Implementing Symmetric Multiprocessing in LispWorks

Size: px
Start display at page:

Download "Implementing Symmetric Multiprocessing in LispWorks"

Transcription

1 Implementing Symmetric Multiprocessing in LispWorks Making a multithreaded application more multithreaded Martin Simmons, LispWorks Ltd Copyright 2009 LispWorks Ltd

2 Outline Introduction Changes in LispWorks Application requirements Future work

3 Why SMP? Demand from customers and also Makes better use of modern hardware Multi-core hardware readily available Fun!

4 Roadmap Multiprocessing models in LispWorks Green threads Native threads SMP LispWorks 2 & 3 LispWorks 4 & 5 LispWorks 6 Lisp scheduler implements threads Lisp scheduler chooses thread for native scheduler Native scheduler guided by Lisp scheduler

5 Changes in LispWorks Runtime system changes Change some global data to be per-thread Bindings, catch tags, current thread Compiler changes to access to per-thread data Garbage collector (addition of locking) FLI (removal of locking) Common Lisp implementation Extensions and libraries

6 Interaction of CL with SMP No formal specification for threads in CL Some consensus between implementations Thread-safety Atomicity Specify some semantics Goal is to remain the same as existing threading model

7 What does thread-safe mean? Safety in the implementation Avoids breaking the implementation Implicit locks Safety for applications We need to specify some semantics that can be guaranteed

8 Safety in the CL implementation Access to all standard CL objects is thread-safe Readers always return valid CL objects Does not imply useful semantics overall Immutable objects Numbers, characters, functions, pathnames and restarts Can be freely shared between threads Mutable objects Use with more than one thread needs to be controlled Atomic access possible in some cases

9 Atomic access Scenario: There is one object Several threads are reading and writing one of its slots The value of each read operation looks like Some write operations have finished But all other write operations have not started yet Not specified for multiple reads Same slot or different slots

10 Mutable objects: atomic access Access to conses, simple arrays, symbols and structures is atomic. Does not apply to non-simple arrays (compound objects) Slot access in objects of type standard-object is atomic with respect to modification of the slot class redefinition, but MOP semantics are problematic vector-pop, vector-push, vector-push-extend, (setf fill-pointer) and adjustarray atomic with respect to each other and with respect to other access to the array elements Hash tables operations are atomic with respect to each other Making several calls to these functions will not be atomic overall New: modify-hash to atomically read and write an entry and with-hash-tablelocked for more complex operations Access to packages is atomic Though some scenarios are nonsensical

11 Mutable objects: non-atomic access Access to lists (including alists and plists) is not atomic Lists are made of multiple cons objects, so although access to the individual conses is atomic, the same does not hold for the list as a whole Sequence operations that access multiple elements are not atomic E.g. delete, find Macros that expand to multiple read/write operations are not atomic push, incf, rotatef etc Atomic versions of some of these are available in LispWorks 6 Stream operations are in general not atomic Optional locking of streams at application granularity

12 New atomic operators Usable with a restricted set of Common Lisp places Primitives atomic-exchange compare-and-swap atomic-fixnum-incf High level atomic-push atomic-pop atomic-incf

13 Synchronization Objects Locks Simple and exclusive/sharing Mailboxes FIFO queues, use for communication between threads Barriers Wait until fixed number of threads have synchronized Condition variables Used with a lock for a complex Lisp condition to control the scheduler Counting semaphores Traditional API to control number of concurrent uses of a resource

14 Native scheduler vs. Lisp scheduler Native scheduler uses synchronization objects Lisp scheduler uses an arbitrary predicate to control wake-up Syntax process-wait reason predicate &rest args process-wait is still supported Using synchronization objects is usually better process-wait has some problems

15 Problems with process-wait It is unspecified which thread calls the predicate The dynamic environment is also unknown Thread-safety in the predicate is often assumed Lisp scheduler wake-up vs. native wake-up (timeout) Lifetime of the predicate May have dynamic extent data in the predicate But that will become invalid if native wake-up occurs Error handling and debugging is difficult Very easy for the scheduler to become a bottleneck

16 An alternative process-wait Retain the convenience of process-wait Distribute the work of the Lisp scheduler Same syntax and still has a Lisp predicate Comparison to process-wait The waiting thread calls the predicate when needed Call is triggered by calling process-poke process Or it can be called periodically Predicate lifetime and environment is well defined Errors and debugging no longer a problem

17 An alternative process-wait (cont) Working name is process-wait-local Syntax process-wait-local reason predicate &rest args We don't like the name Can you suggest a better one? Could instead rename process-wait as process-wait-using-scheduler Not quite correct for backward compatibility

18 Native GUI threading Used by the LispWorks IDE and CAPI applications Windows Threading is built-in Per thread event processing GTK+ Threading via a global lock Per thread event processing can be simulated Cocoa One GUI thread No good way to simulate per thread events

19 Changes for applications Remove use of macros like without-preemption etc Works as an all-powerful lock, stopping the world Avoid like the (plague) swine flu Cannot be mixed reliably with other locks Use other threading primitives like atomic-push Atomic read-modify-write primitives like compare-and-swap More use of locks need a design to avoid deadlocks use sparingly to avoid contention Try to use process-wait-local rather than process-wait Use other synchronization objects

20 An application: the LispWorks IDE Already multithreaded Many changes to the editor Original design was single threaded Many types of interacting objects Buffer, window etc Programmatic and interactive Streams

21 Common conversion pitfalls Overuse of locks Deadlocks Avoiding locks by sleepy waiting or busy waiting Misuse of new atomic operations

22 Entertaining bug Goal is a pop/push resource for conses Atomic push: (atomic-push N *list*) *list* tail head N A B (loop (let* ((tail *list*) (head (cons N tail))) (when (compare-and-swap *list* tail head) (return)))) *list* head tail N A B

23 Entertaining bug (cont) Atomic pop: (atomic-pop *list*) => N *list* N A B *list* tail head N A B (loop (let* ((head *list*) (tail (cdr head))) (when (compare-and-swap *list* head tail) (return (car head))))) Can we reuse the cons?

24 Entertaining bug (cont) Atomic pop cons: (atomic-pop-cons *list*) => (N) *list* N A B *list* tail head N A B (loop (let* ((head *list*) (tail (cdr head))) (when (compare-and-swap *list* head tail) (return head)))) Atomic push cons is similar

25 Entertaining bug (cont) *list* head N tail A B (loop (let* ((head *list*) (tail (cdr head))) (when (compare-and-swap *list* head tail) (return head)))) *list* tail head A B N *list* B head N tail A *list* head tail N B A *list* tail A

26 Most MP code can be ported easily Watch for code that was never thread-safe Much more likely to break in a SMP Lisp Customers should contact us for advice

27 What comes next LispWorks 6 beta Possible future work Multithreaded GC? Other threading primitives? Other paradigms such as transactional approaches

28 Summary Changes in LispWorks New atomic access model New primitives Performance comparable to current stable release Application changes Limited to interaction with threads Available in LispWorks 6

Order Is A Lie. Are you sure you know how your code runs?

Order Is A Lie. Are you sure you know how your code runs? Order Is A Lie Are you sure you know how your code runs? Order in code is not respected by Compilers Processors (out-of-order execution) SMP Cache Management Understanding execution order in a multithreaded

More information

[Course Overview] After completing this module you are ready to: Develop Desktop applications, Networking & Multi-threaded programs in java.

[Course Overview] After completing this module you are ready to: Develop Desktop applications, Networking & Multi-threaded programs in java. [Course Overview] The Core Java technologies and application programming interfaces (APIs) are the foundation of the Java Platform, Standard Edition (Java SE). They are used in all classes of Java programming,

More information

Introduction to Locks. Intrinsic Locks

Introduction to Locks. Intrinsic Locks CMSC 433 Programming Language Technologies and Paradigms Spring 2013 Introduction to Locks Intrinsic Locks Atomic-looking operations Resources created for sequential code make certain assumptions, a large

More information

Heckaton. SQL Server's Memory Optimized OLTP Engine

Heckaton. SQL Server's Memory Optimized OLTP Engine Heckaton SQL Server's Memory Optimized OLTP Engine Agenda Introduction to Hekaton Design Consideration High Level Architecture Storage and Indexing Query Processing Transaction Management Transaction Durability

More information

Synchronization SPL/2010 SPL/20 1

Synchronization SPL/2010 SPL/20 1 Synchronization 1 Overview synchronization mechanisms in modern RTEs concurrency issues places where synchronization is needed structural ways (design patterns) for exclusive access 2 Overview synchronization

More information

Pierce Ch. 3, 8, 11, 15. Type Systems

Pierce Ch. 3, 8, 11, 15. Type Systems Pierce Ch. 3, 8, 11, 15 Type Systems Goals Define the simple language of expressions A small subset of Lisp, with minor modifications Define the type system of this language Mathematical definition using

More information

Problem Set 2. CS347: Operating Systems

Problem Set 2. CS347: Operating Systems CS347: Operating Systems Problem Set 2 1. Consider a clinic with one doctor and a very large waiting room (of infinite capacity). Any patient entering the clinic will wait in the waiting room until the

More information

Kotlin/Native concurrency model. nikolay

Kotlin/Native concurrency model. nikolay Kotlin/Native concurrency model nikolay igotti@jetbrains What do we want from concurrency? Do many things concurrently Easily offload tasks Get notified once task a task is done Share state safely Mutate

More information

Hazard Pointers. Number of threads unbounded time to check hazard pointers also unbounded! difficult dynamic bookkeeping! thread B - hp1 - hp2

Hazard Pointers. Number of threads unbounded time to check hazard pointers also unbounded! difficult dynamic bookkeeping! thread B - hp1 - hp2 Hazard Pointers Store pointers of memory references about to be accessed by a thread Memory allocation checks all hazard pointers to avoid the ABA problem thread A - hp1 - hp2 thread B - hp1 - hp2 thread

More information

Programming Languages

Programming Languages TECHNISCHE UNIVERSITÄT MÜNCHEN FAKULTÄT FÜR INFORMATIK Programming Languages Concurrency: Atomic Executions, Locks and Monitors Dr. Michael Petter Winter term 2016 Atomic Executions, Locks and Monitors

More information

Common Lisp. In Practical Usage

Common Lisp. In Practical Usage Common Lisp In Practical Usage Contents A walk through Lisp history What the man in the street seems to think Some highlights of Common Lisp Lisp in production History The Beginnings Lisp grew from a

More information

Java 8 Programming for OO Experienced Developers

Java 8 Programming for OO Experienced Developers www.peaklearningllc.com Java 8 Programming for OO Experienced Developers (5 Days) This course is geared for developers who have prior working knowledge of object-oriented programming languages such as

More information

Fall 2015 COMP Operating Systems. Lab 06

Fall 2015 COMP Operating Systems. Lab 06 Fall 2015 COMP 3511 Operating Systems Lab 06 Outline Monitor Deadlocks Logical vs. Physical Address Space Segmentation Example of segmentation scheme Paging Example of paging scheme Paging-Segmentation

More information

Virtual Machine Design

Virtual Machine Design Virtual Machine Design Lecture 4: Multithreading and Synchronization Antero Taivalsaari September 2003 Session #2026: J2MEPlatform, Connected Limited Device Configuration (CLDC) Lecture Goals Give an overview

More information

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University

CS 571 Operating Systems. Midterm Review. Angelos Stavrou, George Mason University CS 571 Operating Systems Midterm Review Angelos Stavrou, George Mason University Class Midterm: Grading 2 Grading Midterm: 25% Theory Part 60% (1h 30m) Programming Part 40% (1h) Theory Part (Closed Books):

More information

CS 314 Principles of Programming Languages

CS 314 Principles of Programming Languages CS 314 Principles of Programming Languages Lecture 16: Functional Programming Zheng (Eddy Zhang Rutgers University April 2, 2018 Review: Computation Paradigms Functional: Composition of operations on data.

More information

A Futures Library and Parallelism Abstractions for a Functional Subset of Lisp

A Futures Library and Parallelism Abstractions for a Functional Subset of Lisp A Futures Library and Parallelism Abstractions for a Functional Subset of Lisp David L. Rager {ragerdl@cs.utexas.edu} Warren A. Hunt, Jr. {hunt@cs.utexas.edu} Matt Kaufmann {kaufmann@cs.utexas.edu} The

More information

Java SE7 Fundamentals

Java SE7 Fundamentals Java SE7 Fundamentals Introducing the Java Technology Relating Java with other languages Showing how to download, install, and configure the Java environment on a Windows system. Describing the various

More information

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp>

Processor speed. Concurrency Structure and Interpretation of Computer Programs. Multiple processors. Processor speed. Mike Phillips <mpp> Processor speed 6.037 - Structure and Interpretation of Computer Programs Mike Phillips Massachusetts Institute of Technology http://en.wikipedia.org/wiki/file:transistor_count_and_moore%27s_law_-

More information

Application Programming

Application Programming Multicore Application Programming For Windows, Linux, and Oracle Solaris Darryl Gove AAddison-Wesley Upper Saddle River, NJ Boston Indianapolis San Francisco New York Toronto Montreal London Munich Paris

More information

Sistemas Operacionais I. Valeria Menezes Bastos

Sistemas Operacionais I. Valeria Menezes Bastos Sistemas Operacionais I Valeria Menezes Bastos Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Summary Basic Elements Evolution

More information

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008

Process Synchronization. Mehdi Kargahi School of ECE University of Tehran Spring 2008 Process Synchronization Mehdi Kargahi School of ECE University of Tehran Spring 2008 Producer-Consumer (Bounded Buffer) Producer Consumer Race Condition Producer Consumer Critical Sections Structure of

More information

Moore s Law. Computer architect goal Software developer assumption

Moore s Law. Computer architect goal Software developer assumption Moore s Law The number of transistors that can be placed inexpensively on an integrated circuit will double approximately every 18 months. Self-fulfilling prophecy Computer architect goal Software developer

More information

Massimiliano Ghilardi

Massimiliano Ghilardi 7 th European Lisp Symposium Massimiliano Ghilardi May 5-6, 2014 IRCAM, Paris, France High performance concurrency in Common Lisp hybrid transactional memory with STMX 2 Beautiful and fast concurrency

More information

Runtime Atomicity Analysis of Multi-threaded Programs

Runtime Atomicity Analysis of Multi-threaded Programs Runtime Atomicity Analysis of Multi-threaded Programs Focus is on the paper: Atomizer: A Dynamic Atomicity Checker for Multithreaded Programs by C. Flanagan and S. Freund presented by Sebastian Burckhardt

More information

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads.

Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Executive Summary. It is important for a Java Programmer to understand the power and limitations of concurrent programming in Java using threads. Poor co-ordination that exists in threads on JVM is bottleneck

More information

CPSC 3740 Programming Languages University of Lethbridge. Data Types

CPSC 3740 Programming Languages University of Lethbridge. Data Types Data Types A data type defines a collection of data values and a set of predefined operations on those values Some languages allow user to define additional types Useful for error detection through type

More information

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Common Lisp Fundamentals

INF4820: Algorithms for Artificial Intelligence and Natural Language Processing. Common Lisp Fundamentals INF4820: Algorithms for Artificial Intelligence and Natural Language Processing Common Lisp Fundamentals Stephan Oepen & Murhaf Fares Language Technology Group (LTG) August 30, 2017 Last Week: What is

More information

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC)

CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring Lecture 22: Remote Procedure Call (RPC) CS 162 Operating Systems and Systems Programming Professor: Anthony D. Joseph Spring 2002 Lecture 22: Remote Procedure Call (RPC) 22.0 Main Point Send/receive One vs. two-way communication Remote Procedure

More information

C++ Concurrency in Action

C++ Concurrency in Action C++ Concurrency in Action Practical Multithreading ANTHONY WILLIAMS 11 MANNING Shelter Island contents preface xv acknowledgments xvii about this booh xix about the cover illustration xxii ~1 Hello, world

More information

High Performance Computing on GPUs using NVIDIA CUDA

High Performance Computing on GPUs using NVIDIA CUDA High Performance Computing on GPUs using NVIDIA CUDA Slides include some material from GPGPU tutorial at SIGGRAPH2007: http://www.gpgpu.org/s2007 1 Outline Motivation Stream programming Simplified HW and

More information

Java for Programmers Course (equivalent to SL 275) 36 Contact Hours

Java for Programmers Course (equivalent to SL 275) 36 Contact Hours Java for Programmers Course (equivalent to SL 275) 36 Contact Hours Course Overview This course teaches programmers the skills necessary to create Java programming system applications and satisfies the

More information

Deterministic Futexes Revisited

Deterministic Futexes Revisited A. Zuepke Deterministic Futexes Revisited Alexander Zuepke, Robert Kaiser first.last@hs-rm.de A. Zuepke Futexes Futexes: underlying mechanism for thread synchronization in Linux libc provides: Mutexes

More information

Threads Cannot Be Implemented As a Library

Threads Cannot Be Implemented As a Library Threads Cannot Be Implemented As a Library Authored by Hans J. Boehm Presented by Sarah Sharp February 18, 2008 Outline POSIX Thread Library Operation Vocab Problems with pthreads POSIX Thread Library

More information

A little bit of Lisp

A little bit of Lisp B.Y. Choueiry 1 Instructor s notes #3 A little bit of Lisp Introduction to Artificial Intelligence CSCE 476-876, Fall 2017 www.cse.unl.edu/~choueiry/f17-476-876 Read LWH: Chapters 1, 2, 3, and 4. Every

More information

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall

Operating Systems: William Stallings. Starvation. Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 6 Concurrency: Deadlock and Starvation Patricia Roy Manatee Community College, Venice, FL 2008, Prentice Hall Deadlock

More information

Type-checking on Heterogeneous Sequences

Type-checking on Heterogeneous Sequences Type-checking on Heterogeneous Sequences in Common Lisp Jim Newton EPITA/LRDE May 9, 2016 Jim Newton (EPITA/LRDE) Type-checking on Heterogeneous Sequences May 9, 2016 1 / 31 Overview 1 Introduction Common

More information

plisp: A Friendly Lisp IDE for Beginners Rajesh Jayaprakash Tata Consultancy Services Chennai, India

plisp: A Friendly Lisp IDE for Beginners Rajesh Jayaprakash Tata Consultancy Services Chennai, India plisp: A Friendly Lisp IDE for Beginners Rajesh Jayaprakash Tata Consultancy Services Chennai, India Overview Basics What is plisp? Motivation Features Internals Language Object Model Compiler/Debugger

More information

Functional Programming. Pure Functional Programming

Functional Programming. Pure Functional Programming Functional Programming Pure Functional Programming Computation is largely performed by applying functions to values. The value of an expression depends only on the values of its sub-expressions (if any).

More information

Index. object lifetimes, and ownership, use after change by an alias errors, use after drop errors, BTreeMap, 309

Index. object lifetimes, and ownership, use after change by an alias errors, use after drop errors, BTreeMap, 309 A Arithmetic operation floating-point arithmetic, 11 12 integer numbers, 9 11 Arrays, 97 copying, 59 60 creation, 48 elements, 48 empty arrays and vectors, 57 58 executable program, 49 expressions, 48

More information

CS510 Advanced Topics in Concurrency. Jonathan Walpole

CS510 Advanced Topics in Concurrency. Jonathan Walpole CS510 Advanced Topics in Concurrency Jonathan Walpole Threads Cannot Be Implemented as a Library Reasoning About Programs What are the valid outcomes for this program? Is it valid for both r1 and r2 to

More information

Curriculum 2013 Knowledge Units Pertaining to PDC

Curriculum 2013 Knowledge Units Pertaining to PDC Curriculum 2013 Knowledge Units Pertaining to C KA KU Tier Level NumC Learning Outcome Assembly level machine Describe how an instruction is executed in a classical von Neumann machine, with organization

More information

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017

Operating Systems. Lecture 4 - Concurrency and Synchronization. Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Operating Systems Lecture 4 - Concurrency and Synchronization Adrien Krähenbühl Master of Computer Science PUF - Hồ Chí Minh 2016/2017 Mutual exclusion Hardware solutions Semaphores IPC: Message passing

More information

Computer Systems A Programmer s Perspective 1 (Beta Draft)

Computer Systems A Programmer s Perspective 1 (Beta Draft) Computer Systems A Programmer s Perspective 1 (Beta Draft) Randal E. Bryant David R. O Hallaron August 1, 2001 1 Copyright c 2001, R. E. Bryant, D. R. O Hallaron. All rights reserved. 2 Contents Preface

More information

A- Core Java Audience Prerequisites Approach Objectives 1. Introduction

A- Core Java Audience Prerequisites Approach Objectives 1. Introduction OGIES 6/7 A- Core Java The Core Java segment deals with the basics of Java. It is designed keeping in mind the basics of Java Programming Language that will help new students to understand the Java language,

More information

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson

Streams, Delayed Evaluation and a Normal Order Interpreter. CS 550 Programming Languages Jeremy Johnson Streams, Delayed Evaluation and a Normal Order Interpreter CS 550 Programming Languages Jeremy Johnson 1 Theme This lecture discusses the stream model of computation and an efficient method of implementation

More information

INF4820. Common Lisp: Closures and Macros

INF4820. Common Lisp: Closures and Macros INF4820 Common Lisp: Closures and Macros Erik Velldal University of Oslo Oct. 19, 2010 Erik Velldal INF4820 1 / 22 Topics for Today More Common Lisp A quick reminder: Scope, binding and shadowing Closures

More information

(defmacro while (condition &body body) `(iterate loop () (if,condition (loop)))))

(defmacro while (condition &body body) `(iterate loop () (if,condition (loop))))) ; PARCIL - A Parser for C syntax In Lisp version 0.1a copyright (c) 1992 by Erann Gat, all rights reserved This program is free software; you can redistribute it and/or modify it under the terms of the

More information

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources

Deadlock. Concurrency: Deadlock and Starvation. Reusable Resources Concurrency: Deadlock and Starvation Chapter 6 Deadlock Permanent blocking of a set of processes that either compete for system resources or communicate with each other No efficient solution Involve conflicting

More information

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course

MultiThreading 07/01/2013. Session objectives. Introduction. Introduction. Advanced Java Programming Course Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Lecture 1: Overview of Java

Lecture 1: Overview of Java Lecture 1: Overview of Java What is java? Developed by Sun Microsystems (James Gosling) A general-purpose object-oriented language Based on C/C++ Designed for easy Web/Internet applications Widespread

More information

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City

Advanced Java Programming Course. MultiThreading. By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Advanced Java Programming Course MultiThreading By Võ Văn Hải Faculty of Information Technologies Industrial University of Ho Chi Minh City Session objectives Introduction Creating thread Thread class

More information

Jatha. Common Lisp in Java. Ola Bini JRuby Core Developer ThoughtWorks Studios.

Jatha. Common Lisp in Java. Ola Bini JRuby Core Developer ThoughtWorks Studios. Jatha Common Lisp in Java Ola Bini JRuby Core Developer ThoughtWorks Studios ola.bini@gmail.com http://olabini.com/blog Common Lisp? Common Lisp? ANSI standard Common Lisp? ANSI standard Powerful Common

More information

Structure of Programming Languages Lecture 10

Structure of Programming Languages Lecture 10 Structure of Programming Languages Lecture 10 CS 6636 4536 Spring 2017 CS 6636 4536 Lecture 10: Classes... 1/23 Spring 2017 1 / 23 Outline 1 1. Types Type Coercion and Conversion Type Classes, Generics,

More information

Look at the outermost list first, evaluate each of its arguments, and use the results as arguments to the outermost operator.

Look at the outermost list first, evaluate each of its arguments, and use the results as arguments to the outermost operator. LISP NOTES #1 LISP Acronymed from List Processing, or from Lots of Irritating Silly Parentheses ;) It was developed by John MacCarthy and his group in late 1950s. Starting LISP screen shortcut or by command

More information

Course Description. Learn To: : Intro to JAVA SE7 and Programming using JAVA SE7. Course Outline ::

Course Description. Learn To: : Intro to JAVA SE7 and Programming using JAVA SE7. Course Outline :: Module Title Duration : Intro to JAVA SE7 and Programming using JAVA SE7 : 9 days Course Description The Java SE 7 Fundamentals course was designed to enable students with little or no programming experience

More information

Resource management. Real-Time Systems. Resource management. Resource management

Resource management. Real-Time Systems. Resource management. Resource management Real-Time Systems Specification Implementation Verification Mutual exclusion is a general problem that exists at several levels in a real-time system. Shared resources internal to the the run-time system:

More information

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL Whatever can go wrong will go wrong. attributed to Edward A. Murphy Murphy was an optimist. authors of lock-free programs LOCK FREE KERNEL 251 Literature Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

More information

Concurrent Preliminaries

Concurrent Preliminaries Concurrent Preliminaries Sagi Katorza Tel Aviv University 09/12/2014 1 Outline Hardware infrastructure Hardware primitives Mutual exclusion Work sharing and termination detection Concurrent data structures

More information

Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency

Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency Cache-Aware Lock-Free Queues for Multiple Producers/Consumers and Weak Memory Consistency Anders Gidenstam Håkan Sundell Philippas Tsigas School of business and informatics University of Borås Distributed

More information

Systems software design. Processes, threads and operating system resources

Systems software design. Processes, threads and operating system resources Systems software design Processes, threads and operating system resources Who are we? Krzysztof Kąkol Software Developer Jarosław Świniarski Software Developer Presentation based on materials prepared

More information

Scheme: Expressions & Procedures

Scheme: Expressions & Procedures Scheme: Expressions & Procedures CS F331 Programming Languages CSCE A331 Programming Language Concepts Lecture Slides Friday, March 31, 2017 Glenn G. Chappell Department of Computer Science University

More information

Introduction to Lock-Free Algorithms

Introduction to Lock-Free Algorithms 1 Introduction to Lock-Free Algorithms Through a case study Samy Al Bahra AppNexus, Inc. September 23, 2012 Motivation 2 3 Motivation 70 blocking non-blocking 60 50 Time (s) 40 30 20 10 0 0 10 20 30 40

More information

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( )

Lecture 24: Multiprocessing Computer Architecture and Systems Programming ( ) Systems Group Department of Computer Science ETH Zürich Lecture 24: Multiprocessing Computer Architecture and Systems Programming (252-0061-00) Timothy Roscoe Herbstsemester 2012 Most of the rest of this

More information

Multithreading and Interactive Programs

Multithreading and Interactive Programs Multithreading and Interactive Programs CS160: User Interfaces John Canny. Last time Model-View-Controller Break up a component into Model of the data supporting the App View determining the look of the

More information

EXPLICIT SYNCHRONIZATION

EXPLICIT SYNCHRONIZATION EXPLICIT SYNCHRONIZATION Lauri Peltonen XDC, 8 October, 204 WHAT IS EXPLICIT SYNCHRONIZATION? Fence is an abstract primitive that marks completion of an operation Implicit synchronization Fences are attached

More information

Multiprocessors and Locking

Multiprocessors and Locking Types of Multiprocessors (MPs) Uniform memory-access (UMA) MP Access to all memory occurs at the same speed for all processors. Multiprocessors and Locking COMP9242 2008/S2 Week 12 Part 1 Non-uniform memory-access

More information

Debugging in LISP. trace causes a trace to be printed for a function when it is called

Debugging in LISP. trace causes a trace to be printed for a function when it is called trace causes a trace to be printed for a function when it is called ;;; a function that works like reverse (defun rev (list) (cons (first (last list)) (rev (butlast list)))) USER: (trace rev) ; note trace

More information

Chapter 2. Operating-System Structures

Chapter 2. Operating-System Structures Chapter 2 Operating-System Structures 2.1 Chapter 2: Operating-System Structures Operating System Services User Operating System Interface System Calls Types of System Calls System Programs Operating System

More information

Main Points of the Computer Organization and System Software Module

Main Points of the Computer Organization and System Software Module Main Points of the Computer Organization and System Software Module You can find below the topics we have covered during the COSS module. Reading the relevant parts of the textbooks is essential for a

More information

Using a waiting protocol to separate concerns in the mutual exclusion problem

Using a waiting protocol to separate concerns in the mutual exclusion problem Using a waiting protocol to separate concerns in the mutual exclusion problem Frode V. Fjeld frodef@cs.uit.no Department of Computer Science, University of Tromsø Technical Report 2003-46 November 21,

More information

Threading and Perl Introduction To Perl Threads and Basics of Concurrent Programming eric.maki for kwpm 24/07/2008

Threading and Perl Introduction To Perl Threads and Basics of Concurrent Programming eric.maki for kwpm 24/07/2008 Threading and Perl Introduction To Perl Threads and Basics of Concurrent Programming eric.maki for kwpm 24/07/2008 Talk Outline Thread Basics Threads and Shared Memory API For Perl 5.8.3 and above Synchronization

More information

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions

Overview. CMSC 330: Organization of Programming Languages. Concurrency. Multiprocessors. Processes vs. Threads. Computation Abstractions CMSC 330: Organization of Programming Languages Multithreaded Programming Patterns in Java CMSC 330 2 Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to

More information

Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten

Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten R6RS Status Report Kent Dybvig, Will Clinger, Matthew Flatt, Mike Sperber, and Anton van Straaten June 21, 2006 1. Overview This status report describes the current state of the R 6 RS standardization

More information

Coupling Thursday, October 21, :23 PM

Coupling Thursday, October 21, :23 PM Coupling Page 1 Coupling Thursday, October 21, 2004 3:23 PM Two kinds of multiple-processor systems Tightly-coupled Can share efficient semaphores. Usually involve some form of shared memory. Loosely-coupled

More information

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; }

Semaphore. Originally called P() and V() wait (S) { while S <= 0 ; // no-op S--; } signal (S) { S++; } Semaphore Semaphore S integer variable Two standard operations modify S: wait() and signal() Originally called P() and V() Can only be accessed via two indivisible (atomic) operations wait (S) { while

More information

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014

Learning from Bad Examples. CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 Learning from Bad Examples CSCI 5828: Foundations of Software Engineering Lecture 25 11/18/2014 1 Goals Demonstrate techniques to design for shared mutability Build on an example where multiple threads

More information

CMSC 330: Organization of Programming Languages

CMSC 330: Organization of Programming Languages CMSC 330: Organization of Programming Languages Multithreading Multiprocessors Description Multiple processing units (multiprocessor) From single microprocessor to large compute clusters Can perform multiple

More information

Advanced OpenMP. Memory model, flush and atomics

Advanced OpenMP. Memory model, flush and atomics Advanced OpenMP Memory model, flush and atomics Why do we need a memory model? On modern computers code is rarely executed in the same order as it was specified in the source code. Compilers, processors

More information

Promela and SPIN. Mads Dam Dept. Microelectronics and Information Technology Royal Institute of Technology, KTH. Promela and SPIN

Promela and SPIN. Mads Dam Dept. Microelectronics and Information Technology Royal Institute of Technology, KTH. Promela and SPIN Promela and SPIN Mads Dam Dept. Microelectronics and Information Technology Royal Institute of Technology, KTH Promela and SPIN Promela (Protocol Meta Language): Language for modelling discrete, event-driven

More information

Programming Languages (PL)

Programming Languages (PL) 1 2 3 4 5 6 7 8 9 10 11 Programming Languages (PL) Programming languages are the medium through which programmers precisely describe concepts, formulate algorithms, and reason about solutions. In the course

More information

StackVsHeap SPL/2010 SPL/20

StackVsHeap SPL/2010 SPL/20 StackVsHeap Objectives Memory management central shared resource in multiprocessing RTE memory models that are used in Java and C++ services for Java/C++ programmer from RTE (JVM / OS). Perspectives of

More information

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341)

CSE 413 Languages & Implementation. Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) CSE 413 Languages & Implementation Hal Perkins Winter 2019 Structs, Implementing Languages (credits: Dan Grossman, CSE 341) 1 Goals Representing programs as data Racket structs as a better way to represent

More information

An Implementation of Python for Racket. Pedro Palma Ramos António Menezes Leitão

An Implementation of Python for Racket. Pedro Palma Ramos António Menezes Leitão An Implementation of Python for Racket Pedro Palma Ramos António Menezes Leitão Contents Motivation Goals Related Work Solution Performance Benchmarks Future Work 2 Racket + DrRacket 3 Racket + DrRacket

More information

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming

Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Parallel Programming in Distributed Systems Or Distributed Systems in Parallel Programming Philippas Tsigas Chalmers University of Technology Computer Science and Engineering Department Philippas Tsigas

More information

CS 241 Honors Concurrent Data Structures

CS 241 Honors Concurrent Data Structures CS 241 Honors Concurrent Data Structures Bhuvan Venkatesh University of Illinois Urbana Champaign March 27, 2018 CS 241 Course Staff (UIUC) Lock Free Data Structures March 27, 2018 1 / 43 What to go over

More information

Dealing with Issues for Interprocess Communication

Dealing with Issues for Interprocess Communication Dealing with Issues for Interprocess Communication Ref Section 2.3 Tanenbaum 7.1 Overview Processes frequently need to communicate with other processes. In a shell pipe the o/p of one process is passed

More information

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition

Module 6: Process Synchronization. Operating System Concepts with Java 8 th Edition Module 6: Process Synchronization 6.1 Silberschatz, Galvin and Gagne 2009 Module 6: Process Synchronization Background The Critical-Section Problem Peterson s Solution Synchronization Hardware Semaphores

More information

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen

COP4020 Programming Languages. Functional Programming Prof. Robert van Engelen COP4020 Programming Languages Functional Programming Prof. Robert van Engelen Overview What is functional programming? Historical origins of functional programming Functional programming today Concepts

More information

Overview. Rationale Division of labour between script and C++ Choice of language(s) Interfacing to C++ Performance, memory

Overview. Rationale Division of labour between script and C++ Choice of language(s) Interfacing to C++ Performance, memory SCRIPTING Overview Rationale Division of labour between script and C++ Choice of language(s) Interfacing to C++ Reflection Bindings Serialization Performance, memory Rationale C++ isn't the best choice

More information

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections

Thread Safety. Review. Today o Confinement o Threadsafe datatypes Required reading. Concurrency Wrapper Collections Thread Safety Today o Confinement o Threadsafe datatypes Required reading Concurrency Wrapper Collections Optional reading The material in this lecture and the next lecture is inspired by an excellent

More information

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst

Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Operating Systems CMPSCI 377, Lec 2 Intro to C/C++ Prashant Shenoy University of Massachusetts Amherst Department of Computer Science Why C? Low-level Direct access to memory WYSIWYG (more or less) Effectively

More information

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs 3.

Whatever can go wrong will go wrong. attributed to Edward A. Murphy. Murphy was an optimist. authors of lock-free programs 3. Whatever can go wrong will go wrong. attributed to Edward A. Murphy Murphy was an optimist. authors of lock-free programs 3. LOCK FREE KERNEL 309 Literature Maurice Herlihy and Nir Shavit. The Art of Multiprocessor

More information

Distributed Control Systems at SSRL Constraints for Software Development Strategies. Timothy M. McPhillips Stanford Synchrotron Radiation Laboratory

Distributed Control Systems at SSRL Constraints for Software Development Strategies. Timothy M. McPhillips Stanford Synchrotron Radiation Laboratory Distributed Control Systems at SSRL Constraints for Software Development Strategies Timothy M. McPhillips Stanford Synchrotron Radiation Laboratory Overview Computing Environment at our Beam Lines Need

More information

Introduction to Parallel Computing

Introduction to Parallel Computing Portland State University ECE 588/688 Introduction to Parallel Computing Reference: Lawrence Livermore National Lab Tutorial https://computing.llnl.gov/tutorials/parallel_comp/ Copyright by Alaa Alameldeen

More information

Intel Threading Tools

Intel Threading Tools Intel Threading Tools Paul Petersen, Intel -1- INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS,

More information

Combined Object-Lambda Architectures

Combined Object-Lambda Architectures www.jquigley.com jquigley#jquigley.com Chicago Lisp April 2008 Research Goals System Goals Conventional Systems Unconventional Systems Research Goals Question: How to make with Pepsi and Coke? The Goal:

More information

Spot: A Programming Language for Verified Flight Software

Spot: A Programming Language for Verified Flight Software Spot: A Programming Language for Verified Flight Software Rob Bocchino (bocchino@jpl.nasa.gov) Ed Gamble (ed.gamble@jpl.nasa.gov) Kim Gostelow Jet Propulsion Laboratory Califor nia Institute of Technology

More information

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois

Condition Variables CS 241. Prof. Brighten Godfrey. March 16, University of Illinois Condition Variables CS 241 Prof. Brighten Godfrey March 16, 2012 University of Illinois 1 Synchronization primitives Mutex locks Used for exclusive access to a shared resource (critical section) Operations:

More information

Formal Verification of Stack Manipulation in the SCIP Processor. J. Aaron Pendergrass

Formal Verification of Stack Manipulation in the SCIP Processor. J. Aaron Pendergrass Formal Verification of Stack Manipulation in the SCIP Processor J. Aaron Pendergrass High Level Challenges to developing capability in formal methods: Perceived high barrier to entry, Specialized tools

More information