Multiobjective Optimisation. Why? Panorama. General Formulation. Decision Space and Objective Space. 1 of 7 02/03/15 09:49.

Size: px
Start display at page:

Download "Multiobjective Optimisation. Why? Panorama. General Formulation. Decision Space and Objective Space. 1 of 7 02/03/15 09:49."

Transcription

1 ITNPD8/CSCU9YO Multiobjective Optimisation An Overview Nadarajen Veerapen University of Stirling Why? Classic optimisation: 1 objective Example: Minimise cost Reality is often more complex Example: Location and dispatching decision for emergency vehicles Minimise average response time Minimise cost Minimise unfairness Objectives are usually in conflict with each other. We need to find a compromise, a trade-off. Panorama Operations Research... Multi Criteria Decision Analysis/Making (MCDA/MCDM) Preference Elicitation Solving Methods Mathematical Programming Interactive Programming Goal Programming Metaheuristics... Visualisation... General Formulation Minimise z = (x) = ( f 1 (x), f 2 (x), f 3 (x),, f k (x)) f x X subject to constraints This generalises the single objective formulation to the minimisation of a vector in the objective space. How do we define the relationship between vectors? How is one vector than another? Decision Space and Objective Space 1 of 7 02/03/15 09:49

2 X is the decision space, the space containing the solutions Z is the objective space, the space containing the evaluation of the solutions Dominance Relations How is one solution evaluation better than another? Here we are minimising in both dimensions. Dominance Relations (cont.) a dominates b, a b, if a is strictly better than b in at least one objective and worse in none. a weakly dominates b, a b, if a dominates b or is equal to b. a strongly dominates b, a b, if a is strictly better than b in all objectives. a and b are incomparable, a b, if neither a nor b dominate the other and they are not equal. a b is generally used when referring to minimisation and a b when referring to maximisation. Pareto Front The Pareto Front Z is the set of non-dominated points in Z. Z = {z z Z, z Z, z z} Named after Vilfredo Pareto ( ), an Italian economist who used the concept in his work on economic efficiency. 2 of 7 02/03/15 09:49

3 Pareto Front (cont.) The Pareto Front, Z, is the set of non-dominated points in Z. Z = {z z Z, z Z, z z} The Pareto Optimal Set, X, is the set of solutions that corresponds to the non-dominated points. X = {x x X, z = f(x) } Z A Pareto Front Approximation, Zapprox, is a set of mutually non-dominated points in Z Z. Zapprox = {z z Z Z, z Z, z z} Pareto Front (cont.) Comparing Approximate Pareto Fronts Unary Indicators Measure some characteristic of each front and compare the result of each measurement. For example, with two fronts A and B, compute some indicator I, so that we have I(A) and I(B). While we may have I(A) is better than I(B), this does not mean A is better than B! Nevertheless can be useful, especially when several indicators are used, to compare fronts. Binary Indicators Directly compare two fronts. For example, with two fronts A and B, we may have an indicator I that computes I(A, B). Dominance relations between the two sets of points are measured. Properly designed binary indicators can actually show that A is better than B. Drawback: When comparing several fronts, all the pairwise comparisons need to be computed. Some references: Okabe, Tatsuya, Yaochu Jin, and Bernhard Sendhoff. A Critical Survey of Performance Indices for Multi-Objective Optimisation. In The 2003 Congress on Evolutionary Computation, CEC 03., Canberra, Australia, doi: /cec Zitzler, E., L. Thiele, M. Laumanns, C.M. Fonseca, and V.G. da Fonseca. Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation 7, no. 2 (April 2003): doi: /tevc Characteristics for Evaluating Fronts 0. Number of Solutions (Cardinality) Seems trivial but important nonetheless. 1. Spread The range of the approximate front should be as wide as possible for each objective. 3 of 7 02/03/15 09:49

4 Characteristics for Evaluating Fronts (cont.) 2. Spacing The points should be uniformly spaced out over the approximate front. Characteristics for Evaluating Fronts (cont.) 3. Distance from Reference Front The approximate front should be as close as possible to the reference front. The reference front can be the exact front if known. Otherwise it is a combination of the non-dominated points of several approximate fronts. Hypervolume The hypervolume of a set of non-dominated points is the area (in 2 dimensions) volume (in 3 dimensions) hypervolume (in n > 3 dimensions) of the objective space dominated by the set and bounded by a reference point (often the nadir). Solving A Priori Preference Articulation Knowledge of exactly how important the different objectives are to the decision maker. Lexicographic Approach: there is a strict order of preference between objectives. f 1 is more important than f 2 which in turn is more important than f 3, etc. Solution: solve for the most important objective and only solve for the following objectives to break ties. Scalarisation: transform the different objectives into one objective. A common example is the weighted sum. f w (x) = k i=1 w if i (x) Weighted Sum Some considerations: A weighted sum can only find points on the convex hull of the front. These points are called supported points. If the ranges of the objectives are considerably different, they usually need to be normalised. The objectives may be measured in different units. For example, does it make sense to sum cost and time? 4 of 7 02/03/15 09:49

5 Solving A Posteriori Preference Articulation There is no knowledge of the decision maker's preferences. Therefore the Pareto Front, or its approximation, is generated. The decision maker may make a decision based on the different trade-offs. Approximating the Pareto Front Find a good approximation of the Pareto Front in case where the true Pareto Front cannot be found or is too costly to compute. Types of algorithms: Multiple scalarisations Genetic algorithms Local search Combinations of these Multiple Scalarisations To leverage a single objective algorithm Usually when the Pareto Front is convex To find initial solutions for some other multiobjective algorithm Input: A set of weights, W Output: A set of non-dominated solutions // initialise the set of non-dominated solution S = [] for each w in W: // call a single objective solver s = solvescalarisation(w) S = filter(s, s) return S 5 of 7 02/03/15 09:49

6 NSGA-II Non-dominated Sorting Genetic Algorithm. The fitness of the solutions is based on their depth or rank. The crowding distance is used to break ties in tournament selection. As in single objective optimisation, GAs/EAs are very general and can be applied to most problems. Input: Number of solutions, n Output: A set of non-dominated solutions P = random population of size n calculate depth of each solution in P calculate the crowding distance of each solution in P while stopping criterion not met: P = generatenewpop(p) evaluate(p) calculate depth of each solution in P calculate the crowding distance of each solution in P sort P by depth, then crowding distance P = Resize(P,n) return P Pareto Local Search Explore the search space one solution at a time. Starting with one or more solutions, explore their neighbourhoods and keep the points that are not weakly dominated. Repeat until all reachable solutions have been examined. Dependent on good initial solutions Disjoint fronts may be difficult Input: An initial set of solutions, P0 Output: A set of non-dominated solutions S = P0 // initialise S and a running population P P = P0 while P!= []: // generate all neighbours q of each p in P for all p in P: deleted = false for all q in neighbourhood(p): if!weaklydominates(z(p), z(q)): S = filter(s, q) if q in S: P = filter(p, q) if dominates(z(q), z(p)): deleted = true // remove p from P if p has not already been removed if!deleted: P.remove(p) return S 6 of 7 02/03/15 09:49

7 Archiving Usually used to keep the best solutions (non-dominated solutions). An archive is useful when: The population of an EA needs to be kept relatively small but we may want to keep more non-dominated solutions than the population size. The number of non-dominated solutions is greater than needed (or even infinite) and we want to limit the size of the approximated Pareto front. When an archive's size is bounded, some mechanisms maybe required to determine which new solutions to accept when the archive is full. For instance, by relying on some indicator. Visualising Many Objectives Two objectives are easy enough With three objectives, there is usually the slight problem of viewing a 3D space on a 2D plane (paper, screen). Can be viewed with an interactive plot on screen. What about four or more objectives? Parallel Coordinates Radar/Spider Charts Summary Multiobjective approach is closer to real-world problem Pareto dominance Comparing fronts is not trivial A priori / a posteriori preference articulation Heuristic multiobjective algorithms and archiving Visualisation 7 of 7 02/03/15 09:49

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2016/17 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) Multiobjective

More information

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5.

GECCO 2007 Tutorial / Evolutionary Multiobjective Optimization. Eckart Zitzler ETH Zürich. weight = 750g profit = 5. Tutorial / Evolutionary Multiobjective Optimization Tutorial on Evolutionary Multiobjective Optimization Introductory Example: The Knapsack Problem weight = 75g profit = 5 weight = 5g profit = 8 weight

More information

Evolutionary Computation

Evolutionary Computation Evolutionary Computation Lecture 9 Mul+- Objec+ve Evolu+onary Algorithms 1 Multi-objective optimization problem: minimize F(X) = ( f 1 (x),..., f m (x)) The objective functions may be conflicting or incommensurable.

More information

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague.

Evolutionary Algorithms: Lecture 4. Department of Cybernetics, CTU Prague. Evolutionary Algorithms: Lecture 4 Jiří Kubaĺık Department of Cybernetics, CTU Prague http://labe.felk.cvut.cz/~posik/xe33scp/ pmulti-objective Optimization :: Many real-world problems involve multiple

More information

Multiobjective Optimization

Multiobjective Optimization Multiobjective Optimization Concepts, Algorithms and Performance Measures Joshua Knowles School of Computer Science The University of Manchester COMP60342 - Week 5 2.15, 2 May 2014 Introducing Multiobjective

More information

Finding Sets of Non-Dominated Solutions with High Spread and Well-Balanced Distribution using Generalized Strength Pareto Evolutionary Algorithm

Finding Sets of Non-Dominated Solutions with High Spread and Well-Balanced Distribution using Generalized Strength Pareto Evolutionary Algorithm 16th World Congress of the International Fuzzy Systems Association (IFSA) 9th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT) Finding Sets of Non-Dominated Solutions with High

More information

Multi-objective Optimization

Multi-objective Optimization Jugal K. Kalita Single vs. Single vs. Single Objective Optimization: When an optimization problem involves only one objective function, the task of finding the optimal solution is called single-objective

More information

Bio-inspired Optimization and Design

Bio-inspired Optimization and Design Eckart Zitzler Computer Engineering and Networks Laboratory Introductory Example: The Knapsack Problem weight = 750g profit = 5 weight = 1500g profit = 8 weight = 300g profit = 7 weight = 1000g profit

More information

Multi-objective Optimization

Multi-objective Optimization Some introductory figures from : Deb Kalyanmoy, Multi-Objective Optimization using Evolutionary Algorithms, Wiley 2001 Multi-objective Optimization Implementation of Constrained GA Based on NSGA-II Optimization

More information

Finding Knees in Multi-objective Optimization

Finding Knees in Multi-objective Optimization Finding Knees in Multi-objective Optimization Jürgen Branke 1, Kalyanmoy Deb 2, Henning Dierolf 1, and Matthias Osswald 1 1 Institute AIFB, University of Karlsruhe, Germany branke@aifb.uni-karlsruhe.de

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 2017/18 Prof. Dr. Günter Rudolph Lehrstuhl für Algorithm Engineering (LS 11) Fakultät für Informatik TU Dortmund Slides prepared by Dr. Nicola Beume (2012) enriched

More information

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems

Lamarckian Repair and Darwinian Repair in EMO Algorithms for Multiobjective 0/1 Knapsack Problems Repair and Repair in EMO Algorithms for Multiobjective 0/ Knapsack Problems Shiori Kaige, Kaname Narukawa, and Hisao Ishibuchi Department of Industrial Engineering, Osaka Prefecture University, - Gakuen-cho,

More information

An Empirical Comparison of Several Recent Multi-Objective Evolutionary Algorithms

An Empirical Comparison of Several Recent Multi-Objective Evolutionary Algorithms An Empirical Comparison of Several Recent Multi-Objective Evolutionary Algorithms Thomas White 1 and Shan He 1,2 1 School of Computer Science 2 Center for Systems Biology, School of Biological Sciences,

More information

Approximation-Guided Evolutionary Multi-Objective Optimization

Approximation-Guided Evolutionary Multi-Objective Optimization Approximation-Guided Evolutionary Multi-Objective Optimization Karl Bringmann 1, Tobias Friedrich 1, Frank Neumann 2, Markus Wagner 2 1 Max-Planck-Institut für Informatik, Campus E1.4, 66123 Saarbrücken,

More information

EVOLUTIONARY algorithms (EAs) are a class of

EVOLUTIONARY algorithms (EAs) are a class of An Investigation on Evolutionary Gradient Search for Multi-objective Optimization C. K. Goh, Y. S. Ong and K. C. Tan Abstract Evolutionary gradient search is a hybrid algorithm that exploits the complementary

More information

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts

Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts IEEE Symposium Series on Computational Intelligence Using ɛ-dominance for Hidden and Degenerated Pareto-Fronts Heiner Zille Institute of Knowledge and Language Engineering University of Magdeburg, Germany

More information

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls

Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Finding a preferred diverse set of Pareto-optimal solutions for a limited number of function calls Florian Siegmund, Amos H.C. Ng Virtual Systems Research Center University of Skövde P.O. 408, 541 48 Skövde,

More information

Double Archive Pareto Local Search

Double Archive Pareto Local Search Double Archive Pareto Local Search Oded Maler CNRS-VERIMAG University of Grenoble Alpes, France Email: oded.maler@imag.fr Abhinav Srivastav VERIMAG University of Grenoble Alpes, France Email: abhinav.srivastav@imag.fr

More information

Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search

Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search Seventh International Conference on Hybrid Intelligent Systems Exploration of Pareto Frontier Using a Fuzzy Controlled Hybrid Line Search Crina Grosan and Ajith Abraham Faculty of Information Technology,

More information

Metaheuristics for the Bi-objective Ring Star Problem

Metaheuristics for the Bi-objective Ring Star Problem Metaheuristics for the Bi-objective Ring Star Problem Arnaud Liefooghe 1, Laetitia Jourdan 1, Matthieu Basseur 2, El-Ghazali Talbi 1, and Edmund K. Burke 2 1 INRIA-Futurs, LIFL, CNRS Université des Sciences

More information

Preferences in Evolutionary Multi-Objective Optimisation with Noisy Fitness Functions: Hardware in the Loop Study

Preferences in Evolutionary Multi-Objective Optimisation with Noisy Fitness Functions: Hardware in the Loop Study Proceedings of the International Multiconference on ISSN 1896-7094 Computer Science and Information Technology, pp. 337 346 2007 PIPS Preferences in Evolutionary Multi-Objective Optimisation with Noisy

More information

Evolutionary multi-objective algorithm design issues

Evolutionary multi-objective algorithm design issues Evolutionary multi-objective algorithm design issues Karthik Sindhya, PhD Postdoctoral Researcher Industrial Optimization Group Department of Mathematical Information Technology Karthik.sindhya@jyu.fi

More information

Recombination of Similar Parents in EMO Algorithms

Recombination of Similar Parents in EMO Algorithms H. Ishibuchi and K. Narukawa, Recombination of parents in EMO algorithms, Lecture Notes in Computer Science 341: Evolutionary Multi-Criterion Optimization, pp. 265-279, Springer, Berlin, March 25. (Proc.

More information

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms

Incorporation of Scalarizing Fitness Functions into Evolutionary Multiobjective Optimization Algorithms H. Ishibuchi, T. Doi, and Y. Nojima, Incorporation of scalarizing fitness functions into evolutionary multiobjective optimization algorithms, Lecture Notes in Computer Science 4193: Parallel Problem Solving

More information

Computational Intelligence

Computational Intelligence Computational Intelligence Winter Term 207/8 Prof Dr Günter Rudolph Lehrstuhl für Algorithm Engineering (LS ) Fakultät für Informatik TU Dortmund Slides prepared by Dr Nicola Beume (202) enriched with

More information

Evolutionary Multi-Objective Optimization of Trace Transform for Invariant Feature Extraction

Evolutionary Multi-Objective Optimization of Trace Transform for Invariant Feature Extraction Evolutionary Multi-Objective Optimization of Trace Transform for Invariant Feature Extraction Wissam A. Albukhanajer, Yaochu Jin, Johann Briffa and Godfried Williams Nature Inspired Computing and Engineering

More information

Indicator-Based Selection in Multiobjective Search

Indicator-Based Selection in Multiobjective Search Indicator-Based Selection in Multiobjective Search Eckart Zitzler and Simon Künzli Swiss Federal Institute of Technology Zurich Computer Engineering and Networks Laboratory (TIK) Gloriastrasse 35, CH 8092

More information

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach

Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Comparison of Evolutionary Multiobjective Optimization with Reference Solution-Based Single-Objective Approach Hisao Ishibuchi Graduate School of Engineering Osaka Prefecture University Sakai, Osaka 599-853,

More information

Outline of the module

Outline of the module Evolutionary and Heuristic Optimisation (ITNPD8) Lecture 2: Heuristics and Metaheuristics Gabriela Ochoa http://www.cs.stir.ac.uk/~goc/ Computing Science and Mathematics, School of Natural Sciences University

More information

Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms

Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms Solving Bilevel Multi-Objective Optimization Problems Using Evolutionary Algorithms Kalyanmoy Deb and Ankur Sinha Department of Mechanical Engineering Indian Institute of Technology Kanpur PIN 2816, India

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department ofmechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

Incrementally Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms

Incrementally Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms Incrementally Maximising Hypervolume for Selection in Multi-objective Evolutionary Algorithms Lucas Bradstreet, Student Member, IEEE, Lyndon While, Senior Member, IEEE, and Luigi Barone, Member, IEEE Abstract

More information

An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function Results

An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function Results Syracuse University SURFACE Electrical Engineering and Computer Science College of Engineering and Computer Science -0-005 An Evolutionary Multi-Objective Crowding Algorithm (EMOCA): Benchmark Test Function

More information

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem

An Evolutionary Algorithm for the Multi-objective Shortest Path Problem An Evolutionary Algorithm for the Multi-objective Shortest Path Problem Fangguo He Huan Qi Qiong Fan Institute of Systems Engineering, Huazhong University of Science & Technology, Wuhan 430074, P. R. China

More information

Graphical User Interface For Multi-Objective Decision Support

Graphical User Interface For Multi-Objective Decision Support Master Thesis Graphical User Interface For Multi-Objective Decision Support Author: Benjamin Keller Supervisor: Dr. Thomas Hanne A master thesis presented to the School of Business of the University of

More information

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design

Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design City University of New York (CUNY) CUNY Academic Works International Conference on Hydroinformatics 8-1-2014 Multi-Objective Pipe Smoothing Genetic Algorithm For Water Distribution Network Design Matthew

More information

Indicator-Based Multi-Objective Local Search

Indicator-Based Multi-Objective Local Search ndicator-based Multi-Objective Local Search M. Basseur and E. K. Burke Abstract This paper presents a simple and generic indicator-based multi-objective local search. This algorithm is a direct extension

More information

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm

Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Solving Multi-objective Optimisation Problems Using the Potential Pareto Regions Evolutionary Algorithm Nasreddine Hallam, Graham Kendall, and Peter Blanchfield School of Computer Science and IT, The Univeristy

More information

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences

A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences A Distance Metric for Evolutionary Many-Objective Optimization Algorithms Using User-Preferences Upali K. Wickramasinghe and Xiaodong Li School of Computer Science and Information Technology, RMIT University,

More information

MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION

MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION MULTI-OBJECTIVE GENETIC LOCAL SEARCH ALGORITHM FOR SUPPLY CHAIN SIMULATION OPTIMISATION Galina Merkuryeva (a), Liana Napalkova (b) (a) (b) Department of Modelling and Simulation, Riga Technical University,

More information

A Model-Based Evolutionary Algorithm for Bi-objective Optimization

A Model-Based Evolutionary Algorithm for Bi-objective Optimization A Model-Based Evolutionary Algorithm for Bi-objective Optimization Aimin Zhou 1, Qingfu Zhang 1, Yaochu Jin 2, Edward Tsang 1 and Tatsuya Okabe 3 1 Department of Computer Science, University of Essex,

More information

R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization

R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization R2-IBEA: R2 Indicator Based Evolutionary Algorithm for Multiobjective Optimization Dũng H. Phan Department of Computer Science University of Massachusetts, Boston Boston, MA 02125, USA Email: phdung@cs.umb.edu

More information

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems

Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Bi-Objective Optimization for Scheduling in Heterogeneous Computing Systems Tony Maciejewski, Kyle Tarplee, Ryan Friese, and Howard Jay Siegel Department of Electrical and Computer Engineering Colorado

More information

DEMO: Differential Evolution for Multiobjective Optimization

DEMO: Differential Evolution for Multiobjective Optimization DEMO: Differential Evolution for Multiobjective Optimization Tea Robič and Bogdan Filipič Department of Intelligent Systems, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia tea.robic@ijs.si

More information

MULTI-OBJECTIVE OPTIMIZATION

MULTI-OBJECTIVE OPTIMIZATION MULTI-OBJECTIVE OPTIMIZATION Introduction Many real-world problems require the simultaneous optimization of a number of objective functions. Some of these objectives may be in conflict. Example 1:optimal

More information

Discovering and Navigating a Collection of Process Models using Multiple Quality Dimensions

Discovering and Navigating a Collection of Process Models using Multiple Quality Dimensions Discovering and Navigating a Collection of Process Models using Multiple Quality Dimensions J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst Eindhoven University of Technology, The Netherlands

More information

Derivative-Free Optimization: Lifting Single-Objective to Multi-Objective Algorithm

Derivative-Free Optimization: Lifting Single-Objective to Multi-Objective Algorithm Derivative-Free Optimization: Lifting Single-Objective to Multi-Objective Algorithm Cyrille Dejemeppe, Pierre Schaus, and Yves Deville ICTEAM, Université Catholique de Louvain (UCLouvain), Belgium, {cyrille.dejemeppe,

More information

Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets

Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets 1 Automated Test Case Generation as a Many-Objective Optimisation Problem with Dynamic Selection of the Targets Annibale Panichella, Fitsum Meshesha Kifetew, Paolo Tonella SnT - University of Luxembourg,

More information

Compromise Based Evolutionary Multiobjective Optimization Algorithm for Multidisciplinary Optimization

Compromise Based Evolutionary Multiobjective Optimization Algorithm for Multidisciplinary Optimization Compromise Based Evolutionary Multiobjective Optimization Algorithm for Multidisciplinary Optimization Benoît Guédas, Xavier Gandibleux, Philippe Dépincé To cite this version: Benoît Guédas, Xavier Gandibleux,

More information

Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms Multi-Objective Evolutionary Algorithms Kalyanmoy Deb a Kanpur Genetic Algorithm Laboratory (KanGAL) Indian Institute o Technology Kanpur Kanpur, Pin 0806 INDIA deb@iitk.ac.in http://www.iitk.ac.in/kangal/deb.html

More information

Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach

Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach Reference Point-Based Particle Swarm Optimization Using a Steady-State Approach Richard Allmendinger,XiaodongLi 2,andJürgen Branke University of Karlsruhe, Institute AIFB, Karlsruhe, Germany 2 RMIT University,

More information

Communication Strategies in Distributed Evolutionary Algorithms for Multi-objective Optimization

Communication Strategies in Distributed Evolutionary Algorithms for Multi-objective Optimization CONTI 2006 The 7 th INTERNATIONAL CONFERENCE ON TECHNICAL INFORMATICS, 8-9 June 2006, TIMISOARA, ROMANIA Communication Strategies in Distributed Evolutionary Algorithms for Multi-objective Optimization

More information

Automatically Improving the Anytime Behaviour of Optimisation Algorithms

Automatically Improving the Anytime Behaviour of Optimisation Algorithms Université Libre de Bruxelles Institut de Recherches Interdisciplinaires et de Développements en Intelligence Artificielle Automatically Improving the Anytime Behaviour of Optimisation Algorithms Manuel

More information

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization

Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Approximation Model Guided Selection for Evolutionary Multiobjective Optimization Aimin Zhou 1, Qingfu Zhang 2, and Guixu Zhang 1 1 Each China Normal University, Shanghai, China 2 University of Essex,

More information

Multi-objective branch-and-bound. Application to the bi-objective spanning tree problem.

Multi-objective branch-and-bound. Application to the bi-objective spanning tree problem. Multi-objective branch-and-bound. Application to the bi-objective spanning tree problem. Francis Sourd Olivier Spanjaard Patrice Perny LIP6, University of Paris 6 8, rue du Capitaine Scott F75015 Paris,

More information

SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2

SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2 Mifa Kim 1, Tomoyuki Hiroyasu 2, Mitsunori Miki 2, and Shinya Watanabe 3 1 Graduate School, Department of Knowledge Engineering

More information

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls

An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls An Improved Progressively Interactive Evolutionary Multi-objective Optimization Algorithm with a Fixed Budget of Decision Maker Calls Ankur Sinha, Pekka Korhonen, Jyrki Wallenius Firstname.Secondname@aalto.fi,

More information

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION

CHAPTER 2 MULTI-OBJECTIVE REACTIVE POWER OPTIMIZATION 19 CHAPTER 2 MULTI-OBJECTIE REACTIE POWER OPTIMIZATION 2.1 INTRODUCTION In this chapter, a fundamental knowledge of the Multi-Objective Optimization (MOO) problem and the methods to solve are presented.

More information

ROBUST MULTI-OBJECTIVE OPTIMIZATION OF WATER DISTRIBUTION NETWORKS

ROBUST MULTI-OBJECTIVE OPTIMIZATION OF WATER DISTRIBUTION NETWORKS ROBUST MULTI-OBJECTIVE OPTIMIZATION OF WATER DISTRIBUTION NETWORKS Taishi Ohno, Hernán Aguirre, Kiyoshi Tanaka Faculty of Engineering, Shinshu University, Wakasato, Nagano-shi, Japan 15tm209f@shinshu-u.ac.jp,

More information

A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm

A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm A Fast Approximation-Guided Evolutionary Multi-Objective Algorithm Markus Wagner and Frank Neumann Evolutionary Computation Group School of Computer Science The University of Adelaide Adelaide, SA 5005,

More information

AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES

AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES In: Book Title Editor: Editor Name, pp. 1-26 ISBN 0000000000 c 2009 Nova Science Publishers, Inc. Chapter 1 AN INTRODUCTION TO MULTIOBJECTIVE OPTIMIZATION TECHNIQUES Antonio López Jaimes, Saúl Zapotecas

More information

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods

Multi-Objective Memetic Algorithm using Pattern Search Filter Methods Multi-Objective Memetic Algorithm using Pattern Search Filter Methods F. Mendes V. Sousa M.F.P. Costa A. Gaspar-Cunha IPC/I3N - Institute of Polymers and Composites, University of Minho Guimarães, Portugal

More information

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM

INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Advanced OR and AI Methods in Transportation INTERACTIVE MULTI-OBJECTIVE GENETIC ALGORITHMS FOR THE BUS DRIVER SCHEDULING PROBLEM Jorge PINHO DE SOUSA 1, Teresa GALVÃO DIAS 1, João FALCÃO E CUNHA 1 Abstract.

More information

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows

Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Optimizing Delivery Time in Multi-Objective Vehicle Routing Problems with Time Windows Abel Garcia-Najera and John A. Bullinaria School of Computer Science, University of Birmingham Edgbaston, Birmingham

More information

Multi-objective Optimization Algorithm based on Magnetotactic Bacterium

Multi-objective Optimization Algorithm based on Magnetotactic Bacterium Vol.78 (MulGrab 24), pp.6-64 http://dx.doi.org/.4257/astl.24.78. Multi-obective Optimization Algorithm based on Magnetotactic Bacterium Zhidan Xu Institute of Basic Science, Harbin University of Commerce,

More information

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm

Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Towards Understanding Evolutionary Bilevel Multi-Objective Optimization Algorithm Ankur Sinha and Kalyanmoy Deb Helsinki School of Economics, PO Box, FIN-, Helsinki, Finland (e-mail: ankur.sinha@hse.fi,

More information

Hierarchical Clustering of Evolutionary Multiobjective Programming Results to Inform Land Use Planning

Hierarchical Clustering of Evolutionary Multiobjective Programming Results to Inform Land Use Planning Hierarchical Clustering of Evolutionary Multiobjective Programming Results to Inform Land Use Planning by Christina Moulton A thesis presented to the University of Waterloo in fulfillment of the thesis

More information

minimizing minimizing

minimizing minimizing The Pareto Envelope-based Selection Algorithm for Multiobjective Optimization David W. Corne, Joshua D. Knowles, Martin J. Oates School of Computer Science, Cybernetics and Electronic Engineering University

More information

A Framework for Large-scale Multi-objective Optimization based on Problem Transformation

A Framework for Large-scale Multi-objective Optimization based on Problem Transformation IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, MAY 7 A Framework for Large-scale Multi-objective Optimization based on Problem Transformation Heiner Zille, Hisao Ishibuchi, Sanaz Mostaghim and Yusuke Nojima

More information

Universiteit Leiden Opleiding Informatica

Universiteit Leiden Opleiding Informatica Universiteit Leiden Opleiding Informatica A New Approach to Target Region Based Multi-objective Evolutionary Algorithms Yali Wang MASTER S THESIS Leiden Institute of Advanced Computer Science (LIACS) Leiden

More information

Trade-off Between Computational Complexity and Accuracy in Evolutionary Image Feature Extraction

Trade-off Between Computational Complexity and Accuracy in Evolutionary Image Feature Extraction Trade-off Between Computational Complexity and Accuracy in Evolutionary Image Feature Extraction Wissam A. Albukhanajer, Yaochu Jin and Johann A. Briffa Wissam A. Albukhanajer (student) E: w.albukhanajer@surrey.ac.uk

More information

Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimization

Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimization Visualization of Pareto-Sets in Evolutionary Multi-Objective Optimization Mario Köppen, Kaori Yoshida Kyushu Institute of Technology Dept. Artificial Intelligence 680-04 Kawazu, Iizuka, Fukuoka 820-8502,

More information

Preference-inspired Co-evolutionary Algorithms

Preference-inspired Co-evolutionary Algorithms UNIVERSITY OF SHEFFIELD Preference-inspired Co-evolutionary Algorithms by Rui Wang A thesis submitted in partial fulfilment for the degree of Doctor of Philosophy in the Faculty of Engineering Department

More information

Development of Evolutionary Multi-Objective Optimization

Development of Evolutionary Multi-Objective Optimization A. Mießen Page 1 of 13 Development of Evolutionary Multi-Objective Optimization Andreas Mießen RWTH Aachen University AVT - Aachener Verfahrenstechnik Process Systems Engineering Turmstrasse 46 D - 52056

More information

Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization

Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization Improved S-CDAS using Crossover Controlling the Number of Crossed Genes for Many-objective Optimization Hiroyuki Sato Faculty of Informatics and Engineering, The University of Electro-Communications -5-

More information

Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem

Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective Subset Problem Eckart Zitzler ETH Zürich Dimo Brockhoff ETH Zurich Gene Expression Data Analysis 1 Computer Engineering and Networks Laboratory Dimensionality Reduction in Multiobjective Optimization: The Minimum Objective

More information

Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization

Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization Fuzzy-Pareto-Dominance and its Application in Evolutionary Multi-Objective Optimization Mario Köppen, Raul Vicente-Garcia, and Bertram Nickolay Fraunhofer IPK, Pascalstr. 8-9, 10587 Berlin, Germany {mario.koeppen

More information

Hybrid Genetic Algorithms for Multi-objective Optimisation of Water Distribution Networks

Hybrid Genetic Algorithms for Multi-objective Optimisation of Water Distribution Networks Hybrid Genetic Algorithms for Multi-objective Optimisation of Water Distribution Networks Edward Keedwell and Soon-Thiam Khu Centre for Water Systems, School of Engineering and Computer Science and Mathematics,

More information

Archive-aware Scalarisation-based Multi-Objective Local Search For a Bi-objective Permutation Flowshop Problem

Archive-aware Scalarisation-based Multi-Objective Local Search For a Bi-objective Permutation Flowshop Problem Archive-aware Scalarisation-based Multi-Objective Local Search For a Bi-objective Permutation Flowshop Problem Aymeric Blot, Manuel López-Ibáñez, Marie-Éléonore Kessaci, Laetitia Jourdan To cite this version:

More information

GENERIC SCHEME OF A RESTART META-HEURISTIC OPERATOR FOR MULTI-OBJECTIVE GENETIC ALGORITHMS

GENERIC SCHEME OF A RESTART META-HEURISTIC OPERATOR FOR MULTI-OBJECTIVE GENETIC ALGORITHMS International Journal on Information Technologies & Security, 2 (vol. 10), 2018 101 GENERIC SCHEME OF A RESTART META-HEURISTIC OPERATOR FOR MULTI-OBJECTIVE GENETIC ALGORITHMS Christina Brester, Ivan Ryzhikov,

More information

Multiobjective Prototype Optimization with Evolved Improvement Steps

Multiobjective Prototype Optimization with Evolved Improvement Steps Multiobjective Prototype Optimization with Evolved Improvement Steps Jiri Kubalik 1, Richard Mordinyi 2, and Stefan Biffl 3 1 Department of Cybernetics Czech Technical University in Prague Technicka 2,

More information

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA

Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Mechanical Component Design for Multiple Objectives Using Elitist Non-Dominated Sorting GA Kalyanmoy Deb, Amrit Pratap, and Subrajyoti Moitra Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute

More information

Generalized Multiobjective Evolutionary Algorithm Guided by Descent Directions

Generalized Multiobjective Evolutionary Algorithm Guided by Descent Directions DOI.7/s852-4-9255-y Generalized Multiobjective Evolutionary Algorithm Guided by Descent Directions Roman Denysiuk Lino Costa Isabel Espírito Santo Received: August 23 / Accepted: 9 March 24 Springer Science+Business

More information

A Multi-Tier Adaptive Grid Algorithm for the Evolutionary Multi-Objective Optimisation of Complex Problems

A Multi-Tier Adaptive Grid Algorithm for the Evolutionary Multi-Objective Optimisation of Complex Problems Soft Computing manuscript No. (will be inserted by the editor) A Multi-Tier Adaptive Grid Algorithm for the Evolutionary Multi-Objective Optimisation of Complex Problems Shahin Rostami Alex Shenfield Received:

More information

MOEAs: Applications and Technology 25/10/2012

MOEAs: Applications and Technology 25/10/2012 Introduction to evolutionary algorithms Introduction to multi-objective optimisation WFG MOEA applications WFG MOEA technology 2 An optimisation problem is one where the performance of a solution is measured

More information

Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms

Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms Neural Network Regularization and Ensembling Using Multi-objective Evolutionary Algorithms Yaochu Jin Honda Research Institute Europe Carl-Legien-Str 7 Offenbach, GERMANY Email: yaochujin@honda-ride Tatsuya

More information

Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization with Degenerate and Disconnected Pareto Fronts

Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization with Degenerate and Disconnected Pareto Fronts Adaptive Reference Vector Generation for Inverse Model Based Evolutionary Multiobjective Optimization with Degenerate and Disconnected Pareto Fronts Ran Cheng, Yaochu Jin,3, and Kaname Narukawa 2 Department

More information

Adjusting Parallel Coordinates for Investigating Multi-Objective Search

Adjusting Parallel Coordinates for Investigating Multi-Objective Search Adjusting Parallel Coordinates for Investigating Multi-Objective Search Liangli Zhen,, Miqing Li, Ran Cheng, Dezhong Peng and Xin Yao 3, Machine Intelligence Laboratory, College of Computer Science, Sichuan

More information

Bayesian Optimization Algorithms for Multi-Objective Optimization

Bayesian Optimization Algorithms for Multi-Objective Optimization Bayesian Optimization Algorithms for Multi-Objective Optimization Marco Laumanns 1 and Jiri Ocenasek 2 1 ETH Zürich, Computer Engineering and Networks Laboratory, CH 8092 Zürich laumanns@tik.ee.ethz.ch

More information

Heuristic Optimisation

Heuristic Optimisation Heuristic Optimisation Part 2: Basic concepts Sándor Zoltán Németh http://web.mat.bham.ac.uk/s.z.nemeth s.nemeth@bham.ac.uk University of Birmingham S Z Németh (s.nemeth@bham.ac.uk) Heuristic Optimisation

More information

arxiv: v4 [cs.ne] 11 Aug 2017

arxiv: v4 [cs.ne] 11 Aug 2017 Improved Quick Hypervolume Algorithm Andrzej Jaszkiewicz Poznan University of Technology, Faculty of Computing, Institute of Computing Science, ul. Piotrowo 2, 60-965 Poznan, andrzej.jaszkiewicz@put.poznan.pl

More information

Using an outward selective pressure for improving the search quality of the MOEA/D algorithm

Using an outward selective pressure for improving the search quality of the MOEA/D algorithm Comput Optim Appl (25) 6:57 67 DOI.7/s589-5-9733-9 Using an outward selective pressure for improving the search quality of the MOEA/D algorithm Krzysztof Michalak Received: 2 January 24 / Published online:

More information

A Faster Algorithm for Calculating Hypervolume

A Faster Algorithm for Calculating Hypervolume Edith Cowan University Research Online ECU Publications Pre. 2011 2006 A Faster Algorithm for Calculating Hypervolume Lyndon While Philip Hingston Edith Cowan University Luigi Barone Simon Huband Edith

More information

CHAPTER 5 STRUCTURAL OPTIMIZATION OF SWITCHED RELUCTANCE MACHINE

CHAPTER 5 STRUCTURAL OPTIMIZATION OF SWITCHED RELUCTANCE MACHINE 89 CHAPTER 5 STRUCTURAL OPTIMIZATION OF SWITCHED RELUCTANCE MACHINE 5.1 INTRODUCTION Nowadays a great attention has been devoted in the literature towards the main components of electric and hybrid electric

More information

Comparing Algorithms, Representations and Operators for the Multi-Objective Knapsack Problem

Comparing Algorithms, Representations and Operators for the Multi-Objective Knapsack Problem Comparing s, Representations and Operators for the Multi-Objective Knapsack Problem Gualtiero Colombo School of Computer Science Cardiff University United Kingdom G.Colombo@cs.cardiff.ac.uk Christine L.

More information

An EMO Algorithm Using the Hypervolume Measure as Selection Criterion

An EMO Algorithm Using the Hypervolume Measure as Selection Criterion An EMO Algorithm Using the Hypervolume Measure as Selection Criterion Michael Emmerich, Nicola Beume +, and Boris Naujoks + + University of Dortmund, Chair of Systems Analysis, 44221 Dortmund, Germany

More information

Speeding Up Many-Objective Optimization by Monte Carlo Approximations

Speeding Up Many-Objective Optimization by Monte Carlo Approximations Speeding Up Many-Objective Optimization by Monte Carlo Approximations Karl Bringmann a, Tobias Friedrich b,, Christian Igel c, Thomas Voß d a Max-Planck-Institut für Informatik, Saarbrücken, Germany b

More information

The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration

The Hypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration The ypervolume Indicator Revisited: On the Design of Pareto-compliant Indicators Via Weighted Integration Eckart Zitzler, Dimo Brockhoff, and Lothar Thiele Computer Engineering (TIK), ET Zurich {zitzler,brockho,thiele}@tik.ee.ethz.ch

More information