B490 Mining the Big Data. 5. Models for Big Data

Size: px
Start display at page:

Download "B490 Mining the Big Data. 5. Models for Big Data"

Transcription

1 B490 Mining the Big Data 5. Models for Big Data Qin Zhang 1-1

2 2-1 MapReduce

3 MapReduce The MapReduce model (Dean & Ghemawat 2004) Input Output Goal Map Shuffle Reduce Standard model in industry for massive data computation E.g., Hadoop. Minimize (1) total communication, (2) # rounds. 3-1

4 MapReduce (cont.) Input Output Map Shuffle Reduce Map: Transforms a (key, value) pair into other (key, value) pairs using a UDF (User Defined Function) called Map. Many mappers can run in parallel on vast amounts of data in a distributed file system Shuffle: The infrastructure then transfers data from the mapper nodes to the reducer nodes so that all the (key, value) pairs with the same key go to the same reducer Reduce: A UDF that aggregates all the values corresponding to a key. Many reducers can run in parallel. 4-1

5 MapReduce (cont.) Input Output Map Shuffle Reduce A simple example Consider as input an enormous text corpus (for instance all of English Wikipedia) stored in out DFS. The goal is to count how many times each word is used. Map: For each word w, make a key-value pair (w, 1) Reduce: For all words w have (w, v 1 ), (w, v 2 ),..., output: (w, i v i) 5-1

6 Recall Page Rank Page Rank Algorithm We start, say, from Google.com q 0 = [0,..., 0, 1, 0,..., 0]. In the iterative step, we compute a new vector estimate of PageRanks q i+1 from the current PageRanks estimate q i, and the transition matrix M q i+1 = βmq i + (1 β)e/n, where β is a chosen constant, usually in [0.8, 0.9], e is a vector of all 1 s, and n is the total number of nodes in the web graph. Let P = βm + (1 β)b, where B[a, b] = 1/n, we can rewrite q = P t q 0 as t. 6-1

7 Implememtation of Page Rank M is sparse and can be stored (on many machines at Google). Its size is roughly 20n, where n is on the order of 1 billion. 7-1

8 Implememtation of Page Rank M is sparse and can be stored (on many machines at Google). Its size is roughly 20n, where n is on the order of 1 billion. But P is dense, since B is dense. So P t is also dense. Thus we can only iterate q i+1 = Pq i instead of using matrix powering method. 7-2

9 Implememtation of Page Rank M is sparse and can be stored (on many machines at Google). Its size is roughly 20n, where n is on the order of 1 billion. But P is dense, since B is dense. So P t is also dense. Thus we can only iterate q i+1 = Pq i instead of using matrix powering method. However, since n is very big, so we cannot store M or q i on any single machine. We will see how to use MapReduce to accomplish the job. 7-3

10 PageRank on MapReduce Idea 1: Partition M to k vertical stripes M = [M 1,..., M k ] so each M j fits on a machine. Partition q into q T = [q 1,..., q k ] (a horizontal split). Make sure each M j or q j fits on a single machine. Now in each round: Mapper: for the k-th row of M j, creates (k, l (Mj k,l qj k,l )). Reducer: each gets (k, v 1 ), (k, v 2 ),..., outputs β t v t + (1 β)/n. = 8-1

11 PageRank on MapReduce (cont.) Idea 2: Partition M to l l blocks, each machine gets M i,j and q i. (details on board) l l = 9-1

12 MapReduce is designed for the one-shot (static) computation. For the dynamic case, we have a model called ActiveDHT 10-1

13 ActiveDHT The ActiveDHT model (Bahmani, Chowdhury & Goel 2010) Update (key, value) Query (key) Used in Yahoo! S4 & Twitter Storm responsible for keys with hash = 4, 5 responsible for keys with hash = 6,

14 An example Problem: There is a stream of data arriving (eg. tweets) which needs to be farmed out to many users/feeds in real time Simple solution Update (key, value) Query (key) keys with hash = 4, 5 keys with hash = 6, 7 Map: (user u, string tweet, time t) (v 1, (tweet, t)) (v 2, (tweet, t))... (v k, (tweet, t)), where v 1, v 2,..., v k follow u Reduce: (user v, (tweet 1, t 1 ), (tweet 2, t 2 ),... )) sort tweets in descending order of time or importance

15 ActiveDHT (cont.) Performance Measures Number of network calls per update Size of network data transfer per update Maximum size of a key-value pair Total size of all key-value pairs Maximum number of requests that go to a particular key-value pair 13-1

16 ActiveDHT (cont.) Performance Measures Number of network calls per update Size of network data transfer per update Maximum size of a key-value pair Total size of all key-value pairs Maximum number of requests that go to a particular key-value pair A challenage: need new (distributed) data structures and algorithms 13-2

17 Underlying membership query mechanism Underlying membership query mechanism: Distributed Hash Table (DHT) Popular realization of DHT: Chord (see Stoica s notes) 14-1

18 PageRank in ActiveDHT PageRank in ActiveDHT (Bahmani, Chowdhury, Goel) 1. Do r (depends on the network topology, O(log(n/ɛ)) is good enough) random walk starting at each node of the network. Each random walk has stop probability ɛ, thus has expected lenght 1/ɛ. 2. At time t, for every random walk passing through node u t, shift it to use the new edge u t, v t with probability 1/d t (u t ) 3. Time for each re-routing: O(1/ɛ). 4. Time to decide whether any walk will get rerouted: O(1) 5. Claim: This faithfully maintains R random walks after arbitrary edge arrivals. 15-1

19 PageRank in ActiveDHT PageRank in ActiveDHT (Bahmani, Chowdhury, Goel) 1. Do r (depends on the network topology, O(log(n/ɛ)) is good enough) random walk starting at each node of the network. Each random walk has stop probability ɛ, thus has expected lenght 1/ɛ. 2. At time t, for every random walk passing through node u t, shift it to use the new edge u t, v t with probability 1/d t (u t ) 3. Time for each re-routing: O(1/ɛ). 4. Time to decide whether any walk will get rerouted: O(1) 5. Claim: This faithfully maintains R random walks after arbitrary edge arrivals. Observe that we need the graph and the stored random walks to be available in an Active DHT; this is a reasonable assumption for social networks, though not necessarily for the web-graph. 15-2

20 PageRank in ActiveDHT, Analysis On board. Need O((rn log m)/ɛ 2 ) time. Compared with other apporaches. Naive Approach 1: Run the power iteration method from scratch: Total time over m edge arrivals is O(rm 2 ). Naive Approach 2: Run the Monte Carlo method from scratch: Total time over m edge arrivals is O(rmn/ɛ). 16-1

21 17-1 Thank you!

22 LSH in ActiveDHT Recall LSH Definition: h is (l, u, p l, p u )-sensitive with a distance function d if Pr[h(a) = h(b)] > p l if d(a, b) < l. Pr[h(a) = h(b)] < p u if d(a, b) > u. 18-1

23 LSH in ActiveDHT 18-2 Recall LSH Definition: h is (l, u, p l, p u )-sensitive with a distance function d if Pr[h(a) = h(b)] > p l if d(a, b) < l. Pr[h(a) = h(b)] < p u if d(a, b) > u. Given a LSH family, one can design an algorithm for the (l, u)-near Neighbor problem that uses O(n ρ ) hash functions, where n is the number of points, and ρ = log l log u (l, u)-near Neighbor: Given a set X of n points in some metric space with distance function d(, ), and a query point q, return All points p X s.t. d(x, q) l. No points p X s.t. d(x, q) u. Arbitrary decisions for points p X s.t. l < d(x, q) < u. (Next few slides are borrowed from Ashish Goel s talk)

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Introduction to MapReduce Algorithms and Analysis

Introduction to MapReduce Algorithms and Analysis Introduction to MapReduce Algorithms and Analysis Jeff M. Phillips October 25, 2013 Trade-Offs Massive parallelism that is very easy to program. Cheaper than HPC style (uses top of the line everything)

More information

Databases 2 (VU) ( / )

Databases 2 (VU) ( / ) Databases 2 (VU) (706.711 / 707.030) MapReduce (Part 3) Mark Kröll ISDS, TU Graz Nov. 27, 2017 Mark Kröll (ISDS, TU Graz) MapReduce Nov. 27, 2017 1 / 42 Outline 1 Problems Suited for Map-Reduce 2 MapReduce:

More information

Distributed computing: index building and use

Distributed computing: index building and use Distributed computing: index building and use Distributed computing Goals Distributing computation across several machines to Do one computation faster - latency Do more computations in given time - throughput

More information

Matrix-Vector Multiplication by MapReduce. From Rajaraman / Ullman- Ch.2 Part 1

Matrix-Vector Multiplication by MapReduce. From Rajaraman / Ullman- Ch.2 Part 1 Matrix-Vector Multiplication by MapReduce From Rajaraman / Ullman- Ch.2 Part 1 Google implementation of MapReduce created to execute very large matrix-vector multiplications When ranking of Web pages that

More information

Algorithms for Grid Graphs in the MapReduce Model

Algorithms for Grid Graphs in the MapReduce Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Computer Science and Engineering: Theses, Dissertations, and Student Research Computer Science and Engineering, Department

More information

Predictive Indexing for Fast Search

Predictive Indexing for Fast Search Predictive Indexing for Fast Search Sharad Goel, John Langford and Alex Strehl Yahoo! Research, New York Modern Massive Data Sets (MMDS) June 25, 2008 Goel, Langford & Strehl (Yahoo! Research) Predictive

More information

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments

Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Real-time Scheduling of Skewed MapReduce Jobs in Heterogeneous Environments Nikos Zacheilas, Vana Kalogeraki Department of Informatics Athens University of Economics and Business 1 Big Data era has arrived!

More information

Developing MapReduce Programs

Developing MapReduce Programs Cloud Computing Developing MapReduce Programs Dell Zhang Birkbeck, University of London 2017/18 MapReduce Algorithm Design MapReduce: Recap Programmers must specify two functions: map (k, v) * Takes

More information

Graphs (Part II) Shannon Quinn

Graphs (Part II) Shannon Quinn Graphs (Part II) Shannon Quinn (with thanks to William Cohen and Aapo Kyrola of CMU, and J. Leskovec, A. Rajaraman, and J. Ullman of Stanford University) Parallel Graph Computation Distributed computation

More information

Announcements. Optional Reading. Distributed File System (DFS) MapReduce Process. MapReduce. Database Systems CSE 414. HW5 is due tomorrow 11pm

Announcements. Optional Reading. Distributed File System (DFS) MapReduce Process. MapReduce. Database Systems CSE 414. HW5 is due tomorrow 11pm Announcements HW5 is due tomorrow 11pm Database Systems CSE 414 Lecture 19: MapReduce (Ch. 20.2) HW6 is posted and due Nov. 27 11pm Section Thursday on setting up Spark on AWS Create your AWS account before

More information

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros

Data Clustering on the Parallel Hadoop MapReduce Model. Dimitrios Verraros Data Clustering on the Parallel Hadoop MapReduce Model Dimitrios Verraros Overview The purpose of this thesis is to implement and benchmark the performance of a parallel K- means clustering algorithm on

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Week 9: Data Mining (3/4) March 8, 2016 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

More information

Complexity Measures for Map-Reduce, and Comparison to Parallel Computing

Complexity Measures for Map-Reduce, and Comparison to Parallel Computing Complexity Measures for Map-Reduce, and Comparison to Parallel Computing Ashish Goel Stanford University and Twitter Kamesh Munagala Duke University and Twitter November 11, 2012 The programming paradigm

More information

MapReduce Design Patterns

MapReduce Design Patterns MapReduce Design Patterns MapReduce Restrictions Any algorithm that needs to be implemented using MapReduce must be expressed in terms of a small number of rigidly defined components that must fit together

More information

Graph Algorithms using Map-Reduce. Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web

Graph Algorithms using Map-Reduce. Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some examples: The hyperlink structure of the web Graph Algorithms using Map-Reduce Graphs are ubiquitous in modern society. Some

More information

Database Systems CSE 414

Database Systems CSE 414 Database Systems CSE 414 Lecture 19: MapReduce (Ch. 20.2) CSE 414 - Fall 2017 1 Announcements HW5 is due tomorrow 11pm HW6 is posted and due Nov. 27 11pm Section Thursday on setting up Spark on AWS Create

More information

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu

G(B)enchmark GraphBench: Towards a Universal Graph Benchmark. Khaled Ammar M. Tamer Özsu G(B)enchmark GraphBench: Towards a Universal Graph Benchmark Khaled Ammar M. Tamer Özsu Bioinformatics Software Engineering Social Network Gene Co-expression Protein Structure Program Flow Big Graphs o

More information

MapReduce and Friends

MapReduce and Friends MapReduce and Friends Craig C. Douglas University of Wyoming with thanks to Mookwon Seo Why was it invented? MapReduce is a mergesort for large distributed memory computers. It was the basis for a web

More information

How to Implement MapReduce Using. Presented By Jamie Pitts

How to Implement MapReduce Using. Presented By Jamie Pitts How to Implement MapReduce Using Presented By Jamie Pitts A Problem Seeking A Solution Given a corpus of html-stripped financial filings: Identify and count unique subjects. Possible Solutions: 1. Use

More information

MapReduce Algorithms

MapReduce Algorithms Large-scale data processing on the Cloud Lecture 3 MapReduce Algorithms Satish Srirama Some material adapted from slides by Jimmy Lin, 2008 (licensed under Creation Commons Attribution 3.0 License) Outline

More information

Lecture Map-Reduce. Algorithms. By Marina Barsky Winter 2017, University of Toronto

Lecture Map-Reduce. Algorithms. By Marina Barsky Winter 2017, University of Toronto Lecture 04.02 Map-Reduce Algorithms By Marina Barsky Winter 2017, University of Toronto Example 1: Language Model Statistical machine translation: Need to count number of times every 5-word sequence occurs

More information

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344

Where We Are. Review: Parallel DBMS. Parallel DBMS. Introduction to Data Management CSE 344 Where We Are Introduction to Data Management CSE 344 Lecture 22: MapReduce We are talking about parallel query processing There exist two main types of engines: Parallel DBMSs (last lecture + quick review)

More information

Fall 2018: Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU

Fall 2018: Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU Fall 2018: Introduction to Data Science GIRI NARASIMHAN, SCIS, FIU !2 MapReduce Overview! Sometimes a single computer cannot process data or takes too long traditional serial programming is not always

More information

Clustering Documents. Case Study 2: Document Retrieval

Clustering Documents. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 21 th, 2015 Sham Kakade 2016 1 Document Retrieval Goal: Retrieve

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 5: Graph Processing Jimmy Lin University of Maryland Thursday, February 21, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu SPAM FARMING 2/11/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 2/11/2013 Jure Leskovec, Stanford

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval

Clustering Documents. Document Retrieval. Case Study 2: Document Retrieval Case Study 2: Document Retrieval Clustering Documents Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April, 2017 Sham Kakade 2017 1 Document Retrieval n Goal: Retrieve

More information

MapReduce: Algorithm Design for Relational Operations

MapReduce: Algorithm Design for Relational Operations MapReduce: Algorithm Design for Relational Operations Some slides borrowed from Jimmy Lin, Jeff Ullman, Jerome Simeon, and Jure Leskovec Projection π Projection in MapReduce Easy Map over tuples, emit

More information

Data Partitioning and MapReduce

Data Partitioning and MapReduce Data Partitioning and MapReduce Krzysztof Dembczyński Intelligent Decision Support Systems Laboratory (IDSS) Poznań University of Technology, Poland Intelligent Decision Support Systems Master studies,

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2016) Week 2: MapReduce Algorithm Design (2/2) January 14, 2016 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

Introduction to MapReduce (cont.)

Introduction to MapReduce (cont.) Introduction to MapReduce (cont.) Rafael Ferreira da Silva rafsilva@isi.edu http://rafaelsilva.com USC INF 553 Foundations and Applications of Data Mining (Fall 2018) 2 MapReduce: Summary USC INF 553 Foundations

More information

Clustering Lecture 8: MapReduce

Clustering Lecture 8: MapReduce Clustering Lecture 8: MapReduce Jing Gao SUNY Buffalo 1 Divide and Conquer Work Partition w 1 w 2 w 3 worker worker worker r 1 r 2 r 3 Result Combine 4 Distributed Grep Very big data Split data Split data

More information

A Comparative study of Clustering Algorithms using MapReduce in Hadoop

A Comparative study of Clustering Algorithms using MapReduce in Hadoop A Comparative study of Clustering Algorithms using MapReduce in Hadoop Dweepna Garg 1, Khushboo Trivedi 2, B.B.Panchal 3 1 Department of Computer Science and Engineering, Parul Institute of Engineering

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 9: Data Mining (3/4) March 7, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These slides

More information

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011

Jordan Boyd-Graber University of Maryland. Thursday, March 3, 2011 Data-Intensive Information Processing Applications! Session #5 Graph Algorithms Jordan Boyd-Graber University of Maryland Thursday, March 3, 2011 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

MapReduce: Recap. Juliana Freire & Cláudio Silva. Some slides borrowed from Jimmy Lin, Jeff Ullman, Jerome Simeon, and Jure Leskovec

MapReduce: Recap. Juliana Freire & Cláudio Silva. Some slides borrowed from Jimmy Lin, Jeff Ullman, Jerome Simeon, and Jure Leskovec MapReduce: Recap Some slides borrowed from Jimmy Lin, Jeff Ullman, Jerome Simeon, and Jure Leskovec MapReduce: Recap Sequentially read a lot of data Why? Map: extract something we care about map (k, v)

More information

Big Data Management and NoSQL Databases

Big Data Management and NoSQL Databases NDBI040 Big Data Management and NoSQL Databases Lecture 2. MapReduce Doc. RNDr. Irena Holubova, Ph.D. holubova@ksi.mff.cuni.cz http://www.ksi.mff.cuni.cz/~holubova/ndbi040/ Framework A programming model

More information

Big Data Infrastructures & Technologies

Big Data Infrastructures & Technologies Big Data Infrastructures & Technologies Data streams and low latency processing DATA STREAM BASICS What is a data stream? Large data volume, likely structured, arriving at a very high rate Potentially

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 2: MapReduce Algorithm Design (2/2) January 12, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo

More information

Announcements. Parallel Data Processing in the 20 th Century. Parallel Join Illustration. Introduction to Database Systems CSE 414

Announcements. Parallel Data Processing in the 20 th Century. Parallel Join Illustration. Introduction to Database Systems CSE 414 Introduction to Database Systems CSE 414 Lecture 17: MapReduce and Spark Announcements Midterm this Friday in class! Review session tonight See course website for OHs Includes everything up to Monday s

More information

Service Oriented Performance Analysis

Service Oriented Performance Analysis Service Oriented Performance Analysis Da Qi Ren and Masood Mortazavi US R&D Center Santa Clara, CA, USA www.huawei.com Performance Model for Service in Data Center and Cloud 1. Service Oriented (end to

More information

STATS Data Analysis using Python. Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns

STATS Data Analysis using Python. Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns STATS 700-002 Data Analysis using Python Lecture 7: the MapReduce framework Some slides adapted from C. Budak and R. Burns Unit 3: parallel processing and big data The next few lectures will focus on big

More information

Hadoop Map Reduce 10/17/2018 1

Hadoop Map Reduce 10/17/2018 1 Hadoop Map Reduce 10/17/2018 1 MapReduce 2-in-1 A programming paradigm A query execution engine A kind of functional programming We focus on the MapReduce execution engine of Hadoop through YARN 10/17/2018

More information

MapReduce for Graph Algorithms

MapReduce for Graph Algorithms Seminar: Massive-Scale Graph Analysis Summer Semester 2015 MapReduce for Graph Algorithms Modeling & Approach Ankur Sharma ankur@stud.uni-saarland.de May 8, 2015 Agenda 1 Map-Reduce Framework Big Data

More information

Sublinear Models for Streaming and/or Distributed Data

Sublinear Models for Streaming and/or Distributed Data Sublinear Models for Streaming and/or Distributed Data Qin Zhang Guest lecture in B649 Feb. 3, 2015 1-1 Now about the Big Data Big data is everywhere : over 2.5 petabytes of sales transactions : an index

More information

Indexing Large-Scale Data

Indexing Large-Scale Data Indexing Large-Scale Data Serge Abiteboul Ioana Manolescu Philippe Rigaux Marie-Christine Rousset Pierre Senellart Web Data Management and Distribution http://webdam.inria.fr/textbook November 16, 2010

More information

Specialist ICT Learning

Specialist ICT Learning Specialist ICT Learning APPLIED DATA SCIENCE AND BIG DATA ANALYTICS GTBD7 Course Description This intensive training course provides theoretical and technical aspects of Data Science and Business Analytics.

More information

Link Analysis in the Cloud

Link Analysis in the Cloud Cloud Computing Link Analysis in the Cloud Dell Zhang Birkbeck, University of London 2017/18 Graph Problems & Representations What is a Graph? G = (V,E), where V represents the set of vertices (nodes)

More information

2.3 Algorithms Using Map-Reduce

2.3 Algorithms Using Map-Reduce 28 CHAPTER 2. MAP-REDUCE AND THE NEW SOFTWARE STACK one becomes available. The Master must also inform each Reduce task that the location of its input from that Map task has changed. Dealing with a failure

More information

Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition

Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition Big Data Analytics: What is Big Data? Stony Brook University CSE545, Fall 2016 the inaugural edition What s the BIG deal?! 2011 2011 2008 2010 2012 What s the BIG deal?! (Gartner Hype Cycle) What s the

More information

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing

Big Data Analytics. Izabela Moise, Evangelos Pournaras, Dirk Helbing Big Data Analytics Izabela Moise, Evangelos Pournaras, Dirk Helbing Izabela Moise, Evangelos Pournaras, Dirk Helbing 1 Big Data "The world is crazy. But at least it s getting regular analysis." Izabela

More information

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context

Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context 1 Apache Spark is a fast and general-purpose engine for large-scale data processing Spark aims at achieving the following goals in the Big data context Generality: diverse workloads, operators, job sizes

More information

CISC 7610 Lecture 2b The beginnings of NoSQL

CISC 7610 Lecture 2b The beginnings of NoSQL CISC 7610 Lecture 2b The beginnings of NoSQL Topics: Big Data Google s infrastructure Hadoop: open google infrastructure Scaling through sharding CAP theorem Amazon s Dynamo 5 V s of big data Everyone

More information

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING

PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING PREGEL: A SYSTEM FOR LARGE- SCALE GRAPH PROCESSING G. Malewicz, M. Austern, A. Bik, J. Dehnert, I. Horn, N. Leiser, G. Czajkowski Google, Inc. SIGMOD 2010 Presented by Ke Hong (some figures borrowed from

More information

Graph Data Management

Graph Data Management Graph Data Management Analysis and Optimization of Graph Data Frameworks presented by Fynn Leitow Overview 1) Introduction a) Motivation b) Application for big data 2) Choice of algorithms 3) Choice of

More information

Parallel Nested Loops

Parallel Nested Loops Parallel Nested Loops For each tuple s i in S For each tuple t j in T If s i =t j, then add (s i,t j ) to output Create partitions S 1, S 2, T 1, and T 2 Have processors work on (S 1,T 1 ), (S 1,T 2 ),

More information

Parallel Partition-Based. Parallel Nested Loops. Median. More Join Thoughts. Parallel Office Tools 9/15/2011

Parallel Partition-Based. Parallel Nested Loops. Median. More Join Thoughts. Parallel Office Tools 9/15/2011 Parallel Nested Loops Parallel Partition-Based For each tuple s i in S For each tuple t j in T If s i =t j, then add (s i,t j ) to output Create partitions S 1, S 2, T 1, and T 2 Have processors work on

More information

Big Data Programming: an Introduction. Spring 2015, X. Zhang Fordham Univ.

Big Data Programming: an Introduction. Spring 2015, X. Zhang Fordham Univ. Big Data Programming: an Introduction Spring 2015, X. Zhang Fordham Univ. Outline What the course is about? scope Introduction to big data programming Opportunity and challenge of big data Origin of Hadoop

More information

Big Data Analytics CSCI 4030

Big Data Analytics CSCI 4030 High dim. data Graph data Infinite data Machine learning Apps Locality sensitive hashing PageRank, SimRank Filtering data streams SVM Recommen der systems Clustering Community Detection Web advertising

More information

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017)

Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Big Data Infrastructure CS 489/698 Big Data Infrastructure (Winter 2017) Week 5: Analyzing Graphs (2/2) February 2, 2017 Jimmy Lin David R. Cheriton School of Computer Science University of Waterloo These

More information

Twitter data Analytics using Distributed Computing

Twitter data Analytics using Distributed Computing Twitter data Analytics using Distributed Computing Uma Narayanan Athrira Unnikrishnan Dr. Varghese Paul Dr. Shelbi Joseph Research Scholar M.tech Student Professor Assistant Professor Dept. of IT, SOE

More information

Data-Intensive Computing with MapReduce

Data-Intensive Computing with MapReduce Data-Intensive Computing with MapReduce Session 6: Similar Item Detection Jimmy Lin University of Maryland Thursday, February 28, 2013 This work is licensed under a Creative Commons Attribution-Noncommercial-Share

More information

CME 323: Distributed Algorithms and Optimization Instructor: Reza Zadeh HW#3 - Due at the beginning of class May 18th.

CME 323: Distributed Algorithms and Optimization Instructor: Reza Zadeh HW#3 - Due at the beginning of class May 18th. CME 323: Distributed Algorithms and Optimization Instructor: Reza Zadeh (rezab@stanford.edu) HW#3 - Due at the beginning of class May 18th. 1. Download the following materials: Slides: http://stanford.edu/~rezab/dao/slides/itas_workshop.pdf

More information

MapReduce in Streaming Data

MapReduce in Streaming Data MapReduce in Streaming Data October 21, 2013 Instructor : Dr. Barna Saha Course : CSCI 8980 : Algorithmic Techniques for Big Data Analysis Scribe by : Neelabjo Shubhashis Choudhury Introduction to MapReduce,

More information

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval

Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval Basic Tokenizing, Indexing, and Implementation of Vector-Space Retrieval 1 Naïve Implementation Convert all documents in collection D to tf-idf weighted vectors, d j, for keyword vocabulary V. Convert

More information

Distributed Computing with Spark and MapReduce

Distributed Computing with Spark and MapReduce Distributed Computing with Spark and MapReduce Reza Zadeh @Reza_Zadeh http://reza-zadeh.com Traditional Network Programming Message-passing between nodes (e.g. MPI) Very difficult to do at scale:» How

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu HITS (Hypertext Induced Topic Selection) Is a measure of importance of pages or documents, similar to PageRank

More information

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker

Shark. Hive on Spark. Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Shark Hive on Spark Cliff Engle, Antonio Lupher, Reynold Xin, Matei Zaharia, Michael Franklin, Ion Stoica, Scott Shenker Agenda Intro to Spark Apache Hive Shark Shark s Improvements over Hive Demo Alpha

More information

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi

Giraph: Large-scale graph processing infrastructure on Hadoop. Qu Zhi Giraph: Large-scale graph processing infrastructure on Hadoop Qu Zhi Why scalable graph processing? Web and social graphs are at immense scale and continuing to grow In 2008, Google estimated the number

More information

The MapReduce Framework

The MapReduce Framework The MapReduce Framework In Partial fulfilment of the requirements for course CMPT 816 Presented by: Ahmed Abdel Moamen Agents Lab Overview MapReduce was firstly introduced by Google on 2004. MapReduce

More information

Introduction to Data Management CSE 344

Introduction to Data Management CSE 344 Introduction to Data Management CSE 344 Lecture 26: Parallel Databases and MapReduce CSE 344 - Winter 2013 1 HW8 MapReduce (Hadoop) w/ declarative language (Pig) Cluster will run in Amazon s cloud (AWS)

More information

Map Reduce. Yerevan.

Map Reduce. Yerevan. Map Reduce Erasmus+ @ Yerevan dacosta@irit.fr Divide and conquer at PaaS 100 % // Typical problem Iterate over a large number of records Extract something of interest from each Shuffle and sort intermediate

More information

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds

MAE 298, Lecture 9 April 30, Web search and decentralized search on small-worlds MAE 298, Lecture 9 April 30, 2007 Web search and decentralized search on small-worlds Search for information Assume some resource of interest is stored at the vertices of a network: Web pages Files in

More information

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21

Putting it together. Data-Parallel Computation. Ex: Word count using partial aggregation. Big Data Processing. COS 418: Distributed Systems Lecture 21 Big Processing -Parallel Computation COS 418: Distributed Systems Lecture 21 Michael Freedman 2 Ex: Word count using partial aggregation Putting it together 1. Compute word counts from individual files

More information

Assignment 3 ITCS-6010/8010: Cloud Computing for Data Analysis

Assignment 3 ITCS-6010/8010: Cloud Computing for Data Analysis Assignment 3 ITCS-6010/8010: Cloud Computing for Data Analysis Due by 11:59:59pm on Tuesday, March 16, 2010 This assignment is based on a similar assignment developed at the University of Washington. Running

More information

Hadoop and Map-reduce computing

Hadoop and Map-reduce computing Hadoop and Map-reduce computing 1 Introduction This activity contains a great deal of background information and detailed instructions so that you can refer to it later for further activities and homework.

More information

Introduction to Data Mining

Introduction to Data Mining Introduction to Data Mining Lecture #10: Link Analysis-2 Seoul National University 1 In This Lecture Pagerank: Google formulation Make the solution to converge Computing Pagerank for very large graphs

More information

Fast Clustering using MapReduce

Fast Clustering using MapReduce Fast Clustering using MapReduce Alina Ene Sungjin Im Benjamin Moseley September 6, 2011 Abstract Clustering problems have numerous applications and are becoming more challenging as the size of the data

More information

Hadoop. copyright 2011 Trainologic LTD

Hadoop. copyright 2011 Trainologic LTD Hadoop Hadoop is a framework for processing large amounts of data in a distributed manner. It can scale up to thousands of machines. It provides high-availability. Provides map-reduce functionality. Hides

More information

Graph-Parallel Problems. ML in the Context of Parallel Architectures

Graph-Parallel Problems. ML in the Context of Parallel Architectures Case Study 4: Collaborative Filtering Graph-Parallel Problems Synchronous v. Asynchronous Computation Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox February 20 th, 2014

More information

Sublinear Algorithms for Big Data Analysis

Sublinear Algorithms for Big Data Analysis Sublinear Algorithms for Big Data Analysis Michael Kapralov Theory of Computation Lab 4 EPFL 7 September 2017 The age of big data: massive amounts of data collected in various areas of science and technology

More information

Lecture 7: MapReduce design patterns! Claudia Hauff (Web Information Systems)!

Lecture 7: MapReduce design patterns! Claudia Hauff (Web Information Systems)! Big Data Processing, 2014/15 Lecture 7: MapReduce design patterns!! Claudia Hauff (Web Information Systems)! ti2736b-ewi@tudelft.nl 1 Course content Introduction Data streams 1 & 2 The MapReduce paradigm

More information

Map- Reduce. Everything Data CompSci Spring 2014

Map- Reduce. Everything Data CompSci Spring 2014 Map- Reduce Everything Data CompSci 290.01 Spring 2014 2 Announcements (Thu. Feb 27) Homework #8 will be posted by noon tomorrow. Project deadlines: 2/25: Project team formation 3/4: Project Proposal is

More information

Introduction to MapReduce

Introduction to MapReduce Basics of Cloud Computing Lecture 4 Introduction to MapReduce Satish Srirama Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball, & Sierra Michels-Slettvet, Google Distributed

More information

An introduction to Big Data. Presentation by Devesh Sharma, Zubair Asghar & Andreas Aalsaunet

An introduction to Big Data. Presentation by Devesh Sharma, Zubair Asghar & Andreas Aalsaunet An introduction to Big Data Presentation by Devesh Sharma, Zubair Asghar & Andreas Aalsaunet About the presenters Andreas Oven Aalsaunet Bachelor s Degree in Computer Engineering from HiOA (2011-2014)

More information

Map-Reduce. Marco Mura 2010 March, 31th

Map-Reduce. Marco Mura 2010 March, 31th Map-Reduce Marco Mura (mura@di.unipi.it) 2010 March, 31th This paper is a note from the 2009-2010 course Strumenti di programmazione per sistemi paralleli e distribuiti and it s based by the lessons of

More information

Storm. Distributed and fault-tolerant realtime computation. Nathan Marz Twitter

Storm. Distributed and fault-tolerant realtime computation. Nathan Marz Twitter Storm Distributed and fault-tolerant realtime computation Nathan Marz Twitter Storm at Twitter Twitter Web Analytics Before Storm Queues Workers Example (simplified) Example Workers schemify tweets and

More information

/ Cloud Computing. Recitation 3 Sep 13 & 15, 2016

/ Cloud Computing. Recitation 3 Sep 13 & 15, 2016 15-319 / 15-619 Cloud Computing Recitation 3 Sep 13 & 15, 2016 1 Overview Administrative Issues Last Week s Reflection Project 1.1, OLI Unit 1, Quiz 1 This Week s Schedule Project1.2, OLI Unit 2, Module

More information

CS435 Introduction to Big Data FALL 2018 Colorado State University. 9/24/2018 Week 6-A Sangmi Lee Pallickara. Topics. This material is built based on,

CS435 Introduction to Big Data FALL 2018 Colorado State University. 9/24/2018 Week 6-A Sangmi Lee Pallickara. Topics. This material is built based on, FLL 218 olorado State University 9/24/218 Week 6-9/24/218 S435 Introduction to ig ata - FLL 218 W6... PRT 1. LRGE SLE T NLYTIS WE-SLE LINK N SOIL NETWORK NLYSIS omputer Science, olorado State University

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mining Massive Datasets Jure Leskovec, Stanford University http://cs246.stanford.edu 2/6/2013 Jure Leskovec, Stanford C246: Mining Massive Datasets 2 High dim. data Graph data Infinite data Machine

More information

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce

Parallel Programming Principle and Practice. Lecture 10 Big Data Processing with MapReduce Parallel Programming Principle and Practice Lecture 10 Big Data Processing with MapReduce Outline MapReduce Programming Model MapReduce Examples Hadoop 2 Incredible Things That Happen Every Minute On The

More information

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa

Camdoop Exploiting In-network Aggregation for Big Data Applications Paolo Costa Camdoop Exploiting In-network Aggregation for Big Data Applications costa@imperial.ac.uk joint work with Austin Donnelly, Antony Rowstron, and Greg O Shea (MSR Cambridge) MapReduce Overview Input file

More information

Information Networks: PageRank

Information Networks: PageRank Information Networks: PageRank Web Science (VU) (706.716) Elisabeth Lex ISDS, TU Graz June 18, 2018 Elisabeth Lex (ISDS, TU Graz) Links June 18, 2018 1 / 38 Repetition Information Networks Shape of the

More information

Introduction to Data Management CSE 344

Introduction to Data Management CSE 344 Introduction to Data Management CSE 344 Lecture 24: MapReduce CSE 344 - Winter 215 1 HW8 MapReduce (Hadoop) w/ declarative language (Pig) Due next Thursday evening Will send out reimbursement codes later

More information

Structure of Social Networks

Structure of Social Networks Structure of Social Networks Outline Structure of social networks Applications of structural analysis Social *networks* Twitter Facebook Linked-in IMs Email Real life Address books... Who Twitter #numbers

More information

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center

Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive. Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center Exploiting the OpenPOWER Platform for Big Data Analytics and Cognitive Rajesh Bordawekar and Ruchir Puri IBM T. J. Watson Research Center 3/17/2015 2014 IBM Corporation Outline IBM OpenPower Platform Accelerating

More information

Principles of Data Management. Lecture #16 (MapReduce & DFS for Big Data)

Principles of Data Management. Lecture #16 (MapReduce & DFS for Big Data) Principles of Data Management Lecture #16 (MapReduce & DFS for Big Data) Instructor: Mike Carey mjcarey@ics.uci.edu Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Today s News Bulletin

More information

[3-5] Consider a Combiner that tracks local counts of followers and emits only the local top10 users with their number of followers.

[3-5] Consider a Combiner that tracks local counts of followers and emits only the local top10 users with their number of followers. Quiz 6 We design of a MapReduce application that generates the top-10 most popular Twitter users (based on the number of followers) of a month based on the number of followers. Suppose that you have the

More information