Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger

Size: px
Start display at page:

Download "Attenuation of water-layer-related multiples Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger"

Transcription

1 Clement Kostov*, Richard Bisley, Ian Moore, Gary Wool, Mohamed Hegazy, Glenn Miers, Schlumberger Summary We present a method for modeling and separation of waterlayer-related multiples in towed streamer acquisitions. Our method models accurately the kinematics of multiples with bounces in the water layer, both on the source and receiver sides, and extends the capabilities of previous methods in particular for the cases with complex topography on the sea bed. We illustrate the method with synthetic data and with field data from a shallow-water 3D towed-streamers marine survey. differences due to source array directivity, for instance). However, traveltime differences between source-side and receiver-side multiples exist even in presence of a horizontal water bottom due to the interaction with deeper non-horizontal reflectors. When both the sea bottom and the deeper structures are non-horizontal, such traveltime differences increase in particular with the number of bounces in the water layer. Introduction Water-layer-related multiples are free-surface multiples, that have a bounce in the water-layer on the source or receiver side. Typically, the water-layer-related multiples have large amplitudes because of the strong contrasts in material properties at the air/water (free surface) and at the water/sediments interfaces. Deconvolution, initially, and later wavefield extrapolation methods were developed to attenuate such water-layerrelated multiples. The development of 3D surface-related multiple elimination (SRME) and wave-equation modeling methods, which predict all free-surface multiples, led to redefining the applications for water-layer-related multiples removal. The preferred application cases of the latter technique are now in shallow-water surveys; sea-bed surveys, or other surveys that don t meet some of the requirements for 3D SRME methods; or, used in combination with imaging methods extracting information from the multiples. Here, we extend the deterministic water-layer demultiple (DWD) method of Moore and Bisley (2006) to handle complex topography on the near water-bottom multiplegenerating reflectors by using the modeling approach described by Verschuur (2006). After presenting a brief outline of our method, we illustrate the method with synthetic data examples, indicate directions for further developments in modeling, and apply our method in a case study with data from a shallow-water survey acquired offshore Canada. Theory and Method It is well established that multiples with bounces on the source side or on the receiver side have different raypaths and attributes, and, therefore both types of multiples should be modeled. Figure 1 illustrates the definition of sourceside and receiver-side water-layer-related multiples. Note that in a horizontally-layered medium, source-side and receiver-side multiples would be the same (ignoring Figure 1: Raypaths for two water-layer-related multiples, with same source and receiver positions. The raypaths Sab (multiple on the source side) and b c R (multiple on the receiver side) are significantly different for this source-receiver offset (S-R). At near offsets in this model, the corresponding raypaths would be very similar. The equations for prediction of all water-layer-related multiples by wavefield extrapolation are given by Lokshtanov (2001) and by Verschuur (2006). Following Verschuur (2006), the equation for the model of waterlayer-related multiples is M = W R D + (D D w ) W S W R D W S, (1) with notations as follows: M is the model of multiples; D is data; D w is the water bottom reflection; and W R and W S wavefield extrapolation operators acting respectively on common shot and common receiver gathers. The denotes the wavefield extrapolation of the data, performed by multi-dimensional convolution with a (vertical derivative of) Green s function for the water layer. Implicitly, all the wavefields are functions of temporal frequency and spatial coordinates of the sources and receivers. To reduce the number of multi-dimensional convolutions, one can group the terms in equation (1) as in Moore (2004), M R = W R D, and (2) M = M R + (D Dw f M R ) W S, (3) SEG New Orleans Annual Meeting Page 4448

2 where f is a linear filter, determined by matching the model M R to the data. The dashed black arrow points to an internal multiple in the input data, whereas the solid black arrow points to a freesurface multiple that is not reflecting on the sea bed and therefore is not included in the model in Figure 2c. Within this modelling framework, the next steps are the choice of a Green s function for the wavefield extrapolation, implementation of a method for computing efficiently and accurately the Green s function, and the preconditioning of the data as needed for the wavefield extrapolation. In current practice, wavefield extrapolation operators are computed as approximations to Green functions in acoustic media, implicitly focusing on matching the kinematics of pre-critical reflections in the data (Wiggins, 1988; Spadavecchia et al., 2013; Wang et al., 2014). Here, we follow this practice and compute wavefield extrapolation operators using constant, angle-independent sea-bed reflectivity, as in the wave-equation modeling of all freesurface multiples (Stork et al., 2006), except that the reflectivity model consists of the sea-bed reflection, or near-sea-bed reflections, only. The multi-dimensional convolutions involved in the wavefield extrapolation are the same as in the data-driven prediction of surface multiples by 3D SRME methods (Dragoset et al., 2010). Similarly to 3D SRME, the data need to be adequately sampled, either in acquisition, or in pre-processing in order to compute the multi-dimensional convolutions. In our work, we use the efficient on-the-fly interpolation developed as part of the general surface multiple prediction (GSMP) method (Moore and Dragoset, 2008), combined when necessary with interpolation prior to the prediction of water-layer-related multiples. Synthetic Data Example Figure 2a displays a synthetic shot gather computed by a finite-differences method in a three-layer acoustic earth model (Figure 2b). The shot gather includes two primary reflections (the two earliest reflections in the figure), freesurface multiples, as well as internal multiples. Even though the dip on the sea bed is small (0.89 ), traveltime differences between source-side and receiver-side multiples (events identified by thick blue arrow in Figure 2a, with raypaths as in Figure 1) are clearly observed for this shot gather computed for frequencies up to 55 Hz. Figure 2c displays water-layer-related multiples with bounces on the receiver side only. This model of multiples is computed by equation 2. Note that the receiver-side-only model doesn t contain the split arrival events observed in Figure 2a (compare events pointed by the blue arrows). Figure 2: a) Common shot gather of finite-difference synthetic data; b) Three-layer model used for computing the synthetics with water layer at the top (in blue) and dip on the water-layer bottom of 0.89 (plotted with vertically exaggerated scale). c) Model of multiples with receiverside bounce in the water layer. We computed synthetic data for shot and receiver locations as in a field survey similar to the one described in the Field Data Example section that follows. The synthetic data are available not only at the locations of acquired data during the survey, but also at locations where data would have been interpolated during processing. Comparing the multiples modeled by finite differences from the acoustic model (Figure 3a) to the multiples predicted by the method described in this paper (equation 1), we note very good agreement for the kinematics of the water-layer-related multiples, including the splitting starting at mid-offsets between the receiver-side and the source-side peg-leg multiples. Field Data Example To illustrate the approach with field data we use an offshore Canadian survey, acquired in 1997 over the Hebron oil field. The nearly horizontal water bottom (Figure 4) varies in depth from 88 m to 104 m. The particularly hard water bottom makes water-layer-related multiples particularly strong, even for high-order multiples. The data were acquired with two source arrays each shooting alternately every 50 m in flip-flop mode, and were recorded with 8 streamers, each 4 km long, with receiver group interval of 25 m. The crossline separation between streamers is 100 m. SEG New Orleans Annual Meeting Page 4449

3 The multiple-attenuated data are the result of adaptively subtracting a model of water-layer-related multiples including receiver-side and source-side multiples. The adaptive subtraction workflow includes least-squares matching filters as well as curvelet decomposition and has been optimized for this model, thus removing a significant amount of multiples. Figure 3: a) All free-surface-related multiples predicted by finite-difference computations from the acoustic model. The black arrow points to a multiple which does not reflect from the water bottom. b) Water-layer-related multiples computed by the method of equation 1. Note the accurate prediction of the split peg-leg multiple, indicated by the blue arrows. We tested our method of predicting multiples on a subset of the data consisting of 11 sail lines. We determined bathymetry from picked autocorrelations and time-to-depth conversion, as described in Moore and Bisley (2006). Although the sea floor depth is nearly constant, there are small variations in water depth that we were keen to preserve in the model. As mentioned previously, we computed an approximation of the acoustic Green s function using a constant sea-bed reflectivity model (Stork et al., 2006). In Figure 7a we display the trace-by-trace crosscorrelations between input stacked data and the model (source and receiver-side bounces). The significant energy at zero-lag indicates a good match between the model and the data. The crosscorrelations between primary events in the data and multiples in the model contribute to negative crosscorrelation times. At positive crosscorrelation times we have cross-talk between multiple events of different orders, not involving the primaries. Figure 7b displays trace-by-trace crosscorrelations between the data without multiples (as in Figure 6) and the model of multiples. Notice the significant reduction of energy at zero and positive crosscorrelation times indicating good attenuation of multiples, whereas significant energy at negative times is preserved and contains contributions from cross-talk between primaries in the data and multiples in the model. The stack section displayed on the left in Figure 8 consists of data after multiples were subtracted using a model of multiples with bounces on the receiver-side only. The stack section displayed on the right in Figure 8 shows stack traces from the input data. The black arrows indicate several areas where the receiver-side multiple model is not removing multiples as effectively as in the full model (source and receiver-side multiples) shown in Figure 6. A harsher adaptive subtraction may improve the multiple attenuation results using the receiver-side model only, but this would be at the risk of damaging primary reflections. Conclusions Figure 4: Sea-floor bathymetry for the field test area. The full stack is shown in Figure 5; notice the significant contamination from multiples, in particular water-layer multiples with a periodicity of about 120 msec, with several bounces (high-order multiples) and characteristic alternation of polarities within sequences of peg-leg multiples. Stack sections are shown in Figure 6, with data after multiple attenuation on the left, and data before multiple attenuation on the right. The data shown in Figure 6 correspond to the data from the rectangular areas indicated in Figure 5. The general wavefield extrapolation operators that we introduced are capable of modeling water-layer multiples interacting with a seafloor of complex geometry. Our predictions of the multiples are kinematically correct which is important in order to use well-constrained adaptive subtraction. The amplitudes of our models are approximate with respect to handling effects due to scattering from the sea floor, source directivity, and residual ghost effects. Such differences in amplitudes are currently compensated by adaptive subtraction. The prediction of more accurate amplitudes for the multiples is a direction for further work in which the main challenges are the accuracy of the available earth models, the significant cost of full solutions of the acoustic or elastic wave equations, and the acquisition geometries required for accurate wavefield extrapolations. SEG New Orleans Annual Meeting Page 4450

4 Our proposed method, illustrated on synthetic and field data, provides accurate predictions of water-layer-related multiples. Use of a model that includes both source- and receiver-side multiples is preferable to use of only a receiver-side model, even in cases of mild structural variations of the seafloor. Figure 7: a) Trace-by-trace crosscorrelations between traces from the input stack (Figure 5) and traces from the model with receiver-side and source-side multiples; b) Trace-by-trace crosscorrelations between traces from the output stack (Figure 6) and traces from the model with receiver-side and source-side multiples. Figure 5: Stack section of input data. The rectangles indicate areas of the stack section displayed in Figures 6 and 8. Figure 6: a) Stack section output, where models of receiverside and source-side multiples have been subtracted from the input data; b) Stack section of input data with no multiple attenuation. The black arrows indicate locations for comparisons between Figures 6 and 8. Figure 8: Stack section output, where a model of receiverside multiples has been matched and subtracted from the input data; b) Stack section of input data with no multiple attenuation. The black arrows indicate locations for comparisons between Figures 6 and 8. Acknowledgments We thank Schlumberger and ExxonMobil for permission to publish this work. We gratefully acknowledge key technical contributions from several colleagues: Yvonne Paisant-Allen and Erik Neumann from ExxonMobil, and Zhiming Wu, Scott Slaton, Frederico Xavier de Melo, Peck Hwa David Ng and Penelope Barnes from Schlumberger. SEG New Orleans Annual Meeting Page 4451

5 EDITED REFERENCES Note: This reference list is a copyedited version of the reference list submitted by the author. Reference lists for the 2015 SEG Technical Program Expanded Abstracts have been copyedited so that references provided with the online metadata for each paper will achieve a high degree of linking to cited sources that appear on the Web. REFERENCES Dragoset, W., E. Verschuur, I. Moore, and R. Bisley, 2010, A perspective on 3D surface-related multiple elimination: Geophysics, 75, no. 5, 75A245 75A261, Lokshtanov, D., 2001, Suppression of water-layer multiples and peg-legs by wave-equation approach: 63rd Conference & Exhibition, EAGE, Extended Abstracts, IM001. Moore, I., 2004, Method for attenuating water-layer multiples: U. S. Patent B1. Moore, I., and R. Bisley, 2006, Multiple attenuation in shallow-water situations: 68th Conference & Exhibition, EAGE, Extended Abstracts, F018. Moore, I., and W. Dragoset, 2008, General surface multiple prediction: A flexible 3D SRME algorithm: First Break, 26, no. 9, Spadavecchia, E., V. Lipari, N. Bienati, and G. Drufuca, 2013, Water-bottom multiple attenuation by Kirchhoff extrapolation: Geophysical Prospecting, 61, no. 4, , Stork, C., J. Kapoor, W. Zhao, W. Dragoset, and K. Dingwall, 2006, Predicting and removing complex 3D surface multiples with WEM modeling An alternative to 3D SRME for wide azimuth surveys?: 76th Annual International Meeting, SEG, Expanded Abstracts, Verschuur, D. J., 2006, Seismic multiple removal techniques: Past, present and future: EAGE. Wang, P., H. Jin, M. Yang, and S. Xu, 2014, A model-based water-layer demultiple algorithm: First Break, 32, no. 3, 63 68, Wiggins, J. W., 1988, Attenuation of complex water-bottom multiples by wave-equation-based prediction and subtraction: Geophysics, 53, , SEG New Orleans Annual Meeting Page 4452

Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities

Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities Multiple attenuation for shallow-water surveys: Notes on old challenges and new opportunities Clement Kostov 1, Frederico Xavier de Melo 1, Abhishek Raj 1, Alexander Zarkhidze 1, Alex Cooke 1, Glenn Miers

More information

Shallow Reverberation Prediction Methodology with SRME

Shallow Reverberation Prediction Methodology with SRME Shallow Reverberation Prediction Methodology with SRME S.R. Barnes* (Petroleum Geo-Services), R.F. Hegge (Petroleum Geo- Services), R. van Borselen (Petroleum Geo-Services) & J. Owen (Petroleum Geo-Services)

More information

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey

Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey Tu STZ1 06 Looking Beyond Surface Multiple Predictions - A Demultiple Workflow for the Culzean High Density OBC Survey S. Gupta (Schlumberger), A. Merry (Maersk Oil), L.P. Jensen (Maersk Oil), A. Clarke

More information

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data

Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data Y015 Complementary Data-driven Methods for Interbed Demultiple of Land Data S. Sonika* (WesternGeco), A. Zarkhidze (WesternGeco), J. Heim (WesternGeco) & B. Dragoset (WesternGeco) SUMMARY Interbed multiples

More information

A model-based water-layer demultiple algorithm

A model-based water-layer demultiple algorithm first break volume 32, March 2014 technical article A model-based water-layer demultiple algorithm Ping Wang 1*, Hongzheng Jin 1, Min Yang 1, Yan Huang 1 and Sheng Xu 2 Abstract This paper focuses on the

More information

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/20/16 to Redistribution subject to SEG license or copyright; see Terms of Use at Joint SRME and model-based water-layer demultiple for ocean bottom node Hui Huang*, Ping Wang, Jing Yang, Hui Chen (CGG); Pierre-Olivier Ariston, Imtiaz Ahmed, and Nick Bassett (BP) Summary Ocean bottom

More information

Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection

Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection Predicting rugged water-bottom multiples through wavefield extrapolation with rejection and injection Benxi Ke ABSTRACT Although convolution-based and WEM-modeling-based methods for predicting surface-related

More information

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG)

Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Source deghosting for synchronized multi-level source streamer data Zhan Fu*, Nan Du, Hao Shen, Ping Wang, and Nicolas Chazalnoel (CGG) Summary Ghost wavefield elimination is pivotal for improving the

More information

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG)

Application of 3D source deghosting and designature to deep-water ocean bottom node data Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Xu Li*, Jing Yang, Hui Chen, Melanie Vu, and Ping Wang (CGG) Summary Compared to towed-streamer data, deep-water ocean bottom node (OBN) data by nature have a broader bandwidth; however, the presence of

More information

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS

Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Challenges and Opportunities in 3D Imaging of Sea Surface Related Multiples Shaoping Lu*, N.D. Whitmore and A.A. Valenciano, PGS Summary Conventional shot domain migration constructs a subsurface image

More information

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea

A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea A Novel 3-D De-multiple Workflow for Shallow Water Environments - a Case Study from the Brage field, North Sea J. Oukili* (PGS), T. Jokisch (PGS), A. Pankov (PGS), B. Farmani (PGS), G. Ronhølt (PGS), Ø.

More information

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer

Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer Successes and challenges in 3D interpolation and deghosting of single-component marinestreamer data James Rickett*, Schlumberger Gould Research Summary Combining deghosting with crossline interpolation

More information

CLASSIFICATION OF MULTIPLES

CLASSIFICATION OF MULTIPLES Introduction Subsurface images provided by the seismic reflection method are the single most important tool used in oil and gas exploration. Almost exclusively, our conceptual model of the seismic reflection

More information

Reverse time migration of multiples: Applications and challenges

Reverse time migration of multiples: Applications and challenges Reverse time migration of multiples: Applications and challenges Zhiping Yang 1, Jeshurun Hembd 1, Hui Chen 1, and Jing Yang 1 Abstract Marine seismic acquisitions record both primary and multiple wavefields.

More information

Progress Report on: Interferometric Interpolation of 3D SSP Data

Progress Report on: Interferometric Interpolation of 3D SSP Data Progress Report on: Interferometric Interpolation of 3D SSP Data Sherif M. Hanafy ABSTRACT We present the theory and numerical results for interferometrically interpolating and extrapolating 3D marine

More information

Summary. Introduction

Summary. Introduction Dmitry Alexandrov, Saint Petersburg State University; Andrey Bakulin, EXPEC Advanced Research Center, Saudi Aramco; Pierre Leger, Saudi Aramco; Boris Kashtan, Saint Petersburg State University Summary

More information

Summary. Introduction

Summary. Introduction Multiple Prediction by Wavefield Extrapolation in Common-P Domain. Wang, Y. Kim, H. Guan, S. Sen, M. Guo, and K. Yoon TGS, 2500 CityWest oulevard, Suite 2000, Houston, TX 77042, US Summary Wavefield extrapolation

More information

Practical implementation of SRME for land multiple attenuation

Practical implementation of SRME for land multiple attenuation Practical implementation of SRME for land multiple attenuation Juefu Wang* and Shaowu Wang, CGGVeritas, Calgary, Canada juefu.wang@cggveritas.com Summary We present a practical implementation of Surface

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Wave-equation based residual multiple prediction and elimination in migration depth domain as an aid to seismic interpretation in Wang, Manhong Guo, huck Mason, Jun ai, Sampath Gajawada, and Duryodhan

More information

Shot-based pre-processing solutions for wide azimuth towed streamer datasets

Shot-based pre-processing solutions for wide azimuth towed streamer datasets first break volume 25, March 2007 focus on azimuth Shot-based pre-processing solutions for wide azimuth towed streamer datasets Philippe Herrmann, 1* Gordon Poole, 2 Antonio Pica, 1 Sylvain Le Roy, 1 and

More information

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution SPECIAL M u l t SECTION: i c o m p o Mn ue ln t t i cs oe mi s p m o i nc e n t s e i s m i c The ups and downs of ocean-bottom seismic processing: Applications of wavefield separation and up-down deconvolution

More information

Summary. Introduction

Summary. Introduction Multivessel coil shooting acquisition with simultaneous sources Nick Moldoveanu¹, Ying Ji², Craig Beasley¹ ¹WesternGeco, ²Schlumberger Cambridge Research Summary Multivessel coil shooting is a towed-streamer

More information

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic

Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic Mitigation of the 3D Cross-line Acquisition Footprint Using Separated Wavefield Imaging of Dual-sensor Streamer Seismic A.S. Long* (PGS), S. Lu (PGS), D. Whitmore (PGS), H. LeGleut (PGS), R. Jones (Lundin

More information

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary

Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Summary Challenges of pre-salt imaging in Brazil s Santos Basin: A case study on a variable-depth streamer data set Jeremy Langlois, Bing Bai, and Yan Huang (CGGVeritas) Summary Recent offshore discoveries in

More information

Postmigration multiple prediction and removal in the depth domain

Postmigration multiple prediction and removal in the depth domain GEOPHYSICS. VOL. 76, NO. 5 (SEPTEMBER-OCTOBER 2011); P. WB217 WB223, 10 FIGS. 10.1190/GEO2011-0010.1 Postmigration multiple prediction and removal in the depth domain Bin Wang 1, Jun Cai 1, Manhong Guo

More information

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco)

P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) I040 Case Study - Residual Scattered Noise Attenuation for 3D Land Seismic Data P. Bilsby (WesternGeco), D.F. Halliday* (Schlumberger Cambridge Research) & L.R. West (WesternGeco) SUMMARY We show that

More information

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66

Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 48 Stanford Exploration Project, Report 124, April 4, 2006, pages 49 66 Mapping of specularly-reflected multiples to image space: An

More information

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry

G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry G012 Scattered Ground-roll Attenuation for 2D Land Data Using Seismic Interferometry D.F. Halliday* (Schlumberger Cambridge Research), P.J. Bilsby (WesternGeco), J. Quigley (WesternGeco) & E. Kragh (Schlumberger

More information

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM)

Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) Enhanced Angular Illumination from Separated Wavefield Imaging (SWIM) S. Lu* (Petroleum Geo-Services), N.D. Whitmore (Petroleum Geo- Services), A.A. Valenciano (Petroleum Geo-Services) & N. Chemingui (Petroleum

More information

Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction

Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction Internal Multiple Attenuation on Radial Gathers With Inverse- Scattering Series Prediction Frederico Xavier de Melo, Clément Kostov, James Wu Schlumberger Summary We present a novel workflow for pre-stack

More information

Introduction. Surface and Interbed Multtple Elimination

Introduction. Surface and Interbed Multtple Elimination Pre-stack Land Surface and Interbed Demultiple Methodology An Example from the Arabian Peninsula Roald van Borselen, Grog Fookes, Michel Schonewille, Constantine Tsingas, Michael West PGS Geophysical;

More information

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea

Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea Optimising 4D Seismic with Evolving Technology over 20 Years of Reservoir Monitoring of the Gullfaks Field, North Sea D.J. Anderson* (PGS), M. Wierzchowska (PGS), J. Oukili (PGS), D. Eckert (Statoil ASA),

More information

EARTH SCIENCES RESEARCH JOURNAL

EARTH SCIENCES RESEARCH JOURNAL EARTH SCIENCES RESEARCH JOURNAL Earth Sci. Res. J. Vol. 10, No. 2 (December 2006): 117-129 ATTENUATION OF DIFFRACTED MULTIPLES WITH AN APEX-SHIFTED TANGENT- SQUARED RADON TRANSFORM IN IMAGE SPACE Gabriel

More information

Least-squares Wave-Equation Migration for Broadband Imaging

Least-squares Wave-Equation Migration for Broadband Imaging Least-squares Wave-Equation Migration for Broadband Imaging S. Lu (Petroleum Geo-Services), X. Li (Petroleum Geo-Services), A. Valenciano (Petroleum Geo-Services), N. Chemingui* (Petroleum Geo-Services),

More information

1D internal multiple prediction in a multidimensional world: errors and recommendations

1D internal multiple prediction in a multidimensional world: errors and recommendations 1D internal multiple prediction 1D internal multiple prediction in a multidimensional world: errors and recommendations Pan Pan and Kris Innanen ABSTRACT Internal multiples are more difficult to estimate

More information

Examples of GLOBE Claritas Processing

Examples of GLOBE Claritas Processing V6.0 Examples of GLOBE Claritas Processing Refraction Statics Removal of Noise (Land, 3D) Removal of Swell Noise Interpolation : shots/receivers Interpolation : 5D (STITCH) Demultiple : High Resolution

More information

3D SRME: An Acquisition Independent Approach

3D SRME: An Acquisition Independent Approach Summary 3D SRME: An Acquisition Independent Approach A.Pica, P. Lanfranchi*, Ph. Herrmann CGG, Paris, France Conventional data-driven SRME techniques do not require any a priori knowledge of the subsurface

More information

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction

Tu N Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction Tu N114 05 Internal Multiple Attenuation on Radial Gathers With Inverse-scattering Series Prediction F. Xavier de Melo* (Schlumberger), C. Kostov (Schlumberger) & J. Wu (Schlumberger) SUMMARY We present

More information

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study

We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study We ELI1 02 Evaluating Ocean-bottom Seismic Acquisition in the North Sea - A Phased Survey Design Case Study M. Branston* (Schlumberger Geosolutions), R. Campbell (Schlumberger Geosolutions), M. Rowlands

More information

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines

3D angle gathers from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines from wave-equation extended images Tongning Yang and Paul Sava, Center for Wave Phenomena, Colorado School of Mines SUMMARY We present a method to construct 3D angle gathers from extended images obtained

More information

Wave-equation migration from topography: Imaging Husky

Wave-equation migration from topography: Imaging Husky Stanford Exploration Project, Report 123, October 31, 2005, pages 49 56 Short Note Wave-equation migration from topography: Imaging Husky Jeff Shragge 1 INTRODUCTION Imaging land seismic data is wrought

More information

Refraction Full-waveform Inversion in a Shallow Water Environment

Refraction Full-waveform Inversion in a Shallow Water Environment Refraction Full-waveform Inversion in a Shallow Water Environment Z. Zou* (PGS), J. Ramos-Martínez (PGS), S. Kelly (PGS), G. Ronholt (PGS), L.T. Langlo (PGS), A. Valenciano Mavilio (PGS), N. Chemingui

More information

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure

Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure Seismic Noise Attenuation Using Curvelet Transform and Dip Map Data Structure T. Nguyen* (PGS), Y.J. Liu (PGS) Summary The curvelet transform is a known tool used in the attenuation of coherent and incoherent

More information

H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography

H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography H003 Deriving 3D Q Models from Surface Seismic Data Using Attenuated Traveltime Tomography M. Cavalca* (Schlumberger - Westerngeco) & R.P. Fletcher (Schlumberger - Westerngeco) SUMMARY Estimation of the

More information

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited

Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Adaptive Waveform Inversion: Theory Mike Warner*, Imperial College London, and Lluís Guasch, Sub Salt Solutions Limited Summary We present a new method for performing full-waveform inversion that appears

More information

A Review of Current Marine Demultiple Techniques with Examples from the East Coast of Canada

A Review of Current Marine Demultiple Techniques with Examples from the East Coast of Canada A Review of Current Marine De Techniques with Examples from the East Coast of Canada ABSTRACT R.Brooymans*, T.Mojesky and L.Pham CGG Canada Services Ltd., Calgary rbrooymans@ca.cgg.com Introduction Multiple

More information

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube)

M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Tu A12 15 High-Resolution Reflection FWI M. Warner* (S-Cube), T. Nangoo (S-Cube), A. Umpleby (S-Cube), N. Shah (S-Cube), G. Yao (S-Cube) Summary We demonstrate reflection FWI on a less-than-ideal 3D narrow-azimuth

More information

Selection of an optimised multiple attenuation scheme for a west coast of India data set

Selection of an optimised multiple attenuation scheme for a west coast of India data set P-391 Selection of an optimised multiple attenuation scheme for a west coast of India data set Summary R Pathak*, PC Kalita, CPS Rana, Dr. S. Viswanathan, ONGC In recent years a number of new algorithms

More information

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary

Adaptive de-ghosting by kurtosis maximisation. Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical. Summary Adaptive de-ghosting by kurtosis maximisation Sergio Grion, Rob Telling, Janet Barnes, Dolphin Geophysical Summary We discuss the reasons for adaptive de-ghosting and its advantages. The success of broadband

More information

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico

C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico C014 Shot Based Pre-Processing Solutions for a WATS Survey An Example from a Field Trial in Green Canyon Gulf of Mexico M. Magesan (CGGVeritas), J.-C. Ferran* (CGGVeritas), S. Kaculini (CGGVeritas), C.J.

More information

3D predictive deconvolution for wide-azimuth gathers

3D predictive deconvolution for wide-azimuth gathers 3D predictive deconvolution for wide-azimuth gathers P.Hugonnet(1), J.L.Boelle(2), P.Herrmann(1), F.Prat(1), S.Navion(1) (1) CGGVeritas, (2) Total E&P Summary Usual pre-stack predictive deconvolution solutions

More information

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li.

Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li. Acquisition of high shot density blended seismic data: a WAZ sea trial Thomas Mensch*, Damien Grenié, Risto Siliqi and Yunfeng Li Summary In this paper, we present the results of a high shot density sea

More information

Effect of Structure on Wide Azimuth Acquisition and Processing

Effect of Structure on Wide Azimuth Acquisition and Processing P - 71 Effect of Structure on Wide Azimuth Acquisition and Processing Bruce VerWest and Dechun Lin, CGGVeritas, Houston, TX Summary This model study shows that narrow azimuth acquisition may be adequate

More information

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology)

Th N Deghosting by Echo-deblending SUMMARY. A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) Th N103 11 Deghosting by Echo-deblending A.J. Berkhout* (Delft University of Technology) & G. Blacquiere (Delft University of Technology) SUMMARY Because of the strong sea surface reflectivity, a marine

More information

TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH

TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH Technical paper TU STZ1 04 DEMULTIPLE DEMULTIPLE OF HIGH RESOLUTION P-CABLE DATA IN THE NORWEGIAN BARENTS SEA - AN ITERATIVE APPROACH Authors A.J. Hardwick* (TGS), S. Jansen (TGS) & B. Kjølhamar (TGS)

More information

Sea surface source-side static optimization for 4D seismic Simon R. Barnes*, Paul Lecocq and Stephane Perrier, PGS and Mick Igoe, Tullow Oil

Sea surface source-side static optimization for 4D seismic Simon R. Barnes*, Paul Lecocq and Stephane Perrier, PGS and Mick Igoe, Tullow Oil Sea surface source-side static optimization for 4D seismic Simon R. Barnes*, Paul Lecocq and Stephane Perrier, PGS and Mick Igoe, Tullow Oil Summary Management of producing fields can be enhanced by effective

More information

A simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf Baardman, Roald van Borselen, PGS

A simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf Baardman, Roald van Borselen, PGS simulated Simultaneous Source Experiment in Shallow waters and the Impact of Randomization Schemes Rolf aardman, Roald van orselen, PGS Summary In simultaneous source acquisition, seismic data can be recorded

More information

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger

A comparison between time domain and depth domain inversion to acoustic impedance Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Laurence Letki*, Kevin Darke, and Yan Araujo Borges, Schlumberger Summary Geophysical reservoir characterization in a complex geologic environment remains a challenge. Conventional amplitude inversion

More information

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material!

GG450 4/5/2010. Today s material comes from p and in the text book. Please read and understand all of this material! GG450 April 6, 2010 Seismic Reflection I Today s material comes from p. 32-33 and 81-116 in the text book. Please read and understand all of this material! Back to seismic waves Last week we talked about

More information

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach

We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach We LHR2 08 Simultaneous Source Separation Using an Annihilation Filter Approach J. Rohnke* (CGG) & G. Poole (CGG) SUMMARY Simultaneous shooting increases acquisition efficiency by activating more than

More information

SEG Houston 2009 International Exposition and Annual Meeting

SEG Houston 2009 International Exposition and Annual Meeting Yueming Ye *1, Ru-Shan Wu and Zhenchun Li 2 Modeling and Imaging Laboratory, IGPP, University of California, Santa Cruz, CA 95064 Summary Migration with data acquired on surface with irregular topography

More information

Multi-source Least-squares Migration of Gulf of Mexico Data

Multi-source Least-squares Migration of Gulf of Mexico Data Multi-source Least-squares Migration of Gulf of Mexico Data Xin Wang. King Abdullah University of Science and Technology, Thuwal 955-69, Kingdom of Saudi Arabia Corresponding author is Xin Wang. E-mail

More information

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation

A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation A047 Simultaneous-source Acquisition in the North Sea Prospect Evaluation B. Szydlik* (WesternGeco), C.J. Beasley (WesternGeco) & I. Moore (WesternGeco) SUMMARY This paper outlines a method for quantitative

More information

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco.

Q-compensation in complex media ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. ray-based and wavefield extrapolation approaches Maud Cavalca, Robin Fletcher and Marko Riedel, WesternGeco. Summary We apply and compare three model-based Q-compensation approaches. The first two approaches

More information

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS

Improvements in time domain FWI and its applications Kwangjin Yoon*, Sang Suh, James Cai and Bin Wang, TGS Downloaded 0/7/13 to 05.196.179.38. Redistribution subject to SEG license or copyright; see Terms of Use at http://library.seg.org/ Improvements in time domain FWI and its applications Kwangjin Yoon*,

More information

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data

G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G009 Multi-dimensional Coherency Driven Denoising of Irregular Data G. Poole* (CGGVeritas Services (UK) Ltd) SUMMARY Many land and ocean bottom datasets suffer from high levels of noise which make the

More information

An illustration of adaptive Marchenko imaging

An illustration of adaptive Marchenko imaging An illustration of adaptive Marchenko imaging Joost van der Neut 1, Kees Wapenaar 1, Jan Thorbecke 1, Evert Slob 1, and Ivan Vasconcelos 2 Abstract In Marchenko imaging, wavefields are retrieved at specified

More information

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 10/23/13 to Redistribution subject to SEG license or copyright; see Terms of Use at ACQUISITION APERTURE CORRECTION IN ANGLE-DOMAIN TOWARDS THE TRUE- REFLECTION RTM Rui Yan 1*, Huimin Guan 2, Xiao-Bi Xie 1, Ru-Shan Wu 1, 1 IGPP, Earth and Planetary Sciences Department, University of California,

More information

High Resolution Imaging by Wave Equation Reflectivity Inversion

High Resolution Imaging by Wave Equation Reflectivity Inversion High Resolution Imaging by Wave Equation Reflectivity Inversion A. Valenciano* (Petroleum Geo-Services), S. Lu (Petroleum Geo-Services), N. Chemingui (Petroleum Geo-Services) & J. Yang (University of Houston)

More information

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z.

A case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. case study for salt model building using CFP full azimuth data W. Gao*, Z. Guo, M. Guo, Q. Zhang, S. Hightower, G. Cloudy Jr. and Z. Li, TGS Summary We present a case study of the salt model building for

More information

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media

E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media E044 Ray-based Tomography for Q Estimation and Q Compensation in Complex Media M. Cavalca* (WesternGeco), I. Moore (WesternGeco), L. Zhang (WesternGeco), S.L. Ng (WesternGeco), R.P. Fletcher (WesternGeco)

More information

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries

G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries G017 Beyond WAZ - A Modeling-based Evaluation of Extensions to Current Wide Azimuth Streamer Acquisition Geometries M. Cvetkovic* (ION Geophysical), Z. Zhou (ION Geophysical / GXT Imaging Solutions) &

More information

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration

Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Common-angle processing using reflection angle computed by kinematic pre-stack time demigration Didier Lecerf*, Philippe Herrmann, Gilles Lambaré, Jean-Paul Tourré and Sylvian Legleut, CGGVeritas Summary

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Marchenko Imaging of Volve Field, North Sea Citation for published version: Ravasi, M, Vasconcelos, I, Kritski, A, Curtis, A, Da Costa Filho, CA & Meles, G 5, 'Marchenko Imaging

More information

Seismic Time Processing. The Basis for Modern Seismic Exploration

Seismic Time Processing. The Basis for Modern Seismic Exploration The Future of E&P Seismic Time Processing The Basis for Modern Seismic Exploration Fusion is a leading provider of Seismic Processing for the oil and gas industry from field tapes through final migration.

More information

Inversion after depth imaging

Inversion after depth imaging Robin P. Fletcher *, Stewart Archer, Dave Nichols, and Weijian Mao, WesternGeco Summary In many areas, depth imaging of seismic data is required to construct an accurate view of the reservoir structure.

More information

Estimation of multiple scattering by iterative inversion, Part II: Practical aspects and examples

Estimation of multiple scattering by iterative inversion, Part II: Practical aspects and examples GEOPHYSICS, VOL. 62, NO. 5 (SEPTEMBER-OCTOBER 1997); P. 1596 1611, 18 FIGS. Estimation of multiple scattering by iterative inversion, Part II: Practical aspects and examples D. J. Verschuur* and A. J.

More information

Th E An Interferometric Interpretation of Marchenko Redatuming

Th E An Interferometric Interpretation of Marchenko Redatuming Th E0 An Interferometric Interpretation of Marchenko Redatuming J. van der Neut (Delft University of Technology), I. Vasconcelos (chlumberger Gould Research) & K. Wapenaar (Delft University of Technology)

More information

SUMMARY. denoise the original data at each iteration. This can be

SUMMARY. denoise the original data at each iteration. This can be A comparison of D reconstruction methods Aaron Stanton*, Nadia Kreimer, David Bonar, Mostafa Naghizadeh, and Mauricio Sacchi, Department of Physics, University of Alberta SUMMARY A comparison is made between

More information

Considerations in 3D depth-specific P-S survey design

Considerations in 3D depth-specific P-S survey design Considerations in 3D depth-specific P-S survey design Don C. Lawton and Peter W. Cary 3D P-S survey design ABSTRACT A new sparse-shot design for 3D P-S surveys is introduced. In the sparse shot design

More information

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS

Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Enhanced adaptive subtraction method for simultaneous source separation Zhaojun Liu*, Bin Wang, Jim Specht, Jeffery Sposato and Yongbo Zhai, TGS Summary We have developed an iterative adaptive subtraction

More information

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/09/15 to Redistribution subject to SEG license or copyright; see Terms of Use at Recovering the Reflectivity Matrix and Angle-dependent Plane-wave Reflection Coefficients from Imaging of Multiples Alba Ordoñez PGS/UiO*, Walter Söllner PGS, Tilman Klüver PGS and Leiv J. Gelius UiO Summary

More information

Th N D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain

Th N D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain Th N103 13 3D Source Designature Using Source-receiver Symmetry in the Shot Tau-px-py Domain G. Poole* (CGG), J. Cooper (CGG), S. King (CGG) & P. Wang (CGG) SUMMARY While sufficient for many deep water

More information

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design

Chapter 5. 3D data examples REALISTICALLY COMPLEX SYNTHETIC INVERSION. Modeling generation and survey design Chapter 5 3D data examples In this chapter I will demonstrate the e ectiveness of the methodologies developed in the previous chapters using 3D data examples. I will first show inversion results of a realistically

More information

cv R z design. In this paper, we discuss three of these new methods developed in the last five years.

cv R z design. In this paper, we discuss three of these new methods developed in the last five years. Nick Moldoveanu, Robin Fletcher, Anthony Lichnewsky, Darrell Coles, WesternGeco Hugues Djikpesse, Schlumberger Doll Research Summary In recent years new methods and tools were developed in seismic survey

More information

Deconvolution in the radial trace domain

Deconvolution in the radial trace domain R-T domain deconvolution Deconvolution in the radial trace domain David C. Henley ABSTRACT The radial trace (R-T) domain has been shown to be useful for coherent noise attenuation and other seismic wavefield

More information

Downloaded 05/09/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 05/09/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Elastic converted-wave path migration for subsalt imaging Ru-Shan Wu*, Rui Yan, Xiao-Bi Xie, Modeling and Imaging Laboratory, Earth and Planetary Sciences/IGPP, University of California, Santa Cruz, David

More information

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS

Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Anisotropic model building with well control Chaoguang Zhou*, Zijian Liu, N. D. Whitmore, and Samuel Brown, PGS Summary Anisotropic depth model building using surface seismic data alone is non-unique and

More information

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space

Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Attenuation of diffracted multiples with an apex-shifted tangent-squared radon transform in image space Gabriel Alvarez, Biondo Biondi, and Antoine Guitton 1 ABSTRACT We propose to attenuate diffracted

More information

Downloaded 09/03/13 to Redistribution subject to SEG license or copyright; see Terms of Use at

Downloaded 09/03/13 to Redistribution subject to SEG license or copyright; see Terms of Use at Full-waveform inversion in a shallow water environment: A North Sea 3D towed-streamer data example Kathy Zou*, Lars Tore Langlo, Grunde Rønholt, Jaime Ramos-Martinez and Steve Kelly, PGS Summary We apply

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Multi-dimensional Free-surface Multiple Elimination and Source Deblending of Volve OBC Data Citation for published version: Ravasi, M, Vasconcelos, I, Curtis, A & Kritski, A

More information

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC)

Full waveform inversion of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) of physical model data Jian Cai*, Jie Zhang, University of Science and Technology of China (USTC) Summary (FWI) is a promising technology for next generation model building. However, it faces with many

More information

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc.

2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. 2D Inversions of 3D Marine CSEM Data Hung-Wen Tseng*, Lucy MacGregor, and Rolf V. Ackermann, Rock Solid Images, Inc. Summary A combination of 3D forward simulations and 2D and 3D inversions have been used

More information

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey

Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Time-lapse acquisition with a dual-sensor streamer over a conventional baseline survey Anthony Day, * Martin Widmaier, Torben Høy and Berit Osnes, PGS, describe an experiment to validate the use of a dual-sensor

More information

Robustness of the scalar elastic imaging condition for converted waves

Robustness of the scalar elastic imaging condition for converted waves CWP-830 Robustness of the scalar elastic imaging condition for converted waves Yuting Duan & Paul Sava Center for Wave Phenomena, Colorado School of Mines ABSTRACT For elastic reverse-time migration, one

More information

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions

We N Converted-phase Seismic Imaging - Amplitudebalancing Source-independent Imaging Conditions We N106 02 Converted-phase Seismic Imaging - Amplitudebalancing -independent Imaging Conditions A.H. Shabelansky* (Massachusetts Institute of Technology), A.E. Malcolm (Memorial University of Newfoundland)

More information

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning

Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning Mitigating Uncertainties in Towed Streamer Acquisition and Imaging by Survey Planning M.T. Widmaier* (Petroleum Geo-Services) SUMMARY Uncertainties in seismic images or reservoir characterisation can very

More information

SUMMARY INTRODUCTION NEW METHOD

SUMMARY INTRODUCTION NEW METHOD Reverse Time Migration in the presence of known sharp interfaces Alan Richardson and Alison E. Malcolm, Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology SUMMARY

More information

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators

We N Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators We N101 08 Simultaneous Shooting for Sparse OBN 4D Surveys and Deblending Using Modified Radon Operators R.R. Haacke* (CGG), G. Hampson (Chevron) & B. Golebiowski (CGG) SUMMARY Significant gains in productivity

More information

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction

Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction τ-p domain converted-wave processing Processing converted-wave data in the tau-p domain: rotation toward the source and moveout correction Raul Cova and Kris Innanen ABSTRACT The asymmetry of the converted-wave

More information