Global Optimizations

Size: px
Start display at page:

Download "Global Optimizations"

Transcription

1 Global Optimizations Avi Hayoun, Hodai Goldman and Lior Zur-Lotan January 31, 2016 Contents 1 Global Optimizations Global optimizations and analyses are performed in the context of a whole, single function - given an entire control ow graph of a function. 1.1 Basic Blocks and Control-Flow graphs A basic block is a sequence of IR instructions that has no goto instructions in it, except, maybe, as its last instruction. It has a single entry point (the rst instruction) and a single exit point (the last instruction). 1 Local Optimizations and analyses are performed in the context of single Basic Blocks. A Control Flow graph is a directed graph, where nodes correspond to Basic Blocks. There's an edge between one block and another if execution control can move between the two (if there is a goto from the end of the rst to the beginning of the other). We also add 2 nodes: start (or Entry) and end (or Exit) Control-Flow Graph Example Consider the following IR: 1 x := y + 1; 2 3 t0 := call ReadInput; 4 ifz t0 goto LElse; 5 z := x + 1; 6 goto LFinish; 7 LElse: 8 z := y + 1; 9 LFinish; 10 w := y; 1 For the purpose of structuring the code of a given function into basic blocks, function calls are considered atomic instructions and not control-ow operators. 1

2 11 LLoop: 12 a := w + 1; 13 t0 := call ReadInput; 14 b := a >= t0 15 x := t0; 16 ifnz x goto LEnd: 17 ifz b goto LLoop: 18 LEnd: The CFG for the above code is: 2 Global CSE and CP Common Subexpression Elimination (CSE) and Copy Propagation (CP) are optimizations achieved by substituting expressions. 2.1 Common Subexpression Elimination This optimization searches for common arithmetic expressions between statements and, if possible, substitutes the second arithmetic operation with the result of the rst. For instance: Given the code 1 _t0 := x + 1; 2 y := _t0 * 2; 3 z := x + 1; 2

3 We can reuse _t0 and eliminate the second computation of x + 1, and we get: 1 _t0 := x + 1; 2 y := _t0 * 2; 3 z := _t0 On top of removing redundant computations CSE is used as a pre-step for other optimizations (e.g. Dead Code Elimination) 2.2 Copy Propagation This optimization means that we look for references to variables that were assigned to another variable (i.e. x := y). We replace the reference to one with the reference to the other. For instance, consider the following code: 1 x := _tmp0 + 1; 2 y := x; 3 w := y + 1; 4 z := x + 1; We can replace the x in z := x + 1 with y and get: 1 x := _tmp0 + 1; 2 y := x; 3 w := y + 1; 4 z := y + 1; It may seem meaningless, but reusing a variable that already exists in the CPU cache is faster than fetching a new one from memory. Also, CP can be a pre-step for other optimizations (e.g. CSE or Dead Code Elimination) 2.3 Available Expressions analysis To perform global CSE or CP we must take the entire CFG and apply the Available Expressions analysis on it. Given a CFG we need to know which expression is stored in which variable at each point of the code. Because we are handling code that includes branching, we need to take code branching into account including, how to unite sets of available expressions from two branches. For this we dene 2 notions for each statement: ˆ IN[s] = set of (var, expression) pairs that are available right before executing s ˆ OUT [s] = set of (var, expression) pairs that are available right after executing s To calculate these sets, let s be a statement of the form "a := expr": 3

4 ˆ OUT [s] = (IN[s] {(a, expr)}) \ {s = (v, e) IN[s] USE(s ) DEF (s) (s s v DEF (s))} ˆ IN[s] = {OUT [p] p CF G.P arents(s)} Reminder: DEF (s) - the variables possibly modied by statement s. USE(s) - the variables read by statement s. An algorithm for computing the IN and OUT sets for a CFG: 1 for var in CFG.vars: 2 for expression in CFG.expressions: 3 for block in CFG: 4 add (var, expression) to OUT[block] 5 OUT[Entry] = {} 6 while Not at fixed point: 7 block = choose SimpleBlock from CFG 8 for s=(var, expr) in block.statements: # Iterate block statements in order 9 IN[s] = Intersect(CFG.OUTs.Parents(s)) 10 OUT[s] = Union((var, expr), (IN[s])) \ {(v, e) pairs where v = var or var in e} If all every Basic Block is iterated (at any order) enough times, the algorithm will reach a xed point where the IN and OUT sets no longer change for any block and that's when the algorithm completes. 3 Example Lets take the IR from CFG example and run the Available Expressions analysis on it. We'll then use the analysis result to apply CP and CSE on the code. 4

5 Here's the CFG for the code, as a reminder: 5

6 3.1 Analysis Initial state Before the rst iteration (of the "while" loop) the sets look like this (we're using "{... }" to denote the set of all (var, expr) pairs): 6

7 st iteration After the rst iteration, the rst block's IN set is reduced (emptied) and the OUT set represents the expressions available to any following statement. 7

8 nd iteration We chose to iterate the left branch rst, but the order is meaningless as long as no block is starved. 8

9 rd iteration Now the right branch. 9

10 th iteration Done with the "if" blocks. 10

11 th iteration Analyzing the loop block, remember that the parents of this block are the one containing "w := y;" as well as the loop block itself. 11

12 th iteration After a single iteration in the loop block, we choose to move on the the block right below it. 12

13 th iteration Going back to that loop. 13

14 3.1.9 Last iteration For consistancy with other analyses we also analyse the Exit block 14

15 3.2 Optimization Now that we've completed the analysis, we can use the results to apply optimizations to the code. We'll start with CP (as a pre-step for CSE or Dead Code Eliminiation). From the results we can see that at line 12 (a := w + 1;) we can replace w with y. Now if we re-run Available Expressions analysis again, we'll get the following result: 15

16 Running CSE on this result we see we can apply the optimization on line 8 (substituting z := y + 1; with z := x), resulting in: 16

17 In this instance CP didn't improve our CSE output, but if we run Liveness Analysis on the above CFG we'll see that the assignment at line 10 (w := y;) is now dead code, and can be removed since we don't read this assigned value of w anywhere (we substituted its read operation at line 12 with a read of y). After removing it we get this nal CFG: 17

Global Optimizations

Global Optimizations Global Optimizations Avi Hayoun, Ben Eyal and Lior Zur-Lotan January 9, 2017 Contents 1 Global Optimizations 1 1.1 Basic Blocks and Control-Flow graphs.......................... 1 1.1.1 Control-Flow Graph

More information

Y-Combinator. Contents. 1 Introduction. Avi Hayoun, Hodai Goldman and Lior Zur-Lotan. November 24, Terms recap. 1.2 Y-Combinator notes

Y-Combinator. Contents. 1 Introduction. Avi Hayoun, Hodai Goldman and Lior Zur-Lotan. November 24, Terms recap. 1.2 Y-Combinator notes Y-Combinator Avi Hayoun, Hodai Goldman and Lior Zur-Lotan November 24, 2015 Contents 1 Introduction 1.1 Terms recap ˆ Higher-Order fucntion - a function that either takes or returns a function or both.

More information

IR Optimization. May 15th, Tuesday, May 14, 13

IR Optimization. May 15th, Tuesday, May 14, 13 IR Optimization May 15th, 2013 Tuesday, May 14, 13 But before we talk about IR optimization... Wrapping up IR generation Tuesday, May 14, 13 Three-Address Code Or TAC The IR that you will be using for

More information

We can express this in dataflow equations using gen and kill sets, where the sets are now sets of expressions.

We can express this in dataflow equations using gen and kill sets, where the sets are now sets of expressions. Available expressions Suppose we want to do common-subexpression elimination; that is, given a program that computes x y more than once, can we eliminate one of the duplicate computations? To find places

More information

Data Flow Analysis. Agenda CS738: Advanced Compiler Optimizations. 3-address Code Format. Assumptions

Data Flow Analysis. Agenda CS738: Advanced Compiler Optimizations. 3-address Code Format. Assumptions Agenda CS738: Advanced Compiler Optimizations Data Flow Analysis Amey Karkare karkare@cse.iitk.ac.in http://www.cse.iitk.ac.in/~karkare/cs738 Department of CSE, IIT Kanpur Static analysis and compile-time

More information

Tour of common optimizations

Tour of common optimizations Tour of common optimizations Simple example foo(z) { x := 3 + 6; y := x 5 return z * y } Simple example foo(z) { x := 3 + 6; y := x 5; return z * y } x:=9; Applying Constant Folding Simple example foo(z)

More information

Induction Variable Identification (cont)

Induction Variable Identification (cont) Loop Invariant Code Motion Last Time Uses of SSA: reaching constants, dead-code elimination, induction variable identification Today Finish up induction variable identification Loop invariant code motion

More information

Data Flow Information. already computed

Data Flow Information. already computed Data Flow Information Determine if Determine if a constant in loop modifies Determine if expression already computed Determine if not used later in program Data Flow Equations Local Information: Gen(B):

More information

Lecture 3 Local Optimizations, Intro to SSA

Lecture 3 Local Optimizations, Intro to SSA Lecture 3 Local Optimizations, Intro to SSA I. Basic blocks & Flow graphs II. Abstraction 1: DAG III. Abstraction 2: Value numbering IV. Intro to SSA ALSU 8.4-8.5, 6.2.4 Phillip B. Gibbons 15-745: Local

More information

Data Flow Analysis. Program Analysis

Data Flow Analysis. Program Analysis Program Analysis https://www.cse.iitb.ac.in/~karkare/cs618/ Data Flow Analysis Amey Karkare Dept of Computer Science and Engg IIT Kanpur Visiting IIT Bombay karkare@cse.iitk.ac.in karkare@cse.iitb.ac.in

More information

Compiler Optimization and Code Generation

Compiler Optimization and Code Generation Compiler Optimization and Code Generation Professor: Sc.D., Professor Vazgen Melikyan 1 Course Overview Introduction: Overview of Optimizations 1 lecture Intermediate-Code Generation 2 lectures Machine-Independent

More information

MIT Introduction to Program Analysis and Optimization. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology

MIT Introduction to Program Analysis and Optimization. Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology MIT 6.035 Introduction to Program Analysis and Optimization Martin Rinard Laboratory for Computer Science Massachusetts Institute of Technology Program Analysis Compile-time reasoning about run-time behavior

More information

Compiler Construction 2009/2010 SSA Static Single Assignment Form

Compiler Construction 2009/2010 SSA Static Single Assignment Form Compiler Construction 2009/2010 SSA Static Single Assignment Form Peter Thiemann March 15, 2010 Outline 1 Static Single-Assignment Form 2 Converting to SSA Form 3 Optimization Algorithms Using SSA 4 Dependencies

More information

COSE312: Compilers. Lecture 20 Data-Flow Analysis (2)

COSE312: Compilers. Lecture 20 Data-Flow Analysis (2) COSE312: Compilers Lecture 20 Data-Flow Analysis (2) Hakjoo Oh 2017 Spring Hakjoo Oh COSE312 2017 Spring, Lecture 20 June 6, 2017 1 / 18 Final Exam 6/19 (Mon), 15:30 16:45 (in class) Do not be late. Coverage:

More information

Languages and Compiler Design II IR Code Optimization

Languages and Compiler Design II IR Code Optimization Languages and Compiler Design II IR Code Optimization Material provided by Prof. Jingke Li Stolen with pride and modified by Herb Mayer PSU Spring 2010 rev.: 4/16/2010 PSU CS322 HM 1 Agenda IR Optimization

More information

CPSC 320 Sample Solution, Playing with Graphs!

CPSC 320 Sample Solution, Playing with Graphs! CPSC 320 Sample Solution, Playing with Graphs! September 23, 2017 Today we practice reasoning about graphs by playing with two new terms. These terms/concepts are useful in themselves but not tremendously

More information

Compiler Optimizations. Chapter 8, Section 8.5 Chapter 9, Section 9.1.7

Compiler Optimizations. Chapter 8, Section 8.5 Chapter 9, Section 9.1.7 Compiler Optimizations Chapter 8, Section 8.5 Chapter 9, Section 9.1.7 2 Local vs. Global Optimizations Local: inside a single basic block Simple forms of common subexpression elimination, dead code elimination,

More information

We can express this in dataflow equations using gen and kill sets, where the sets are now sets of expressions.

We can express this in dataflow equations using gen and kill sets, where the sets are now sets of expressions. Available expressions Suppose we want to do common-subexpression elimination; that is, given a program that computes x y more than once, can we eliminate one of the duplicate computations? To find places

More information

Lecture 4 Introduction to Data Flow Analysis

Lecture 4 Introduction to Data Flow Analysis Lecture 4 Introduction to Data Flow Analysis I. Structure of data flow analysis II. Example 1: Reaching definition analysis III. Example 2: Liveness analysis IV. Generalization What is Data Flow Analysis?

More information

Compiler Construction 2010/2011 Loop Optimizations

Compiler Construction 2010/2011 Loop Optimizations Compiler Construction 2010/2011 Loop Optimizations Peter Thiemann January 25, 2011 Outline 1 Loop Optimizations 2 Dominators 3 Loop-Invariant Computations 4 Induction Variables 5 Array-Bounds Checks 6

More information

Compiler Design Spring 2017

Compiler Design Spring 2017 Compiler Design Spring 2017 8.6 Live variables Dr. Zoltán Majó Compiler Group Java HotSpot Virtual Machine Oracle Corporation Live variables Foundations for several optimizations If a variable is not live,

More information

7. Optimization! Prof. O. Nierstrasz! Lecture notes by Marcus Denker!

7. Optimization! Prof. O. Nierstrasz! Lecture notes by Marcus Denker! 7. Optimization! Prof. O. Nierstrasz! Lecture notes by Marcus Denker! Roadmap > Introduction! > Optimizations in the Back-end! > The Optimizer! > SSA Optimizations! > Advanced Optimizations! 2 Literature!

More information

Lecture 2. Introduction to Data Flow Analysis

Lecture 2. Introduction to Data Flow Analysis Lecture 2 Introduction to Data Flow Analysis I II III Example: Reaching definition analysis Example: Liveness Analysis A General Framework (Theory in next lecture) Reading: Chapter 9.2 Advanced Compilers

More information

Data Flow Analysis. Daqing Hou

Data Flow Analysis. Daqing Hou Data Flow Analysis Daqing Hou Outline Basic blocks and control flow graph An example: reaching definitions Characteristics of DFA (Data Flow Analysis) Daqing Hou, Spring 2008 2 Example 100 unsigned int

More information

A shell can be used in one of two ways:

A shell can be used in one of two ways: Shell Scripting 1 A shell can be used in one of two ways: A command interpreter, used interactively A programming language, to write shell scripts (your own custom commands) 2 If we have a set of commands

More information

Calvin Lin The University of Texas at Austin

Calvin Lin The University of Texas at Austin Loop Invariant Code Motion Last Time SSA Today Loop invariant code motion Reuse optimization Next Time More reuse optimization Common subexpression elimination Partial redundancy elimination February 23,

More information

CFG (Control flow graph)

CFG (Control flow graph) CFG (Control flow graph) Class B T12 오지은 200814189 신승우 201011340 이종선 200811448 Introduction to CFG Algorithm to construct Control Flow Graph Statement of Purpose Q & A Introduction to CFG Algorithm to

More information

Compiler Optimizations. Chapter 8, Section 8.5 Chapter 9, Section 9.1.7

Compiler Optimizations. Chapter 8, Section 8.5 Chapter 9, Section 9.1.7 Compiler Optimizations Chapter 8, Section 8.5 Chapter 9, Section 9.1.7 2 Local vs. Global Optimizations Local: inside a single basic block Simple forms of common subexpression elimination, dead code elimination,

More information

Compiler Construction 2016/2017 Loop Optimizations

Compiler Construction 2016/2017 Loop Optimizations Compiler Construction 2016/2017 Loop Optimizations Peter Thiemann January 16, 2017 Outline 1 Loops 2 Dominators 3 Loop-Invariant Computations 4 Induction Variables 5 Array-Bounds Checks 6 Loop Unrolling

More information

EECS 583 Class 8 Classic Optimization

EECS 583 Class 8 Classic Optimization EECS 583 Class 8 Classic Optimization University of Michigan October 3, 2011 Announcements & Reading Material Homework 2» Extend LLVM LICM optimization to perform speculative LICM» Due Friday, Nov 21,

More information

Loop Optimizations. Outline. Loop Invariant Code Motion. Induction Variables. Loop Invariant Code Motion. Loop Invariant Code Motion

Loop Optimizations. Outline. Loop Invariant Code Motion. Induction Variables. Loop Invariant Code Motion. Loop Invariant Code Motion Outline Loop Optimizations Induction Variables Recognition Induction Variables Combination of Analyses Copyright 2010, Pedro C Diniz, all rights reserved Students enrolled in the Compilers class at the

More information

Calvin Lin The University of Texas at Austin

Calvin Lin The University of Texas at Austin Loop Invariant Code Motion Last Time Loop invariant code motion Value numbering Today Finish value numbering More reuse optimization Common subession elimination Partial redundancy elimination Next Time

More information

Lecture 6. Register Allocation. I. Introduction. II. Abstraction and the Problem III. Algorithm

Lecture 6. Register Allocation. I. Introduction. II. Abstraction and the Problem III. Algorithm I. Introduction Lecture 6 Register Allocation II. Abstraction and the Problem III. Algorithm Reading: Chapter 8.8.4 Before next class: Chapter 10.1-10.2 CS243: Register Allocation 1 I. Motivation Problem

More information

A main goal is to achieve a better performance. Code Optimization. Chapter 9

A main goal is to achieve a better performance. Code Optimization. Chapter 9 1 A main goal is to achieve a better performance Code Optimization Chapter 9 2 A main goal is to achieve a better performance source Code Front End Intermediate Code Code Gen target Code user Machineindependent

More information

Data Flow Analysis. CSCE Lecture 9-02/15/2018

Data Flow Analysis. CSCE Lecture 9-02/15/2018 Data Flow Analysis CSCE 747 - Lecture 9-02/15/2018 Data Flow Another view - program statements compute and transform data So, look at how that data is passed through the program. Reason about data dependence

More information

CSE Section 10 - Dataflow and Single Static Assignment - Solutions

CSE Section 10 - Dataflow and Single Static Assignment - Solutions CSE 401 - Section 10 - Dataflow and Single Static Assignment - Solutions 1. Dataflow Review For each of the following optimizations, list the dataflow analysis that would be most directly applicable. You

More information

A Bad Name. CS 2210: Optimization. Register Allocation. Optimization. Reaching Definitions. Dataflow Analyses 4/10/2013

A Bad Name. CS 2210: Optimization. Register Allocation. Optimization. Reaching Definitions. Dataflow Analyses 4/10/2013 A Bad Name Optimization is the process by which we turn a program into a better one, for some definition of better. CS 2210: Optimization This is impossible in the general case. For instance, a fully optimizing

More information

Control Structures. Code can be purely arithmetic assignments. At some point we will need some kind of control or decision making process to occur

Control Structures. Code can be purely arithmetic assignments. At some point we will need some kind of control or decision making process to occur Control Structures Code can be purely arithmetic assignments At some point we will need some kind of control or decision making process to occur C uses the if keyword as part of it s control structure

More information

Compiler Design. Fall Control-Flow Analysis. Prof. Pedro C. Diniz

Compiler Design. Fall Control-Flow Analysis. Prof. Pedro C. Diniz Compiler Design Fall 2015 Control-Flow Analysis Sample Exercises and Solutions Prof. Pedro C. Diniz USC / Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, California 90292

More information

Intermediate representations IR #1: CPS/L 3. Code example. Advanced Compiler Construction Michel Schinz

Intermediate representations IR #1: CPS/L 3. Code example. Advanced Compiler Construction Michel Schinz Intermediate representations Intermediate representations Advanced Compiler Construction Michel Schinz 2016 03 03 The term intermediate representation (IR) or intermediate language designates the data-structure(s)

More information

An Interactive Desk Calculator. Project P2 of. Common Lisp: An Interactive Approach. Stuart C. Shapiro. Department of Computer Science

An Interactive Desk Calculator. Project P2 of. Common Lisp: An Interactive Approach. Stuart C. Shapiro. Department of Computer Science An Interactive Desk Calculator Project P2 of Common Lisp: An Interactive Approach Stuart C. Shapiro Department of Computer Science State University of New York at Bualo January 25, 1996 The goal of this

More information

Shell Scripting. Todd Kelley CST8207 Todd Kelley 1

Shell Scripting. Todd Kelley CST8207 Todd Kelley 1 Shell Scripting Todd Kelley kelleyt@algonquincollege.com CST8207 Todd Kelley 1 If we have a set of commands that we want to run on a regular basis, we could write a script A script acts as a Linux command,

More information

Midterm 2. CMSC 430 Introduction to Compilers Fall Instructions Total 100. Name: November 11, 2015

Midterm 2. CMSC 430 Introduction to Compilers Fall Instructions Total 100. Name: November 11, 2015 Name: Midterm 2 CMSC 430 Introduction to Compilers Fall 2015 November 11, 2015 Instructions This exam contains 8 pages, including this one. Make sure you have all the pages. Write your name on the top

More information

Code Optimization. Code Optimization

Code Optimization. Code Optimization 161 Code Optimization Code Optimization 162 Two steps: 1. Analysis (to uncover optimization opportunities) 2. Optimizing transformation Optimization: must be semantically correct. shall improve program

More information

Control Flow Analysis. Reading & Topics. Optimization Overview CS2210. Muchnick: chapter 7

Control Flow Analysis. Reading & Topics. Optimization Overview CS2210. Muchnick: chapter 7 Control Flow Analysis CS2210 Lecture 11 Reading & Topics Muchnick: chapter 7 Optimization Overview Control Flow Analysis Maybe start data flow analysis Optimization Overview Two step process Analyze program

More information

CS202 Compiler Construction

CS202 Compiler Construction CS202 Compiler Construction April 17, 2003 CS 202-33 1 Today: more optimizations Loop optimizations: induction variables New DF analysis: available expressions Common subexpression elimination Copy propogation

More information

Three-Address Code IR

Three-Address Code IR Three-Address Code IR Announcements Programming Project 3 due tonight at 11:59PM. OH today after lecture. Ask questions on Piazzza! Ask questions via email! Programming Project 4 out, due Wednesday, August

More information

Lecture Compiler Middle-End

Lecture Compiler Middle-End Lecture 16-18 18 Compiler Middle-End Jianwen Zhu Electrical and Computer Engineering University of Toronto Jianwen Zhu 2009 - P. 1 What We Have Done A lot! Compiler Frontend Defining language Generating

More information

Intermediate representation

Intermediate representation Intermediate representation Goals: encode knowledge about the program facilitate analysis facilitate retargeting facilitate optimization scanning parsing HIR semantic analysis HIR intermediate code gen.

More information

Introduction to Linux

Introduction to Linux Introduction to Linux The command-line interface A command-line interface (CLI) is a type of interface, that is, a way to interact with a computer. Window systems, punched cards or a bunch of dials, buttons

More information

Compiler Design. Fall Data-Flow Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz

Compiler Design. Fall Data-Flow Analysis. Sample Exercises and Solutions. Prof. Pedro C. Diniz Compiler Design Fall 2015 Data-Flow Analysis Sample Exercises and Solutions Prof. Pedro C. Diniz USC / Information Sciences Institute 4676 Admiralty Way, Suite 1001 Marina del Rey, California 90292 pedro@isi.edu

More information

Why Global Dataflow Analysis?

Why Global Dataflow Analysis? Why Global Dataflow Analysis? Answer key questions at compile-time about the flow of values and other program properties over control-flow paths Compiler fundamentals What defs. of x reach a given use

More information

Flow Analysis. Data-flow analysis, Control-flow analysis, Abstract interpretation, AAM

Flow Analysis. Data-flow analysis, Control-flow analysis, Abstract interpretation, AAM Flow Analysis Data-flow analysis, Control-flow analysis, Abstract interpretation, AAM Helpful Reading: Sections 1.1-1.5, 2.1 Data-flow analysis (DFA) A framework for statically proving facts about program

More information

Functions and Objects. Week 7: Symbolic Computation

Functions and Objects. Week 7: Symbolic Computation Week 7: Symbolic Computation In the previous weeks, we've seen the essential elements of modern functional programming: Functions (rst class) Types (parametric) Pattern Matching Lists This week, we'll

More information

CSE P 501 Compilers. SSA Hal Perkins Spring UW CSE P 501 Spring 2018 V-1

CSE P 501 Compilers. SSA Hal Perkins Spring UW CSE P 501 Spring 2018 V-1 CSE P 0 Compilers SSA Hal Perkins Spring 0 UW CSE P 0 Spring 0 V- Agenda Overview of SSA IR Constructing SSA graphs Sample of SSA-based optimizations Converting back from SSA form Sources: Appel ch., also

More information

source constructs created by the operation. he complexity of these computations contributes to the complexity of the entire language translator specic

source constructs created by the operation. he complexity of these computations contributes to the complexity of the entire language translator specic pecication Languages in Algebraic Compilers Eric Van Wyk 1 Oxford University Computing Laboratory Wolfson Building, Parks Road Oxford OX1 3QD, UK Abstract Algebraic compilers provide a powerful and convenient

More information

Liveness Analysis and Register Allocation. Xiao Jia May 3 rd, 2013

Liveness Analysis and Register Allocation. Xiao Jia May 3 rd, 2013 Liveness Analysis and Register Allocation Xiao Jia May 3 rd, 2013 1 Outline Control flow graph Liveness analysis Graph coloring Linear scan 2 Basic Block The code in a basic block has: one entry point,

More information

COMPILER DESIGN - CODE OPTIMIZATION

COMPILER DESIGN - CODE OPTIMIZATION COMPILER DESIGN - CODE OPTIMIZATION http://www.tutorialspoint.com/compiler_design/compiler_design_code_optimization.htm Copyright tutorialspoint.com Optimization is a program transformation technique,

More information

When we eliminated global CSE's we introduced copy statements of the form A:=B. There are many

When we eliminated global CSE's we introduced copy statements of the form A:=B. There are many Copy Propagation When we eliminated global CSE's we introduced copy statements of the form A:=B. There are many other sources for copy statements, such as the original source code and the intermediate

More information

Middle End. Code Improvement (or Optimization) Analyzes IR and rewrites (or transforms) IR Primary goal is to reduce running time of the compiled code

Middle End. Code Improvement (or Optimization) Analyzes IR and rewrites (or transforms) IR Primary goal is to reduce running time of the compiled code Traditional Three-pass Compiler Source Code Front End IR Middle End IR Back End Machine code Errors Code Improvement (or Optimization) Analyzes IR and rewrites (or transforms) IR Primary goal is to reduce

More information

Lecture Notes: Dataflow Analysis Examples

Lecture Notes: Dataflow Analysis Examples Lecture Notes: Dataflow Analysis Examples 15-819O: Program Analysis Jonathan Aldrich jonathan.aldrich@cs.cmu.edu Lecture 3 1 Constant Propagation While zero analysis was useful for simply tracking whether

More information

Midterm 2. CMSC 430 Introduction to Compilers Fall Instructions Total 100. Name: November 21, 2016

Midterm 2. CMSC 430 Introduction to Compilers Fall Instructions Total 100. Name: November 21, 2016 Name: Midterm 2 CMSC 430 Introduction to Compilers Fall 2016 November 21, 2016 Instructions This exam contains 7 pages, including this one. Make sure you have all the pages. Write your name on the top

More information

COMP2100/2500 Lecture 17: Shell Programming II

COMP2100/2500 Lecture 17: Shell Programming II [ANU] [DCS] [COMP2100/2500] [Description] [Schedule] [Lectures] [Labs] [Homework] [Assignments] [COMP2500] [Assessment] [PSP] [Java] [Reading] [Help] COMP2100/2500 Lecture 17: Shell Programming II Summary

More information

Combining Analyses, Combining Optimizations - Summary

Combining Analyses, Combining Optimizations - Summary Combining Analyses, Combining Optimizations - Summary 1. INTRODUCTION Cliff Click s thesis Combining Analysis, Combining Optimizations [Click and Cooper 1995] uses a structurally different intermediate

More information

CSE 490/590 Computer Architecture Homework 2

CSE 490/590 Computer Architecture Homework 2 CSE 490/590 Computer Architecture Homework 2 1. Suppose that you have the following out-of-order datapath with 1-cycle ALU, 2-cycle Mem, 3-cycle Fadd, 5-cycle Fmul, no branch prediction, and in-order fetch

More information

1 of 5 5/11/2006 12:10 AM CS 61A Spring 2006 Midterm 2 solutions 1. Box and pointer. Note: Please draw actual boxes, as in the book and the lectures, not XX and X/ as in these ASCII-art solutions. Also,

More information

Dataflow Analysis. Xiaokang Qiu Purdue University. October 17, 2018 ECE 468

Dataflow Analysis. Xiaokang Qiu Purdue University. October 17, 2018 ECE 468 Dataflow Analysis Xiaokang Qiu Purdue University ECE 468 October 17, 2018 Program optimizations So far we have talked about different kinds of optimizations Peephole optimizations Local common sub-expression

More information

CS577 Modern Language Processors. Spring 2018 Lecture Optimization

CS577 Modern Language Processors. Spring 2018 Lecture Optimization CS577 Modern Language Processors Spring 2018 Lecture Optimization 1 GENERATING BETTER CODE What does a conventional compiler do to improve quality of generated code? Eliminate redundant computation Move

More information

Program analysis for determining opportunities for optimization: 2. analysis: dataow Organization 1. What kind of optimizations are useful? lattice al

Program analysis for determining opportunities for optimization: 2. analysis: dataow Organization 1. What kind of optimizations are useful? lattice al Scalar Optimization 1 Program analysis for determining opportunities for optimization: 2. analysis: dataow Organization 1. What kind of optimizations are useful? lattice algebra solving equations on lattices

More information

An example of optimization in LLVM. Compiler construction Step 1: Naive translation to LLVM. Step 2: Translating to SSA form (opt -mem2reg)

An example of optimization in LLVM. Compiler construction Step 1: Naive translation to LLVM. Step 2: Translating to SSA form (opt -mem2reg) Compiler construction 2014 An example of optimization in LLVM Lecture 8 More on code optimization SSA form Constant propagation Common subexpression elimination Loop optimizations int f () { int i, j,

More information

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1

CSE P 501 Compilers. Intermediate Representations Hal Perkins Spring UW CSE P 501 Spring 2018 G-1 CSE P 501 Compilers Intermediate Representations Hal Perkins Spring 2018 UW CSE P 501 Spring 2018 G-1 Administrivia Semantics/types/symbol table project due ~2 weeks how goes it? Should be caught up on

More information

OptiCode: Machine Code Deobfuscation for Malware Analysis

OptiCode: Machine Code Deobfuscation for Malware Analysis OptiCode: Machine Code Deobfuscation for Malware Analysis NGUYEN Anh Quynh, COSEINC CONFidence, Krakow - Poland 2013, May 28th 1 / 47 Agenda 1 Obfuscation problem in malware analysis

More information

Compiler Passes. Optimization. The Role of the Optimizer. Optimizations. The Optimizer (or Middle End) Traditional Three-pass Compiler

Compiler Passes. Optimization. The Role of the Optimizer. Optimizations. The Optimizer (or Middle End) Traditional Three-pass Compiler Compiler Passes Analysis of input program (front-end) character stream Lexical Analysis Synthesis of output program (back-end) Intermediate Code Generation Optimization Before and after generating machine

More information

bash Tests and Looping Administrative Shell Scripting COMP2101 Fall 2017

bash Tests and Looping Administrative Shell Scripting COMP2101 Fall 2017 bash Tests and Looping Administrative Shell Scripting COMP2101 Fall 2017 Command Lists A command is a sequence of commands separated by the operators ; & && and ; is used to simply execute commands in

More information

IR Generation. May 13, Monday, May 13, 13

IR Generation. May 13, Monday, May 13, 13 IR Generation May 13, 2013 Monday, May 13, 13 Monday, May 13, 13 Monday, May 13, 13 Midterm Results Grades already in Repeal policy Talk to TA by the end of the Tuesday reserve the right to regrade the

More information

CS553 Lecture Generalizing Data-flow Analysis 3

CS553 Lecture Generalizing Data-flow Analysis 3 Generalizing Data-flow Analysis Announcements Project 2 writeup is available Read Stephenson paper Last Time Control-flow analysis Today C-Breeze Introduction Other types of data-flow analysis Reaching

More information

CS153: Compilers Lecture 23: Static Single Assignment Form

CS153: Compilers Lecture 23: Static Single Assignment Form CS153: Compilers Lecture 23: Static Single Assignment Form Stephen Chong https://www.seas.harvard.edu/courses/cs153 Pre-class Puzzle Suppose we want to compute an analysis over CFGs. We have two possible

More information

Plan for Today. Concepts. Next Time. Some slides are from Calvin Lin s grad compiler slides. CS553 Lecture 2 Optimizations and LLVM 1

Plan for Today. Concepts. Next Time. Some slides are from Calvin Lin s grad compiler slides. CS553 Lecture 2 Optimizations and LLVM 1 Plan for Today Quiz 2 How to automate the process of performance optimization LLVM: Intro to Intermediate Representation Loops as iteration spaces Data-flow Analysis Intro Control-flow graph terminology

More information

Intermediate Representations. Reading & Topics. Intermediate Representations CS2210

Intermediate Representations. Reading & Topics. Intermediate Representations CS2210 Intermediate Representations CS2210 Lecture 11 Reading & Topics Muchnick: chapter 6 Topics today: Intermediate representations Automatic code generation with pattern matching Optimization Overview Control

More information

What Do Compilers Do? How Can the Compiler Improve Performance? What Do We Mean By Optimization?

What Do Compilers Do? How Can the Compiler Improve Performance? What Do We Mean By Optimization? What Do Compilers Do? Lecture 1 Introduction I What would you get out of this course? II Structure of a Compiler III Optimization Example Reference: Muchnick 1.3-1.5 1. Translate one language into another

More information

Lecture 6 Foundations of Data Flow Analysis

Lecture 6 Foundations of Data Flow Analysis Lecture 6 Foundations of Data Flow Analysis I. Meet operator II. Transfer functions III. Correctness, Precision, Convergence IV. Efficiency ALSU 9.3 Phillip B. Gibbons 15-745: Foundations of Data Flow

More information

Introduction to Code Optimization. Lecture 36: Local Optimization. Basic Blocks. Basic-Block Example

Introduction to Code Optimization. Lecture 36: Local Optimization. Basic Blocks. Basic-Block Example Lecture 36: Local Optimization [Adapted from notes by R. Bodik and G. Necula] Introduction to Code Optimization Code optimization is the usual term, but is grossly misnamed, since code produced by optimizers

More information

Intermediate Code & Local Optimizations

Intermediate Code & Local Optimizations Lecture Outline Intermediate Code & Local Optimizations Intermediate code Local optimizations Compiler Design I (2011) 2 Code Generation Summary We have so far discussed Runtime organization Simple stack

More information

The Static Single Assignment Form:

The Static Single Assignment Form: The Static Single Assignment Form: Construction and Application to Program Optimizations - Part 3 Department of Computer Science Indian Institute of Science Bangalore 560 012 NPTEL Course on Compiler Design

More information

A Sparse Algorithm for Predicated Global Value Numbering

A Sparse Algorithm for Predicated Global Value Numbering Sparse Predicated Global Value Numbering A Sparse Algorithm for Predicated Global Value Numbering Karthik Gargi Hewlett-Packard India Software Operation PLDI 02 Monday 17 June 2002 1. Introduction 2. Brute

More information

Compiler Structure. Data Flow Analysis. Control-Flow Graph. Available Expressions. Data Flow Facts

Compiler Structure. Data Flow Analysis. Control-Flow Graph. Available Expressions. Data Flow Facts Compiler Structure Source Code Abstract Syntax Tree Control Flow Graph Object Code CMSC 631 Program Analysis and Understanding Fall 2003 Data Flow Analysis Source code parsed to produce AST AST transformed

More information

Lecture Notes on Intermediate Representation

Lecture Notes on Intermediate Representation Lecture Notes on Intermediate Representation 15-411: Compiler Design Frank Pfenning Lecture 9 September 24, 2009 1 Introduction In this lecture we discuss the middle end of the compiler. After the source

More information

Lecture 20 CIS 341: COMPILERS

Lecture 20 CIS 341: COMPILERS Lecture 20 CIS 341: COMPILERS Announcements HW5: OAT v. 2.0 records, function pointers, type checking, array-bounds checks, etc. Due: TOMORROW Wednesday, April 11 th Zdancewic CIS 341: Compilers 2 A high-level

More information

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored?

what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? Inside the CPU how does the CPU work? what operations can it perform? how does it perform them? on what kind of data? where are instructions and data stored? some short, boring programs to illustrate the

More information

Introduction. Data-flow Analysis by Iteration. CSc 553. Principles of Compilation. 28 : Optimization III

Introduction. Data-flow Analysis by Iteration. CSc 553. Principles of Compilation. 28 : Optimization III CSc 553 Principles of Compilation 28 : Optimization III Introduction Department of Computer Science University of Arizona collberg@gmail.com Copyright c 2011 Christian Collberg Computing Data-Flow Info.

More information

Advanced Compilers Introduction to Dataflow Analysis by Example. Fall Chungnam National Univ. Eun-Sun Cho

Advanced Compilers Introduction to Dataflow Analysis by Example. Fall Chungnam National Univ. Eun-Sun Cho Advanced Compilers Introduction to Dataflow Analysis by Example Fall. 2016 Chungnam National Univ. Eun-Sun Cho 1 Dataflow Analysis + Optimization r1 = r2 + r3 r6 = r4 r5 r6 = r2 + r3 r7 = r4 r5 r4 = 4

More information

Chapter 3 (part 3) Describing Syntax and Semantics

Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 (part 3) Describing Syntax and Semantics Chapter 3 Topics Introduction The General Problem of Describing Syntax Formal Methods of Describing Syntax Attribute Grammars Describing the Meanings

More information

Heap sort. Carlos Moreno uwaterloo.ca EIT

Heap sort. Carlos Moreno uwaterloo.ca EIT Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 http://xkcd.com/835/ https://ece.uwaterloo.ca/~cmoreno/ece250 Standard reminder to set phones to silent/vibrate mode, please! Last time, on ECE-250... Talked

More information

Levels in Processor Design

Levels in Processor Design Levels in Processor Design Circuit design Keywords: transistors, wires etc.results in gates, flip-flops etc. Logical design Putting gates (AND, NAND, ) and flip-flops together to build basic blocks such

More information

Goals of Program Optimization (1 of 2)

Goals of Program Optimization (1 of 2) Goals of Program Optimization (1 of 2) Goal: Improve program performance within some constraints Ask Three Key Questions for Every Optimization 1. Is it legal? 2. Is it profitable? 3. Is it compile-time

More information

Search. Krzysztof Kuchcinski. Department of Computer Science Lund Institute of Technology Sweden.

Search. Krzysztof Kuchcinski. Department of Computer Science Lund Institute of Technology Sweden. Search Krzysztof Kuchcinski Krzysztof.Kuchcinski@cs.lth.se Department of Computer Science Lund Institute of Technology Sweden January 12, 2015 Kris Kuchcinski (LTH) Search January 12, 2015 1 / 46 Search

More information

Final Exam Fall 2007

Final Exam Fall 2007 ICS 233 - Computer Architecture & Assembly Language Final Exam Fall 2007 Wednesday, January 23, 2007 7:30 am 10:00 am Computer Engineering Department College of Computer Sciences & Engineering King Fahd

More information

Abstract Interpretation Continued

Abstract Interpretation Continued Abstract Interpretation Continued Height of Lattice: Length of Max. Chain height=5 size=14 T height=2 size = T -2-1 0 1 2 Chain of Length n A set of elements x 0,x 1,..., x n in D that are linearly ordered,

More information

Sparse Conditional Constant Propagation

Sparse Conditional Constant Propagation CS738: Advanced Compiler Optimizations Sparse Simple Constant Propagation (SSC) Sparse Conditional Constant Propagation Amey Karkare karkare@cse.iitk.ac.in Improved analysis time over Simple Constant Propagation

More information

CSC D70: Compiler Optimization Register Allocation

CSC D70: Compiler Optimization Register Allocation CSC D70: Compiler Optimization Register Allocation Prof. Gennady Pekhimenko University of Toronto Winter 2018 The content of this lecture is adapted from the lectures of Todd Mowry and Phillip Gibbons

More information