two Examples The knapsack problem

More information

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem

Computational Complexity CSC Professor: Tom Altman. Capacitated Problem Computational Complexity CSC 5802 Professor: Tom Altman Capacitated Problem Agenda: Definition Example Solution Techniques Implementation Capacitated VRP (CPRV) CVRP is a Vehicle Routing Problem (VRP)

More information

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem

A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem A Polynomial-Time Deterministic Approach to the Traveling Salesperson Problem Ali Jazayeri and Hiroki Sayama Center for Collective Dynamics of Complex Systems Department of Systems Science and Industrial

More information

CSE 417 Branch & Bound (pt 4) Branch & Bound

CSE 417 Branch & Bound (pt 4) Branch & Bound CSE 417 Branch & Bound (pt 4) Branch & Bound Reminders > HW8 due today > HW9 will be posted tomorrow start early program will be slow, so debugging will be slow... Review of previous lectures > Complexity

More information

Algorithm Design Techniques (III)

Algorithm Design Techniques (III) Algorithm Design Techniques (III) Minimax. Alpha-Beta Pruning. Search Tree Strategies (backtracking revisited, branch and bound). Local Search. DSA - lecture 10 - T.U.Cluj-Napoca - M. Joldos 1 Tic-Tac-Toe

More information

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM

A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM A SURVEY ON DIFFERENT METHODS TO SOLVE TRAVELLING SALESMAN PROBLEM Harshala Ingole 1, V.B.Kute 2 1,2 Computer Engineering & RTM Nagpur University, (India) ABSTRACT Travelling salesman problem acts as an

More information

Non-deterministic Search techniques. Emma Hart

Non-deterministic Search techniques. Emma Hart Non-deterministic Search techniques Emma Hart Why do local search? Many real problems are too hard to solve with exact (deterministic) techniques Modern, non-deterministic techniques offer ways of getting

More information

6. Algorithm Design Techniques

6. Algorithm Design Techniques 6. Algorithm Design Techniques 6. Algorithm Design Techniques 6.1 Greedy algorithms 6.2 Divide and conquer 6.3 Dynamic Programming 6.4 Randomized Algorithms 6.5 Backtracking Algorithms Malek Mouhoub, CS340

More information

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem

Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem Methods and Models for Combinatorial Optimization Exact methods for the Traveling Salesman Problem L. De Giovanni M. Di Summa The Traveling Salesman Problem (TSP) is an optimization problem on a directed

More information

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS)

COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section (CLRS) COMP 355 Advanced Algorithms Approximation Algorithms: VC and TSP Chapter 11 (KT) Section 35.1-35.2(CLRS) 1 Coping with NP-Completeness Brute-force search: This is usually only a viable option for small

More information

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms

Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Module 6 P, NP, NP-Complete Problems and Approximation Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu

More information

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two.

Lecture 1. 2 Motivation: Fast. Reliable. Cheap. Choose two. Approximation Algorithms and Hardness of Approximation February 19, 2013 Lecture 1 Lecturer: Ola Svensson Scribes: Alantha Newman 1 Class Information 4 credits Lecturers: Ola Svensson (ola.svensson@epfl.ch)

More information

Effective Tour Searching for Large TSP Instances. Gerold Jäger

Effective Tour Searching for Large TSP Instances. Gerold Jäger Effective Tour Searching for Large TSP Instances Gerold Jäger Martin-Luther-University Halle-Wittenberg joint work with Changxing Dong, Paul Molitor, Dirk Richter November 14, 2008 Overview 1 Introduction

More information

Optimizing the Sailing Route for Fixed Groundfish Survey Stations

Optimizing the Sailing Route for Fixed Groundfish Survey Stations International Council for the Exploration of the Sea CM 1996/D:17 Optimizing the Sailing Route for Fixed Groundfish Survey Stations Magnus Thor Jonsson Thomas Philip Runarsson Björn Ævar Steinarsson Presented

More information

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles

Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Electronic Journal of Graph Theory and Applications 4 (1) (2016), 18 25 Constructing arbitrarily large graphs with a specified number of Hamiltonian cycles Michael School of Computer Science, Engineering

More information

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?)

Questions? You are given the complete graph of Facebook. What questions would you ask? (What questions could we hope to answer?) P vs. NP What now? Attribution These slides were prepared for the New Jersey Governor s School course The Math Behind the Machine taught in the summer of 2011 by Grant Schoenebeck Large parts of these

More information

Chapter 3: Solving Problems by Searching

Chapter 3: Solving Problems by Searching Chapter 3: Solving Problems by Searching Prepared by: Dr. Ziad Kobti 1 Problem-Solving Agent Reflex agent -> base its actions on a direct mapping from states to actions. Cannot operate well in large environments

More information

Seismic Vessel Problem

Seismic Vessel Problem Seismic Vessel Problem Gregory Gutin, Helmut Jakubowicz, Shuki Ronen and Alexei Zverovitch November 14, 2003 Abstract We introduce and study a new combinatorial optimization problem, the Seismic Vessel

More information

CS 440 Theory of Algorithms /

CS 440 Theory of Algorithms / CS 440 Theory of Algorithms / CS 468 Algorithms in Bioinformaticsi Brute Force. Design and Analysis of Algorithms - Chapter 3 3-0 Brute Force A straightforward approach usually based on problem statement

More information

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem

CS261: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem CS61: A Second Course in Algorithms Lecture #16: The Traveling Salesman Problem Tim Roughgarden February 5, 016 1 The Traveling Salesman Problem (TSP) In this lecture we study a famous computational problem,

More information

Parallel Programming to solve Traveling Salesman Problem. Team Parallax Jaydeep Untwal Sushil Mohite Harsh Sadhvani parallax.hpearth.

Parallel Programming to solve Traveling Salesman Problem. Team Parallax Jaydeep Untwal Sushil Mohite Harsh Sadhvani parallax.hpearth. Parallel Programming to solve Traveling Salesman Problem Team Parallax Jaydeep Untwal Sushil Mohite Harsh Sadhvani parallax.hpearth.com What is the traveling salesman problem? Given a list of cities and

More information

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij

Travelling Salesman Problem. Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij Travelling Salesman Problem Algorithms and Networks 2015/2016 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi

and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi 15.082 and 6.855J Lagrangian Relaxation I never missed the opportunity to remove obstacles in the way of unity. Mohandas Gandhi On bounding in optimization In solving network flow problems, we not only

More information

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997

56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 56:272 Integer Programming & Network Flows Final Exam -- December 16, 1997 Answer #1 and any five of the remaining six problems! possible score 1. Multiple Choice 25 2. Traveling Salesman Problem 15 3.

More information

val(y, I) α (9.0.2) α (9.0.3)

val(y, I) α (9.0.2) α (9.0.3) CS787: Advanced Algorithms Lecture 9: Approximation Algorithms In this lecture we will discuss some NP-complete optimization problems and give algorithms for solving them that produce a nearly optimal,

More information

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017

CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 CMSC 451: Lecture 22 Approximation Algorithms: Vertex Cover and TSP Tuesday, Dec 5, 2017 Reading: Section 9.2 of DPV. Section 11.3 of KT presents a different approximation algorithm for Vertex Cover. Coping

More information

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini

Metaheuristic Development Methodology. Fall 2009 Instructor: Dr. Masoud Yaghini Metaheuristic Development Methodology Fall 2009 Instructor: Dr. Masoud Yaghini Phases and Steps Phases and Steps Phase 1: Understanding Problem Step 1: State the Problem Step 2: Review of Existing Solution

More information

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP:

6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS. Vehicle Routing Problem, VRP: 6 ROUTING PROBLEMS VEHICLE ROUTING PROBLEMS Vehicle Routing Problem, VRP: Customers i=1,...,n with demands of a product must be served using a fleet of vehicles for the deliveries. The vehicles, with given

More information

Two models of the capacitated vehicle routing problem

Two models of the capacitated vehicle routing problem Croatian Operational Research Review 463 CRORR 8(2017), 463 469 Two models of the capacitated vehicle routing problem Zuzana Borčinová 1, 1 Faculty of Management Science and Informatics, University of

More information

Algorithm classification

Algorithm classification Types of Algorithms Algorithm classification Algorithms that use a similar problem-solving approach can be grouped together We ll talk about a classification scheme for algorithms This classification scheme

More information

Innovative Systems Design and Engineering ISSN (Paper) ISSN (Online) Vol.5, No.1, 2014

Innovative Systems Design and Engineering ISSN (Paper) ISSN (Online) Vol.5, No.1, 2014 Abstract Tool Path Optimization of Drilling Sequence in CNC Machine Using Genetic Algorithm Prof. Dr. Nabeel Kadim Abid Al-Sahib 1, Hasan Fahad Abdulrazzaq 2* 1. Thi-Qar University, Al-Jadriya, Baghdad,

More information

Algorithm Design Techniques. Hwansoo Han

Algorithm Design Techniques. Hwansoo Han Algorithm Design Techniques Hwansoo Han Algorithm Design General techniques to yield effective algorithms Divide-and-Conquer Dynamic programming Greedy techniques Backtracking Local search 2 Divide-and-Conquer

More information

Chapter 9 Graph Algorithms

Chapter 9 Graph Algorithms Introduction graph theory useful in practice represent many real-life problems can be if not careful with data structures Chapter 9 Graph s 2 Definitions Definitions an undirected graph is a finite set

More information

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras

Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Advanced Operations Research Prof. G. Srinivasan Department of Management Studies Indian Institute of Technology, Madras Lecture 28 Chinese Postman Problem In this lecture we study the Chinese postman

More information

Graph Applications, Class Notes, CS 3137 1 Traveling Salesperson Problem Web References: http://www.tsp.gatech.edu/index.html http://www-e.uni-magdeburg.de/mertens/tsp/tsp.html TSP applets A Hamiltonian

More information

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach

CSC Design and Analysis of Algorithms. Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms. Brute-Force Approach CSC 8301- Design and Analysis of Algorithms Lecture 4 Brute Force, Exhaustive Search, Graph Traversal Algorithms Brute-Force Approach Brute force is a straightforward approach to solving a problem, usually

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 29 Approximation Algorithms Load Balancing Weighted Vertex Cover Reminder: Fill out SRTEs online Don t forget to click submit Sofya Raskhodnikova 12/7/2016 Approximation

More information

Reduce Total Distance and Time Using Genetic Algorithm in Traveling Salesman Problem

Reduce Total Distance and Time Using Genetic Algorithm in Traveling Salesman Problem Reduce Total Distance and Time Using Genetic Algorithm in Traveling Salesman Problem A.Aranganayaki(Research Scholar) School of Computer Science and Engineering Bharathidasan University Tamil Nadu, India

More information

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies

ISSN: (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies ISSN: 2321-7782 (Online) Volume 3, Issue 5, May 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at:

More information

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem

The Traveling Salesman Problem Outline/learning Objectives The Traveling Salesman Problem Chapter 6 Hamilton Joins the Circuit Outline/learning Objectives To identify and model Hamilton circuit and Hamilton path problems. To recognize complete graphs and state the number of Hamilton circuits

More information

looking ahead to see the optimum

looking ahead to see the optimum ! Make choice based on immediate rewards rather than looking ahead to see the optimum! In many cases this is effective as the look ahead variation can require exponential time as the number of possible

More information

CSC 8301 Design and Analysis of Algorithms: Exhaustive Search

CSC 8301 Design and Analysis of Algorithms: Exhaustive Search CSC 8301 Design and Analysis of Algorithms: Exhaustive Search Professor Henry Carter Fall 2016 Recap Brute force is the use of iterative checking or solving a problem by its definition The straightforward

More information

Heuristic Approaches to Solve Traveling Salesman Problem

Heuristic Approaches to Solve Traveling Salesman Problem TELKOMNIKA Indonesian Journal of Electrical Engineering Vol. 15, No. 2, August 2015, pp. 390 ~ 396 DOI: 10.11591/telkomnika.v15i2.8301 390 Heuristic Approaches to Solve Traveling Salesman Problem Malik

More information

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Brute-Force Algorithms

Computer Science 385 Design and Analysis of Algorithms Siena College Spring Topic Notes: Brute-Force Algorithms Computer Science 385 Design and Analysis of Algorithms Siena College Spring 2019 Topic Notes: Brute-Force Algorithms Our first category of algorithms are called brute-force algorithms. Levitin defines

More information

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem

A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem A Web-Based Evolutionary Algorithm Demonstration using the Traveling Salesman Problem Richard E. Mowe Department of Statistics St. Cloud State University mowe@stcloudstate.edu Bryant A. Julstrom Department

More information

International Journal of Current Trends in Engineering & Technology Volume: 02, Issue: 01 (JAN-FAB 2016)

International Journal of Current Trends in Engineering & Technology Volume: 02, Issue: 01 (JAN-FAB 2016) Survey on Ant Colony Optimization Shweta Teckchandani, Prof. Kailash Patidar, Prof. Gajendra Singh Sri Satya Sai Institute of Science & Technology, Sehore Madhya Pradesh, India Abstract Although ant is

More information

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij

Traveling Salesman Problem. Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij Traveling Salesman Problem Algorithms and Networks 2014/2015 Hans L. Bodlaender Johan M. M. van Rooij 1 Contents TSP and its applications Heuristics and approximation algorithms Construction heuristics,

More information